

FIFTH EDITION

Essentials
of Software
Engineering

Frank Tsui

Orlando Karam

Barbara Bernal

J
O

N
E
S

 &
 B

A
R

T
L
E

T
T

 L
E

A
R

N
IN

G

World Headquarters
Jones & Bartlett Learning
25 Mall Road
Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett Learning
directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Copyright © 2023 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner.

�e content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones & Bartlett Learning, LLC.
Reference herein to any speci�c commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or
imply its endorsement or recommendation by Jones & Bartlett Learning, LLC and such reference shall not be used for advertising or product endorsement
purposes. All trademarks displayed are the trademarks of the parties noted herein. Essentials of So�ware Engineering, Fi�h Edition is an independent
publication and has not been authorized, sponsored, or otherwise approved by the owners of the trademarks or service marks referenced in this product.

�ere may be images in this book that feature models; these models do not necessarily endorse, represent, or participate in the activities represented in
the images. Any screenshots in this product are for educational and instructive purposes only. Any individuals and scenarios featured in the case studies
throughout this product may be real or �ctitious but are used for instructional purposes only.

37618-0

Production Credits
Vice President, Product Management: Marisa R. Urbano
Vice President, Product Operations: Christine Emerton
Content Coordinator: Mark Restuccia
Product Manager: Ned Hinman
Director, Content Management: Donna Gridley
Manager, Content Strategy: Carolyn Pershouse
Content Strategist: Melissa Du�y
Director, Project Management and Content Services: Karen Scott
Project Manager: Jessica deMartin
Project Specialist: Lori Weidert

Senior Digital Project Specialist: Angela Dooley
Marketing Manager: Suzy Balk
Composition: Straive
Project Management: Straive
Cover Design: Briana Yates
Media Development Editor: Faith Brosnan
Rights Specialist: James Fortney
Cover Image (Title Page, Part Opener, Chapter Opener):

© Zally23/Shutterstock
Printing and Binding: PA Hutchison Company

Library of Congress Cataloging-in-Publication Data
Names: Tsui, Frank F., author. | Bernal, Barbara, author. | Karam, Orlando,
 author.
Title: Essentials of so�ware engineering / Frank Tsui, Kennesaw State
 University, Barbara Bernal, Southern Polytechnic State University (now
 retired), Orlando, Karam.
Description: Fi�h edition. | Burlington : Jones & Bartlett Learning, 2022.
 | Includes bibliographical references and index. | Summary: “�e basic
 concepts and theories of so�ware engineering have stabilized
 considerably from the early days of thirty to forty years ago.
 Nevertheless, the technology and tools continue to evolve, expand and
 improve every four to �ve years. In this ��h edition, we will cover
 some of these newly established improvements in technology and tools but
 reduce some areas, such as process assessment models, that is becoming
 less relevant today. We will still maintain many of the historically
 important concepts that formed the foundation to this �eld, such as the
 traditional process models. Our goal is to continue to keep the content
 of this book to a concise amount that can be taught in a 16-week
 semester introductory course”– Provided by publisher.
Identi�ers: LCCN 2021032440 | ISBN 9781284228991 (paperback)
Subjects: LCSH: So�ware engineering.
Classi�cation: LCC QA76.758 .T78 2022 | DDC 005.1–dc23
LC record available at https://lccn.loc.gov/2021032440

6048

Printed in the United States of America
26 25 24 23 22 10 9 8 7 6 5 4 3 2 1

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional associations, and other
quali�ed organizations. For details and speci�c discount information, contact the special sales department at Jones & Bartlett Learning via the above
contact information or send an email to specialsales@jblearning.com.

iii

Chapter opener image: © Zally23/Shutterstock

Preface . ix

About the Authors . xv

1 Creating a Program 1

1.1 A Simple Problem . 2
1.1.1 Decisions, Decisions . 2
1.1.2 Functional Requirements . 3
1.1.3 Nonfunctional Requirements . 4
1.1.4 Design Constraints. 5
1.1.5 Design Decisions . 6

1.2 Testing . 7

1.3 Estimating Effort . 7

1.4 Implementations . 9
1.4.1 A Few Pointers on Implementation . 9
1.4.2 Basic Design . 10
1.4.3 Unit Testing with JUnit .11
1.4.4 Implementation of StringSorter .11
1.4.5 User Interfaces . 15

1.5 Summary .19

1.6 Review Questions . 20

1.7 Exercises . 20

1.8 References and Suggested Readings. 21

2 Building a System 23

2.1 Characteristics of Building a System . 24
2.1.1 Size and Complexity . 24
2.1.2 Technical Considerations of Development and Support . 25
2.1.3 Nontechnical Considerations of Development and Support . 29

2.2 Building a Hypothetical System . 31
2.2.1 Requirements of the Payroll System . 31
2.2.2 Designing the Payroll System . 33
2.2.3 Code and Unit Testing the Payroll System . 35
2.2.4 Integration and Functional Testing of the Payroll System . 36
2.2.5 Release of the Payroll System . 36
2.2.6 Support and Maintenance . 37

2.3 Coordination Efforts . 38
2.3.1 Process . 38
2.3.2 Product . 39
2.3.3 People . 39

2.4 Summary .40

2.5 Review Questions . 40

2.6 Exercises . 40

2.7 References and Suggested Readings. 40

TABLE OF CONTENTS

3 Engineering of Software 43

3.1 Examples and Characteristics of Software Failures . 44
3.1.1 Project Failures . 44
3.1.2 Software Product Failures . 45
3.1.3 Coordination and Other Concerns . 46

3.2 Software Engineering . 47
3.2.1 What Is Software Engineering? . 47
3.2.2 Definitions of Software Engineering . 47
3.2.3 Relevancy of Software Engineering and Software . 48

3.3 Software Engineering Profession and Ethics . 49
3.3.1 Software Engineering Code of Ethics . 49
3.3.2 Professional Behavior . 51

3.4 Principles of Software Engineering . 52
3.4.1 Davis’s Early Principles of Software Engineering . 52
3.4.2 Royce’s More Modern Principles . 54
3.4.3 Wasserman’s Fundamental Software Engineering Concepts . 54

3.5 Summary .56

3.6 Review Questions . 56

3.7 Exercises . 56

3.8 References and Suggested Readings. 57

4 Traditional Software Process Models 59

4.1 Software Processes. 60
4.1.1 Goal of Software Process Models . 60
4.1.2 The “Simplest” Process Model . 61

4.2 Traditional Process Models . 62
4.2.1 Waterfall Model . 62
4.2.2 Chief Programmer Team Approach . 63
4.2.3 Incremental Model . 64
4.2.4 Spiral Model . 65

4.3 A More Modern Process . 67
4.3.1 General Foundations of Rational

Unified Process Framework . 67
4.3.2 The Phases of RUP . 68

4.4 Entry and Exit Criteria . 71
4.4.1 Entry Criteria . 71
4.4.2 Exit Criteria . 72

4.5 Process Assessment Models . 73
4.5.1 SEI’s Capability Maturity Model . 73
4.5.2 SEI’s Capability Maturity Model Integrated . 75

4.6 Process Definition and Communication . 76

4.7 Summary . 77

4.8 Review Questions . 78

4.9 Exercises . 78

4.10 References and Suggested Readings. 79

5 Agile Software Process Models 81

5.1 What Are Agile Processes? . 82

5.2 Why Agile Processes? . 83

5.3 Some Process Methodologies . 84
5.3.1 Extreme Programming (XP). 84
5.3.2 The Crystal Family of Methodologies . 89
5.3.3 The Unified Process as Agile . 92

iv TABLE OF CONTENTS

5.3.4 Scrum . 92
5.3.5 Kanban Method: A New Addition to Agile . 94
5.3.6 Open Source Software Development . 96
5.3.7 Summary of Processes . 97

5.4 Choosing a Process . 98
5.4.1 Projects and Environments Better Suited for Each Kind of Process . 100
5.4.2 Main Risks and Disadvantages of Agile Processes . 100
5.4.3 Main Advantages of Agile Processes . 101

5.5 Summary . 102

5.6 Review Questions . 102

5.7 Exercises . 103

5.8 References and Suggested Readings. 103

6 Requirements Engineering 105

6.1 Requirements Processing . 106
6.1.1 Preparing for Requirements Processing . 106
6.1.2 Requirements Engineering Process . 107

6.2 Requirements Elicitation and Gathering . 109
6.2.1 Eliciting High-Level Requirements . 110
6.2.2 Eliciting Detailed Requirements . 112

6.3 Requirements Analysis . 114
6.3.1 Requirements Analysis and Clustering by Business Flow . 114
6.3.2 Requirements Analysis and Clustering with Object-Oriented Use Cases 116
6.3.3 Requirements Analysis and Clustering by Viewpoint-Oriented Requirements

Definition . 118
6.3.4 Requirements Analysis and Prioritization . 119
6.3.5 Requirements Traceability . 121

6.4 Requirements Definition, Prototyping, and Reviews . 122

6.5 Requirements Specification and Requirements Agreement . 126

6.6 Summary . 127

6.7 Review Questions . 128

6.8 Exercises . 128

6.9 References and Suggested Readings. 129

7 Design: Architecture and Methodology 131

7.1 Introduction to Design . 132

7.2 Architectural Design . 133
7.2.1 What Is Software Architecture? . 133
7.2.2 Views and Viewpoints . 134
7.2.3 Meta-Architectural Knowledge: Styles, Patterns, Tactics, and Reference Architectures 135
7.2.4 A Network-Based Web Reference Architecture—REST . 141

7.3 Detailed Design . 143
7.3.1 Functional Decomposition . 143
7.3.2 Relational Database Design . 145
7.3.3 Designing for Big Data . 150
7.3.4 Object-Oriented Design and UML . 152
7.3.5 User-Interface Design . 157
7.3.6 Some Further Design Concerns . 163

7.4 HTML-Script-SQL Design Example . 164

7.5 Summary . 167

7.6 Review Questions . 167

7.7 Exercises . 168

7.8 References and Suggested Readings. 169

 TABLE OF CONTENTS v

8 Design Characteristics and Metrics 171

8.1 Characterizing Design . 172

8.2 Some Legacy Characterizations of Design Attributes . 172
8.2.1 Halstead Complexity Metric . 172
8.2.2 McCabe’s Cyclomatic Complexity . 173
8.2.3 Henry-Kafura Information Flow . 175
8.2.4 A Higher-Level Complexity Measure . 176

8.3 “Good” Design Attributes . 177
8.3.1 Cohesion . 177
8.3.2 Coupling . 180

8.4 OO Design Metrics . 183
8.4.1 Aspect-Oriented Programming . 185
8.4.2 The Law of Demeter . 185

8.5 User-Interface Design . 186
8.5.1 Good UI Characteristics . 186
8.5.2 Usability Evaluation and Testing . 187

8.6 Summary .188

8.7 Review Questions . 189

8.8 Exercises . 190

8.9 References and Suggested Readings. 191

9 Implementation 193

9.1 Introduction to Implementation . 194

9.2 Characteristics of a Good Implementation . 194
9.2.1 Programming Style and Coding Guidelines . 195
9.2.2 Comments . 198

9.3 Implementation Practices . 199
9.3.1 Debugging . 199
9.3.2 Assertions and Defensive Programming . 201
9.3.3 Performance Optimization . 201
9.3.4 Refactoring . 202
9.3.5 Code Reuse . 203

9.4 Virtualization and Containers . 204

9.5 Developing for the Cloud . 205
9.5.1 Infrastructure as a Service . 205
9.5.2 Platform as a Service . 206
9.5.3 Cloud Application Services . 206
9.5.4 Cloud Services for Developers . 207
9.5.5 Infrastructure as Code and DevOps . 208
9.5.6 Advantages and Disadvantages of the Cloud . 208

9.6 Summary 209

9.7 Review Questions . 209

9.8 Exercises . 210

9.9 References and Suggested Readings. 210

10 Testing and Quality Assurance 211

10.1 Introduction to Testing and Quality Assurance . 212

10.2 Testing . 214
10.2.1 The Purposes of Testing . 214

10.3 Testing Techniques . 215
10.3.1 Equivalence-Class Partitioning . 218
10.3.2 Boundary Value Analysis . 220

vi TABLE OF CONTENTS

10.3.3 Path Analysis . 221
10.3.4 Combinations of Conditions . 225
10.3.5 Automated Unit Testing and Test-Driven Development . 226
10.3.6 An Example of Test-Driven Development . 227

10.4 When to Stop Testing . 231

10.5 Inspections and Reviews . 233

10.6 Formal Methods . 234

10.7 Static Analysis . 236

10.8 Summary . 237

10.9 Review Questions . 237

10.10 Exercises . 238

10.11 References and Suggested Readings. 239

11 Configuration Management, Integration, and Builds 241

11.1 Software Configuration Management . 242

11.2 Policy, Process, and Artifacts . 242
11.2.1 Business Policy Impact on Configuration Management . 245
11.2.2 Process Influence on Configuration Management . 245

11.3 Configuration Management Framework . 247
11.3.1 Naming Model . 247
11.3.2 Storage and Access Model . 249

11.4 Build and Integration and Build . 251

11.5 Tools for Configuration Management . 252

11.6 Managing the Configuration Management Framework . 255

11.7 Summary . 256

11.8 Review Questions . 256

11.9 Exercises . 256

11.10 References and Suggested Readings. 257

12 Software Support and Maintenance 259

12.1 Customer Support . 260
12.1.1 User Problem Arrival Rate . 260
12.1.2 Customer Interface and Call Management . 262
12.1.3 Technical Problem/Fix. 265
12.1.4 Fix Delivery and Fix Installs . 266

12.2 Product Maintenance Updates
and Release Cycles . 268

12.3 Change Control . 269

12.4 Summary . 271

12.5 Review Questions . 271

12.6 Exercises . 272

12.7 References and Suggested Readings . 272

13 Software Project Management 273

13.1 Project Management . 274
13.1.1 The Need for Project Management . 274
13.1.2 The Project Management Process . 274
13.1.3 The Planning Phase of Project Management . 275
13.1.4 The Organizing Phase of Project Management . 278
13.1.5 The Monitoring Phase of Project Management . 279
13.1.6 The Adjusting Phase of Project Management . 281

 TABLE OF CONTENTS vii

13.2 Some Project Management Techniques . 283
13.2.1 Project Effort Estimation . 283
13.2.2 Work Breakdown Structure . 290
13.2.3 Project Status Tracking with Earned Value. 293
13.2.4 Measuring Project Properties and Goal-Question-Metric (GQM) . 296

13.3 Summary 298

13.4 Review Questions . 298

13.5 Exercises . 299

13.6 References and Suggested Readings. 301

14 Epilogue and Some Contemporary Issues 303

14.1 Security and Software Engineering . 305

14.2 Reverse Engineering and Software Obfuscation . 306

14.3 Software Validation and Verification Methodologies and Tools . 307

14.4 References and Suggested Readings. 309

APPENDIX A Essential Software Development Plan (SDP)311

APPENDIX B Essential Software Requirements Specifications (SRS) 313

APPENDIX C Essential Software Design .319

APPENDIX D Essential Test Plan . 321

GLOSSARY . 323

INDEX . 325

viii TABLE OF CONTENTS

ix

Chapter opener image: © Zally23/Shutterstock

PREFACE
Essentials of Software Engineering was born from our experiences in teaching introductory mate-

rial on software engineering. Although there are many books on this topic available in the market,

few serve the purpose of introducing only the core material for a one-semester course that meets

approximately three hours a week for sixteen weeks. With the proliferation of small web applications,

many new information technology personnel have entered the field of software engineering without

fully understanding what it entails. This book is intended to serve both new students with limited

experience as well as experienced information technology professionals who are contemplating a

new career in the software engineering discipline. The complete life cycle of a software system is

covered in this book, from inception to release and through support.

The content of this book has also been shaped by our personal experiences and backgrounds—one

author has more than twenty-five years in building, supporting, and managing large and complex

mission-critical software with companies such as IBM, Blue Cross Blue Shield, MARCAM, and

RCA; another author has experience involving extensive expertise in constructing smaller software

with Agile methods at companies such as Microsoft and Amazon; and the third author is bilingual

and has broad software engineering teaching experiences with both U.S. college students and non-

U.S. Spanish-speaking students.

Although new ideas and technology will continue to emerge and some of the principles

introduced in this book may have to be updated, we believe that the underlying and fundamental

concepts we present here will remain.

Preface to the Fifth Edition

The basic concepts and theories of software engineering have stabilized considerably from the early

days of thirty to forty years ago. Nevertheless, the technology and tools continue to evolve, expand,

and improve every four to five years. In this fifth edition, we cover some of these newly established

improvements in technology and tools but reduce some areas, such as process assessment models,

that are becoming less relevant today. We will still maintain many of the historically important

concepts that formed the foundation to this field, such as the traditional process models. Our goal

is to continue to keep the content of this book to a concise amount that can be taught in a sixteen-

week semester introductory course. The major modifications to this fifth edition are as follows”

 ▸ An existing and historical notion of “continuous integration” has expanded into a newer

concept called Continuous Integration and Continuous Deployment (CI/CD) and picked

up momentum with improved tools and maturing Agile methods. �is is discussed in

Chapter 2.

 ▸ To re�ect more current thinking and terminologies, Chapter 4 is retitled as Traditional

So�ware Process Models. Chapter 4’s discussion on process assessment models, especially

Capability Maturity Model Integrated (CMMI), is greatly reduced. Chapter 5 is retitled as

Agile So�ware Process Models to more accurately re�ect its contents. An extension to the

popular Agile methodologies called Development and Operations or DevOps is added in

Chapter 5 as the next level of new improvement in process.

 ▸ Many of the current design and development related ideas and tools such as Service Ori-

ented Architecture (SOA), Enterprise Service Bus and microservices are added to Chapter 7.

 ▸ Some of the newer concepts and tools associated with virtualization and containerization

are added in Chapter 9.

 ▸ To parallel the continuous integration and CI/CD discussions, the newer GitHub/Git tool

is included in section 11.5 of Chapter 11.

 ▸ Although security is a very important topic, it has grown to be a separate, stand-alone dis-

cipline encompassing the so�ware, hardware, and information infrastructure technology

and services subjects. Instead of devoting a thorough treatise to this topic, a discussion of

the more recent consideration of security that comes with approaches like Secure DevOps

or DevSecOps is added to section 14.1 of Chapter 14.

In addition, we have made small modifications to some sentences throughout the book to improve

the expression, emphasis, and comprehension. We have also received input from those who used

our first, second, third, and fourth editions of the book from different readers and universities and

have corrected the grammatical and spelling errors. Any remaining error is totally ours.

The first through the fourth editions of this book have been used by numerous colleges and

universities, and we thank them for their patience and input. We have learned a lot in the process.

We hope the fifth edition will prove to be a better one for all future readers.

Organization of the Book

Chapters 1 and 2 demonstrate the difference between a small programming project and the effort

required to construct a mission-critical software system. We purposely took two chapters to

demonstrate this concept, highlighting the difference between a single-person “garage” operation

and a team project required to construct a large “professional” system. The discussion in these two

chapters delineates the rationale for studying and understanding software engineering. Chapter 3

is the first place where software engineering is discussed more formally. Included in this chapter

is an introduction to the profession of software engineering and its code of ethics.

The traditional topics of software processes, process models, and methodologies are covered in

Chapters 4 and 5. Reflecting the vast amount of progress made in this area, these chapters explain

in extensive detail how to evaluate the processes through the Capability Maturity Models from the

Software Engineering Institute (SEI).

x PREFACE

Chapters 6, 7, 9, 10, and 11 cover the sequence of development activities from requirements

through product release at a macro level. Chapter 7 includes an expanded user interface design

discussion with an example of HTML-Script-structured query language (SQL) design and imple-

mentation. Chapter 8, following the chapter on software design, steps back and discusses design

characteristics and metrics used in evaluating high-level and detailed designs. Chapter 11 discusses

not only product release but also the general concept of configuration management.

Chapter 12 explores the support and maintenance activities related to a software system after

it is released to customers and users. Topics covered include call management, problem fixes, and

feature releases. The need for configuration management is further emphasized in this chapter.

Chapter 13 summarizes the phases of project management, along with some specific project plan-

ning and monitoring techniques. It is only a summary, and some topics, such as team building and

leadership qualities, are not included. The software project management process is contrasted from

the development and support processes. Chapter 14 concludes the book and provides a view of the

current issues within software engineering and the future topics in our field.

The appendices give readers and students insight into possible results from major activities

in software development with the “essential samples” for a Team Plan, Software Development

Plan, Requirements Specification, Design Plan, and Test Plan. An often asked question is what

a requirements document or a test plan should look like. To help answer this question and

provide a starting point, we have included sample formats of possible documents resulting

from the four activities of Planning, Requirements, Design, and Test Plan. These are provided

as follows:

 ▸ Appendix A: Essential So�ware Development Plan (SDP)

 ▸ Appendix B: Essential So�ware Requirements Speci�cations (SRS)

 ▸ Example 1: Essential SRS—Descriptive

 ▸ Example 2: Essential SRS—Object Oriented

 ▸ Example 3: Essential SRS—Institute of Electrical and Electronics Engineers (IEEE)

Standard

 ▸ Example 4: Essential SRS—Narrative Approach

 ▸ Appendix C: Essential So�ware Design

 ▸ Example 1: Essential So�ware Design—Uni�ed Modeling Language (UML)

 ▸ Example 2: Essential So�ware Design—Structural

 ▸ Appendix D: Essential Test Plan

Many times in the development of team projects by novice software engineers there is a need for

specific direction on how to document the process. The four appendices were developed to give

the reader concrete examples of the possible essential outlines. Each of the appendices gives an

outline with explanations. This provides the instructor with concrete material to supplement class

activities, team project assignments, and/or independent work.

The topical coverage in this book reflects those emphasized by the IEEE Computer Society–

sponsored Software Engineering Body of Knowledge (SWEBOK) and by the Software Engineering

2004 Curriculum Guidelines for Undergraduate Degree Program in Software Engineering. The one

 PREFACE xi

topic that is not highlighted but is discussed throughout the book concerns quality—a topic that

needs to be addressed and integrated into all activities. It is not just a concern of the testers. Quality

is discussed in multiple chapters to reflect its broad implications and cross activities.

Suggested Teaching Plan

All the chapters in this book can be covered within one semester. However, some instructors may

prefer a different emphasis:

 ▸ �ose who want to focus on direct development activities should spend more time on

Chapters 6 through 11.

 ▸ �ose who want to focus more on indirect and general activities should spend more time

on Chapters 1, 12, and 13.

It should be pointed out that both the direct development and the indirect support activities

are important. The combined set forms the software engineering discipline.

There are two sets of questions at the end of each chapter. For the Review Questions, students

can find answers directly in the chapter. The Exercises are meant to be used for potential class

discussion, homework, or small projects.

Supplements

Slides in PowerPoint format, Answers to End-of-Chapter Exercises, Source code, and sample Test

Questions are available for free instructor download. To request access, please visit go.jblearning.

com/Tsui5e or contact your account representative.

Acknowledgments

We would first like to thank our families, especially our wives, Lina Colli and Teresa Tsui. They

provided constant encouragement and understanding when we spent more time with the manuscript

than with them. Our children—Colleen and Nicholas; Orlando and Michelle; and Victoria, Liz,

and Alex—enthusiastically supported our efforts as well.

In addition, we would like to thank the reviewers who have improved the book in many ways.

We would like to specifically thank the following individuals for their work:

 ▸ Alan C. Verbit, Delaware County Community College

 ▸ Ayad Boudiab, Georgia Perimeter College

 ▸ Badari Eswar, San Jose State University

 ▸ Ben Geisler, University of Wisconsin, Green Bay

 ▸ Benjamin Sweet, Lawrence Technological University

 ▸ Brent Auernheimer, California State University, Fresno

 ▸ Bruce Logan, Lesley University

 ▸ Chip Anderson, Lake Washington Institute of Technology

 ▸ Dar-Biau Liu, California State University, Long Beach

xii PREFACE

 ▸ David Gustafson, Kansas State University

 ▸ Donna DeMarco, Kutztown University

 ▸ Dr. Alex Rudniy, University of Scranton

 ▸ Dr. Anthony Ruocco, Roger Williams University

 ▸ Dr. Andrew Scott, Western Carolina University

 ▸ Dr. Christopher Fox, James Madison University

 ▸ Dr. David A. Cook, Stephen F. Austin State University

 ▸ Dr. David Burris, Sam Houston State University

 ▸ Dr. Dimitris Papamichail, �e College of New Jersey

 ▸ Dr. Edward G. Nava, University of New Mexico

 ▸ Dr. Emily Navarro, University of California, Irvine

 ▸ Dr. Je� Roach, East Tennessee State University

 ▸ Dr. Jody Paul, Metro State Denver

 ▸ Dr. John Dalbey, California Polytechnic State University

 ▸ Dr. Jason Hibbeler, University of Vermont

 ▸ Dr. Jianchao Han, California State University Dominguez Hills

 ▸ Dr. Joe Ho�ert, Indiana Wesleyan University

 ▸ Dr. Kenneth Magel, North Dakota State University

 ▸ Dr. Mazin Al-Hamando, Lawrence Technological University

 ▸ Dr. Michael Murphy, Concordia University Texas

 ▸ Dr. Reza E�ekari, George Washington University, University of Maryland at College Park

 ▸ Dr. Ronald Finkbine, Indiana University Southeast

 ▸ Dr. Sofya Poger, Felician University

 ▸ Dr. Sen Zhang, SUNY Oneonta

 ▸ Dr. Stephen Hughes, Coe College

 ▸ Dr. Steve Kreutzer, Bloom�eld College

 ▸ Dr. Yenumula B. Reddy, Grambling State University

 ▸ Frank Ackerman, Montana Tech

 ▸ Ian Cottingham, Je�rey S. Raikes School at �e University of Nebraska, Lincoln

 ▸ Jeanna Matthews, Clarkson University

 ▸ John Sturman, Rensselaer Polytechnic Institute

 ▸ Kai Chang, Auburn University

 ▸ Katia Maxwell, Athens State University

 ▸ Lenis Hernandez, Florida International University

 ▸ Larry Stein, California State University, Northridge

 ▸ Mark Hall, Hastings College

 ▸ Michael Oudshoorn, Montana State University

 ▸ Paul G. Garland, Johns Hopkins University

 ▸ Salvador Almanza-Garcia, Vector CANtech, Inc.

 ▸ �eresa Je�erson, George Washington University

 ▸ William Saichek, Orange Coast College

 PREFACE xiii

We continue to appreciate the help from Melissa Duffy, Edward Hinman, Paula-Yuan Gregory,

Baghyalakshmi Jagannathan, Padmapriya Soundararajan, Lori Weidert, and others at Jones &

Bartlett Learning. Any remaining error is solely the mistake of the authors.

—Frank Tsui

—Orlando Karam

—Barbara Bernal

xiv PREFACE

xv

Chapter opener image: © Zally23/Shutterstock

ABOUT THE AUTHORS
Frank Tsui Frank Tsui worked in the software industry since the early 1970s for more than twenty-

five years before joining academia and teaching both undergraduate and graduate students. He

has now retired and is advising some of his past students in their career choices. Frank's formal

education includes a BS degree from Purdue University, MS degree from Indiana State University,

and a PhD in computer science from Georgia Tech.

Orlando Karam Orlando Karam’s experiences are in Agile development and open source environ-

ment. He has also developed software for the Yucatan State Government and several companies in

Mexico. Orlando holds a PhD in computer science from Tulane University and is a faculty member

of Kennesaw State University. Orlando is also actively involved in the studies of complexities of

software. Orlando has spent the last 8 years working at places like Microsoft and Amazon.

Barbara Bernal Barbara is a professor emeritus of software engineering at Kennesaw State University.

Her expertise is in the area of user interfaces and user-centered design. She has been active in the

American Society for Engineering Education and the education of software engineers.

Chapter opener image: © Image Credit line to come

CHAPTER 1

Objectives

 ▸ Analyze some of the issues involved in producing a simple program:

 ▸ Requirements (functional, nonfunctional)

 ▸ Design constraints and design decisions

 ▸ Testing

 ▸ Effort estimation

 ▸ Implementation details

 ▸ Understand the activities involved in writing even a simple program.

 ▸ Preview many additional software engineering topics found in the later chapters.

Creating a Program

Chapter opener image: © Zally23/Shutterstock

1

1.1 A Simple Problem
In this chapter we will analyze the tasks involved in writing a relatively simple program. This will

serve as a contrast to what is involved in developing a large system, which is described in Chapter 2.

Assume that you have been given the following simple problem: “Given a collection of lines

of text (strings) stored in a file, sort them in alphabetical order, and write them to another file.”

This is probably one of the simplest problems you will be involved with. You have probably done

similar assignments for some of your introduction to programming classes.

1.1.1 Decisions, Decisions
A problem statement such as the one mentioned in the preceding simple problem does not

completely specify the problem. You need to clarify the requirements in order to produce a

program that better satisfies the real problem. You need to under-

stand all the program requirements and the design constraints

imposed by the client on the design, and you need to make important

technical decisions. A complete problem statement would include

the requirements, which state and qualify what the program does,

and the design constraints, which depict the ways in which you can

design and implement it.

The most important thing to realize is that the word requirements is not used as it is in col-

loquial English. In many business transactions, a requirement is something that absolutely must

happen. However, in software engineering many items are negotiable. Given that every require-

ment will have a cost, the clients may decide that they do not really need it after they understand

the related cost. Requirements are often grouped into those that are “needed” and those that are

“nice to have.”

It is also useful to distinguish between functional requirements—what

the program does—and nonfunctional requirements—the manner in

which the program must behave. In a way, a function is similar to that of a

direct and indirect object in grammar. Thus the functional requirements

for our problem will describe what it does: sort a file (with all the detail

required); the nonfunctional requirements will describe items such as

performance, usability, and maintainability. Functional requirements tend to have a Boolean measure-

ment where the requirement is either satisfied or not satisfied, but nonfunctional requirements tend to

apply to things measured on a linear scale where the measurements can vary much more. Performance

and maintainability requirements, as examples, may be measured in degrees of satisfaction.

Nonfunctional requirements are informally referred to as the “ilities” because the words

describing most of them will end in -ility. Some of the typical characteristics defined as nonfunc-

tional requirements are performance, modifiability, usability, configurability, reliability, availability,

security, and scalability.

Besides requirements, you will also be given design constraints, such as the choice of

programming language, platforms the system runs on, and other systems it interfaces with.

Program requirements Statements
that de�ne and qualify what the program
needs to do.
Design constraints Statements that
constrain the ways in which the software
can be designed and implemented.

Functional requirements What a
program needs to do.
Nonfunctional requirements The
manner in which the functional require-
ments need to be achieved.

2 CHAPTER 1 Creating a Program

These design constraints are sometimes considered nonfunctional requirements. This is not a

very crisp or easy-to-define distinction (similar to where requirement analysis ends and design

starts); and in borderline cases, it is defined mainly by consensus. Most developers will include

usability as a nonfunctional requirement, and the choice of a specific user interface such as

graphical user interface (GUI) or web based as a design constraint. However, it can also be

defined as a functional requirement as follows: “The program displays a dialog box 60 by 80

pixels, and then . . .”

Requirements are established by the client, with help from the software engineer, whereas the

technical decisions are often made by the software engineer without much client input. Oftentimes,

some of the technical decisions such as which programming languages or tools to use can be given

as requirements because the program needs to interoperate with other programs or the client

organization has expertise or strategic investments in particular technologies.

In the following pages we will illustrate the various issues that software engineers confront,

even for simple programs. We will categorize these decisions into functional and nonfunctional

requirements, design constraints, and design decisions. But do keep in mind that other software

engineers may put some of these issues into a different category. We will use the simple sorting

problem presented previously as an example.

1.1.2 Functional Requirements
We will have to consider several aspects of the problem and ask many questions before designing

and programming the solution. The following is an informal summary of the thinking process

involved with functional requirements:

 ▸ Input formats: What is the format for the input data? How should data be stored? What is a

character? In our case, we need to de�ne what separates the lines on the �le. �is is especially

critical because several di�erent platforms may use di�erent separator characters. Usually

some combination of new-line and carriage return may be considered. In order to know

exactly where the boundaries are, we also need to know the input character set. �e most

common representation uses one byte per character, which is enough for English and most

Latin-derived languages. But some representations, such as Chinese or Arabic, require two

bytes per character because there are more than 256 characters involved. Others require a

combination of the two types. With the combination of both single- and double-byte character

representations, there is usually a need for an escape character to allow the change of mode

from single byte to double byte or vice versa. For our sorting problem, we will assume the

simple situation of one byte per character.

 ▸ Sorting: Although it seems to be a well-de�ned problem, there are many slightly and not so

slightly di�erent meanings for sorting. For starters—and of course, assuming that we have

English characters only—do we sort in ascending or descending order? What do we do with

nonalphabetic characters? Do numbers go before or a�er letters in the order? How about

lowercase and uppercase characters? To simplify our problem, we de�ne sorting among

characters as being in numerical order, and the sorting of the �le to be in ascending order.

 1.1 A Simple Problem 3

 ▸ Special cases, boundaries, and error conditions: Are there any special cases? How should

we handle boundary cases such as empty lines and empty �les? How should di�erent error

conditions be handled? It is common, although not good practice, to not have all of these

requirements completely speci�ed until the detailed design or even the implementation stages.

For our program, we do not treat empty lines in any special manner except to specify that

when the input �le is empty the output �le should be created but empty. We do not specify

any special error-handling mechanism as long as all errors are signaled to the user and the

input �le is not corrupted in any way.

1.1.3 Nonfunctional Requirements

The thinking process involved in nonfunctional requirements can be informally summarized as

follows:

 ▸ Performance requirements: Although it is not as important as most people may think, per-

formance is always an issue. �e program needs to �nish most or all inputs within a certain

amount of time. For our sorting problem, we de�ne the performance requirements as taking

less than one minute to sort a �le of 100 lines of 100 characters each.

 ▸ Real-time requirements: When a program needs to perform in real time, which means it

must complete the processing within a given amount of time, performance is an issue. �e

variability of the running time is also a big issue. We may need to choose an algorithm with

a less than average performance, if it has a better worst-case performance. For example,

Quick Sort is regarded as one of the fastest sorting algorithms; however, for some

inputs, it can have poor performance. In algorithmic terms, its expected running time is on

the order of n log(n), but its worst-case performance is on the order of n squared.

If you have real-time requirements in which the average case is acceptable but the worst

case is not, then you may want to choose an algorithm with less variability, such as Heap

Sort or Merge Sort. Run-time performance analysis is discussed further in Main

and Savitch (2010).

 ▸ Modi�ability requirements: Before writing a program, it is important to know the life expec-

tancy of the program and whether there is any plan to modify the program. If the program is

to be used only once, then modi�ability is not a big issue. On the other hand, if it is going to

be used for ten years or more, then we need to worry about making it easy to maintain and

modify. Surely, the requirements will change during that ten-year period. If we know that

there are plans to extend the program in certain ways, or that the requirements will change in

speci�c ways, then we should prepare the program for those modi�cations as the program is

designed and implemented. Notice that even if the modi�ability requirements are low, this is

not a license to write bad code because we still need to be able to understand the program for

debugging purposes. For our sorting example, consider how we might design and implement

the solution if we know that down the road the requirement may change from descending to

ascending order or may change to include both ascending and descending orders.

4 CHAPTER 1 Creating a Program

 ▸ Security requirements: �e client organization and the developers of the so�ware need to agree

on security de�nitions derived from the client’s business application goals, potential threats to

project assets, and management controls to protect from loss, inaccuracy, alteration, unavail-

ability, or misuse of the data and resources. Security might be functional or nonfunctional. For

example, a so�ware developer may argue that a system must protect against denial-of-service

attacks in order to ful�ll its mission. Security quality requirements engineering (SQUARE) is

discussed in Mead and Stehney (2005).

 ▸ Usability requirements: �e end users for the program have speci�c background, education,

experience, needs, and interaction styles that are considered in the development of the so�-

ware. �e user, product, and environmental characteristics of the program are gathered and

studied for the design of the user interface. �is nonfunctional requirement is centered in the

interaction between the program and the end user. �is interaction is rated by the end user

with regards to its e�ectiveness, e�ciency, and success. Evaluation of usability requirements

is not directly measurable because it is quali�ed by the usability attributes that are reported

by the end users in speci�c usability testing.

1.1.4 Design Constraints
The thinking process related to design constraints can be summarized as follows:

 ▸ User interface: What kind of user interface should the program

have? Should it be a command-line interface (CLI) or a graphical

user interface (GUI)? Should we use a web-based interface? For

the sorting problem, a web-based interface doesn’t sound appropriate because users would

need to upload the �le and download the sorted one. Although GUIs have become the norm

over the past decade or so, a CLI can be just as appropriate for our sorting problem, especially

because it would make it easier to invoke inside a script, allowing for automation of manual

processes and reuse of this program as a module for future ones. �is is one of those design

considerations that also involves user interface. In Section 1.4, we will create several imple-

mentations, some CLI based and some GUI based. Chapter 7 also discusses user-interface

design in more detail.

 ▸ Typical and maximum input sizes: Depending on the typical input sizes, we may want to

spend di�erent amounts of time on algorithms and performance optimizations. Also, certain

kinds of inputs are particularly good or bad for certain algorithms; for example, inputs that

are almost sorted make the naive Quick Sort implementations take more time. Note that

you will sometimes be given inaccurate estimates, but even ballpark �gures can help anticipate

problems or guide you toward an appropriate algorithm. In this example, if you have small

input sizes, you can use almost any sorting algorithm. �us you should choose the simplest one

to implement. If you have larger inputs but they can still �t into the random access memory

(RAM), you need to use an e�cient algorithm. If the input does not �t on RAM, then you

need to choose a specialized algorithm for on-disk sorting.

User interface What the user sees,
feels, and hears from the system.

 1.1 A Simple Problem 5

 ▸ Platforms: On which platforms does the program need to run? �is is an important

business decision that may include architecture, operating system, and available libraries

and will almost always be expressed in the requirements. Keep in mind that, although

cross-platform development has become easier and there are many languages designed to

be portable across platforms, not all the libraries will be available in all platforms. �ere

is always an extra cost on explicitly supporting a new platform. On the other hand, good

programming practices help achieve portability, even when not needed. A little extra

consideration when designing and implementing a program can minimize the potentially

extensive work required to port to a new platform. It is good practice to perform a quick

cost-bene�t analysis on whether to support additional platforms and to use technologies

and programming practices that minimize portability pains, even when the need for sup-

porting new platforms is not anticipated.

 ▸ Schedule requirements: �e �nal deadline for completing a project comes from the client, with

input from the technical side on feasibility and cost. For example, a dialog on schedule might

take the following form: Your client may make a request such as “I need it by next month.”

You respond by saying, “Well, that will cost you twice as much than if you wait two months”

or “�at just can’t be done. It usually takes three months. We can push it to two, but no less.”

�e client may agree to this, or could also say, “If it’s not done by next month, then it is not

useful,” and cancel the project.

1.1.5 Design Decisions
The steps and thoughts related to design decisions for the sorting problem can be summarized

as follows:

 ▸ Programming language: Typically this will be a technical design decision, although it is not

uncommon to be given as a design constraint. �e type of programming needed, the per-

formance and portability requirements, and the technical expertise of the developers o�en

heavily in�uence the choice of the programming language.

 ▸ Algorithms: When implementing systems, there are usually several pieces that can be

in�uenced by the choice of algorithms. In our example, of course, there are a variety of

algorithms we can choose from to sort a collection of objects. �e language used and the

libraries available will in�uence the choice of algorithms. For example, to sort, the easiest

solution would be to use a standard facility provided by the programming language rather

than to implement your own. �us, use whatever algorithm that implementation chooses.

Performance will usually be the most important in�uence in the choice of an algorithm, but

it needs to be balanced with the e�ort required to implement it, and the familiarity of the

developers with it. Algorithms are usually design decisions, but they can be given as design

constraints or even considered functional requirements. In many business environments

there are regulations that mandate speci�c algorithms or mathematical formulas to be used,

and in many scienti�c applications the goal is to test several algorithms, which means that

you must use certain algorithms.

6 CHAPTER 1 Creating a Program

1.2 Testing
It is always a good idea to test a program, while it is being defined, developed, and after it is com-

pleted. This may sound like obvious advice, but it is not always followed. There are several kinds

of testing, including acceptance testing, which refers to testing done by clients, or somebody on

their behalf, to make sure the program runs as specified. If this testing fails, the client can reject

the program. A simple validation test at the beginning of the project can be done by showing hand-

drawn screens of the “problem solution” to the client. This practice solidifies your perception of

the problem and the client’s solution expectations. The developers run their own internal tests to

determine if the program works and is correct. These tests are called verification tests. Validation

tests determine whether the developers are building the correct system for the client, and verifica-

tion tests determine if the system build is correct.

Although there are many types of testing performed by the development organization, the

most important kind of verification testing for the individual programmer is unit testing—a process

followed by a programmer to test each piece or unit of software. When writing code, you must

also write tests to check each module, function, or method you have written. Some methodologies,

notably Extreme Programming, go as far as saying that programmers should write the test cases

before writing the code; see the discussion on Extreme Programming in Beck and Andres (2004).

Inexperienced programmers often do not realize the importance of testing. They write functions

or methods that depend on other functions or methods that have not been properly tested. When

a method fails, they do not know which function or method is actually failing.

Another useful distinction is between black-box and white-box testing. In black-box testing,

the test cases are based only on the requirement specifications, not on the implementation code. In

white-box testing, the test cases can be designed while looking at the design and code implementation.

While doing unit testing, the programmer has access to the implementation but should still perform

a mixture of black-box and white-box testing. When we discuss implementations for our simple

program, we will perform unit testing on it. Testing will be discussed more extensively in Chapter 10.

1.3 Estimating Effort
One of the most important aspects of a software project is estimating how much effort it involves. The

effort estimate is required to produce a cost estimate and a schedule. Before producing a complete

effort estimate, the requirements must be understood. An interesting exercise illustrates this point.

Try the following exercise:

Estimate how much time, in minutes, it will take you, using your favorite language and

technology, to write a program that reads lines from one file and writes the sorted lines to

another file. Assume that you will be writing the sort routine yourself and will implement

a simple GUI like the one shown in FIGURE 1.21, with two text boxes for providing

two file names, and two buttons next to each text box. Pressing one of the two buttons

displays a File Open dialog, like the one shown in FIGURE 1.22, where the user can

navigate the computer’s file system and choose a file. Assume that you can work only on

this one task, with no interruptions. Provide an estimate within one minute (in Step 1).

 1.3 Estimating Effort 7

Step 1.

Estimated ideal total time: _________________

Is the assumption that you will be able to work straight through on this task with no interruptions

realistic? Won’t you need to go to the restroom or drink some water? When can you spend the time

on this task? If you were asked to do this task as soon as reasonably possible, starting right now,

can you estimate when you would be finished? Given that you start now, estimate when you think

you will have this program done to hand over to the client. Also give an estimate of the time you

will not be on task (e.g., eating, sleeping, other courses, etc.) in Step 2.

Step 2.

Estimated calendar time started: _________ ended:___________breaks:_____

Now, let’s create a new estimate where you divide the entire program into separate developmental

tasks, which could be divided into several subtasks, where applicable. Your current task is a plan-

ning task, which includes a subtask: ESTIMATION. When thinking of the requirements for the

project, assume you will create a class, called StringSorter, with three public methods: Read,

Write, and Sort. For the sorting routine, assume that your algorithm involves finding the largest

element, putting it at the end of the array, and then sorting the rest of the array using the same

mechanism. Assume you will create a method called IndexOfBiggest that returns the index

of the biggest element on the array. Using the following chart, estimate how much time it will take

you to do each task (and the GUI) in Step 3.

Step 3.

How close is this estimate to the previous one you did? What kind of formula did you use to convert

from ideal time to calendar time? What date would you give the client as the delivery date?

Now, design and implement your solution while keeping track of the time in Step 4.

Step 4.

Keeping track of the time you actually spend on each task as well as the interruptions you experience

is a worthwhile data collection activity. Compare these times with your estimates. How high or

low did you go? Is there a pattern? How accurate is the total with respect to your original estimate?

Ideal Total Time Calendar Time

Planning

IndexOfBiggest

Sort

Read

Write

GUI

Testing

Total

8 CHAPTER 1 Creating a Program

If you performed the activities in this exercise, chances are that you found the estimate was

more accurate after dividing it into subtasks. You will also find that estimates in general tend to

be somewhat inaccurate, even for well-defined tasks. Project and effort estimation is one of the

toughest problems in software project management and software engineering. For further reading

on why individuals should keep track of their development time, see the Personal Software Process

(PSP) in Humphrey (1996). Accurate estimation is very hard to achieve. Dividing tasks into smaller

ones and keeping data about previous tasks and estimates are usually helpful beginnings. This topic

will be revisited in detail in Chapter 13.

It is important that the estimation is done by the people who do the job, which is often the

programmer. The client also needs to check the estimates for reasonableness. One big problem with

estimating is that it is conceptually performed during the bid for the job, which is before the project

is started. In reality a lot of the development tasks and information, possibly up to design, is needed

in order to be able to provide a good estimate. We will talk more about estimating in Chapter 13.

1.4 Implementations
In this section we will discuss several implementations of our sorting program, including two ways to

implement the sort functionality and several variations of the user interface. We will also discuss unit

testing for our implementations. Sample code will be provided in Java, using JUnit to aid in unit testing.

1.4.1 A Few Pointers on Implementation
Although software engineering tends to focus more on requirements analysis, design, and processes

rather than implementation, a bad implementation will definitely mean a bad program even if all

the other pieces are perfect. Although for simple programs almost anything will do, following a

few simple rules will generally make all your programming easier. Here we will discuss only a few

language-independent rules and point you to other books in the References and Suggested Read-

ings section at the end of this chapter.

 ▸ �e most important rule is to be consistent—especially in your choice of names, capitaliza-

tion, and programming conventions. If you are programming alone, the particular choice of

conventions is not important as long as you are consistent. You should also try to follow the

established conventions of the programming language you are using, even if it would not

otherwise be your choice. �is will ensure that you do not introduce two conventions. For

example, it is established practice in Java to start class names with uppercase letters and variable

names with lowercase letters. If your name has more than one word, use capitalization to signal

the word boundaries. �is results in names such as FileClass and fileVariable. In

C, the convention is to use lowercase almost exclusively and to separate with an underscore.

�us, when we program in C, we follow the C conventions. �e choice of words for common

operations is also dictated by convention. For example, printing, displaying, showing, or echo-

ing a variable are some of the terminologies meaning similar actions. Language conventions

also provide hints as to default names for variables, preference for shorter or longer names,

 1.4 Implementations 9

and other issues. Try to be as consistent as possible in your choice, and follow the conventions

for your language.

 ▸ Choose names carefully. In addition to being consistent in naming, try to make sure names for

functions and variables are descriptive. If the names are too cumbersome or if a good name

cannot be easily found, that is usually a sign that there may be a problem in the design. A

good rule of thumb is to choose long, descriptive names for things that will have global scope

such as classes and public methods. Use short names for local references, which are used in

a very limited scope such as local variables, private names, and so on.

 ▸ Test before using a function or method. Make sure that it works. �at way if there are

any errors, you know that they are in the module you are currently writing. Careful unit

testing, with test cases written before or a�er the unit, will help you gain con�dence in

using that unit.

 ▸ Know thy standard library. In most modern programming languages, the standard library

will implement many common functions, usually including sorting and collections of data,

database access, utilities for web development, networking, and much more. Don’t reinvent

or reimplement the wheel. Using the standard libraries will save extra work, make the code

more understandable, and usually run faster with fewer errors because the standard librar-

ies are well debugged and optimized. Keep in mind that many exercises in introductory

programming classes involve solving classic problems and implementing well-known data

structures and algorithms. Although they are a valuable learning exercise, that does not

mean you should use your own implementations in real life. For our sample programming

problem, Java has a sorting routine that is robust and fast. Using it instead of writing your

own would save time and e�ort and produce a better implementation. We will still imple-

ment our own for the sake of illustration but will also provide the implementation using

the Java sorting routine.

 ▸ If possible, perform a review of your code. So�ware reviews are one of the most e�ective

methods for reducing defects in so�ware. Showing your code to other people will help detect

not just functionality errors but also inconsistencies and bad naming. It will also help you

learn from the other person’s experience. �is is another habit that does not blend well with

school projects. In most such projects, getting help from another student might be considered

cheating. Perhaps the code can instead be reviewed a�er it is handed in. Reviews are good for

school assignments as well as for real-world programs.

1.4.2 Basic Design
Given that we will be implementing different user interfaces, our basic design separates the sort-

ing functionality from the user interface, which is a good practice anyway because user interfaces

tend to change much faster than functionality. We have a class, called StringSorter, that has

four methods: (1) reading the strings from a file, (2) sorting the collection of strings, (3) writing

the strings to a file, and (4) combining those three, taking the input and output file names. The

different user interfaces will be implemented in separate classes. Given that StringSorter

would not know what to do with exceptional conditions, such as errors when reading or writing

10 CHAPTER 1 Creating a Program

streams, the exceptions pass through in the appropriate methods, with the user interface classes

deciding what to do with them. We also have a class with all our unit tests, taking advantage of

the JUnit framework.

1.4.3 Unit Testing with JUnit
JUnit is one of a family of unit testing frameworks, the J standing for Java. There are variations

for many other languages—for example, cppUnit for C++; the original library was developed in

Smalltalk. We just need to create a class that inherits from junit.framework.TestCase,

which defines public methods whose names start with test. JUnit uses Java’s reflection capabilities

to execute all those methods. Within each test method, assertEquals can be used to verify

whether two values that should be equal are truly equal. Here we discuss JUnit in a very basic

way; JUnit is discussed further in Chapter 10.

1.4.4 Implementation of StringSorter
We will be presenting our implementation followed by the test cases. We are assuming a certain

fundamental background with Java programming, although familiarity with another object-oriented

programming language should be enough to understand this section. Although the methods could

have been developed in a different order, we present them in the order we developed them, which

is Read, then Sort, then Write. This is also the order in which the final program will execute,

thus making it easier to test.

We import several namespaces, and declare the StringSorter class. The only instance

variable is an ArrayList of lines. ArrayList is a container that can grow dynamically, and

supports indexed access to its elements. It roughly corresponds to a vector in other programming

languages. It is part of the standard Java collections library and another example of how using the

standard library saves time. Notice we are not declaring the variable as private in FIGURE 1.1

because the test class needs access to it. By leaving it with default protection, all classes in the same

package can access it because Java has no concept like friend classes in C++. This provides a decent

compromise. Further options will be discussed in Chapter 10. Our first method involves reading

lines from a file or stream, as seen in FIGURE 1.2. To make the method more general, we take a

Reader, which is a class for reading text-based streams. A stream is a generalization of a file. By

using a Reader rather than a class explicitly based on Files, we could use this same method

for reading from standard input or even from the network. Also, because we do not know how to

deal with exceptions here, we will just let the IOException pass through.

import java. io.* ; // for Reader (and subclasses) , Writer (and subclasses) and IOException
import java. util.* ; // for List , ArrayList , Iterator

public class StringSorter {
 ArrayList<String> lines ;

1
2
3
4
5

FIGURE 1.1 Class declaration and Import statements.

 1.4 Implementations 11

For testing this method with JUnit, we create a class extending TestCase. We also define

a utility method, called make123, that creates an ArrayList with three strings—one, two,

and three—inserted in that order in FIGURE 1.3.

We then define our first method, testReadFromStream, in FIGURE 1.4. In this method we

create an ArrayList and a StringSorter. We open a known file and make the StringSorter

read from it. Given that we know what is in the file, we know what the internal ArrayList in our

StringSorter should be. We just assert that it should be equal to that known value.

We can run JUnit after setting the classpath and compiling both classes, by typing java

junit.swingui.TestRunner. This will present us with a list of classes to choose from.

When choosing our TestStringSorter class, we find a user interface like the one shown in

FIGURE 1.5, which indicates that all tests are implemented and successfully run. Pressing the run

button will rerun all tests, showing you how many tests were successful. If any test is unsuccessful,

the bar will be red rather than green. Classes are reloaded by default, so you can leave that window

open, modify, recompile, and just press run again.

After we verify that our test is successful, we can begin the next method—building the sorting

functionality. We decided on a simple algorithm: find the largest element in the array, then swap it

9
10
11
12
13
14
15
16
17
18
19
20

 public void readFromStream(Reader r) throws IOException
 {
 BufferedReader br=new BufferedReader (r) ;
 lines=new ArrayList<String> () ;

 while (true) {
 String input=br . readLine () ;
 if (input==null)
 break ;
 lines . add (input) ;
 }
 }

FIGURE 1.2 The readFromStream method.

5
6
7
8
9

10
11
12

public class TestStringSorter extends TestCase {
 private ArrayList<String> make123 () {
 ArrayList<String> l = new ArrayList<String> () ;
 l . add ("one") ;
 l . add ("two") ;
 l . add ("three") ;
 return l ;
 }

FIGURE 1.3 TestStringSorter declaration and make123 method.

34
35
36
37
38
39
40
41

 public void testReadFromStream() throws IOException{
 Reader in=new FileReader ("in.txt") ;
 StringSorter ss=new StringSorter();
 ArrayList<String> l= make123 () ;
 ss . readFromStream (in) ;

 assertEquals (l , ss . lines) ;
 }

FIGURE 1.4 testReadFromStream.

12 CHAPTER 1 Creating a Program

with the last element, placing the largest element at the end of the array, then repeat with the rest of

the array. We need two supporting functions, one for swapping the two elements in the array and

another for finding the index of the largest element. The code for a swap is shown in FIGURE 1.6.

Because swap is a generic function that could be reused in many situations, we decided to build it

without any knowledge of the StringSorter class. Given that, it makes sense to have it as a static

method. In C++ or other languages, it would be a function defined outside the class and not associated

with any class. Static methods are the closest technique in Java. We get as parameters a List, where

List is the generic interface that ArrayList implements, and the indexes of the two elements. The

test for this method is shown in the testSwap method of TestStringSorter class in FIGURE 1.7.

46
47
48
49
50

 static void swap (List<String> l, int i1, int i2) {
 String tmp=l . get (i1) ;
 l . set (i1, l . get (i2)) ;
 l . set (i2 , tmp) ;
 }

FIGURE 1.6 The code for swapping two integers.

FIGURE 1.5 JUnit GUI.

Courtesy of JUnit.

22
23
24
25
26
27
28
29
30
31
32

 public void testSwap () {
 ArrayList<String> l1= make123 () ;

 ArrayList<String> l2=new ArrayList<String> () ;
 l2 . add ("one") ;
 l2 . add ("three") ;
 l2 . add ("two") ;

 StringSorter . swap (l1 , 1,2) ;
 assertEquals (l1, l2) ;
 }

FIGURE 1.7 The testSwap method.

 1.4 Implementations 13

The next method is the one that returns the index of the largest element on the list. Its name

is findIdxBiggest, as shown in FIGURE 1.8. Idx as an abbreviation of index is ingrained in

our minds. We debated whether to use largest, biggest, or max/maximum for the name

(they are about equally appropriate in our minds). After settling on biggest, we just made sure

that we did not use the other two for naming the variables.

We use the compareTo method of Strings, which returns –1 if the first element is less

than the second, 0 if they are equal, and 1 if the first is largest. In this method we use the fact that

the elements in the ArrayList are strings. Notice that Java (as of version 1.4) does not have

support for generics (templates in C++), so the elements have to be explicitly casted to Strings.

The test is shown in FIGURE 1.9.

With swap and findIdxBiggest in place, the sort method, shown in FIGURE 1.10,

becomes relatively easy to implement. The test for it is shown in FIGURE 1.11. Note that if we knew

our standard library, we could have used a much easier implementation, using the sort function

in the standard Java library, as shown in FIGURE 1.12. We would have also avoided writing swap

and findIdxBiggest! It definitely pays to know your standard library.

Now on to writing to the file; this is shown in FIGURE 1.13. We will test it by writing a known value

to the file, then reading it again and performing the comparison in FIGURE 1.14. Now all that is needed

32
33
34
35
36
37
38
39
40
41
42
43

 static int findIdxBiggest (List<String> l, int from, int to) {
 String biggest=l . get (0) ;
 int idxBiggest=from ;

 for (int i=from+1; i<=to; ++i) {
 if (biggest . compareTo (l . get (i)) <0) {// it is bigger than biggest
 biggest= l . get (i) ;
 idxBiggest=i ;
 }
 }
 return idxBiggest ;
 }

FIGURE 1.8 The findIdxBiggest method.

14
15
16
17
18
19
20

 public void testFindIdxBiggest () {
 StringSorter ss=new StringSorter () ;
 ArrayList<String> l = make123 () ;

 int i=StringSorter . findIdxBiggest(l , 0 , l . size () -1) ;
 assertEquals (i , 1) ;
 }

FIGURE 1.9 The testFindIdxBiggest method.

52
53
54
55
56
57

 public void sort() {
 for (int i=lines . size () - 1 ; i>0 ; --i) {
 int big=findIdxBiggest (lines , 0 , i) ;
 swap (lines , i , big) ;
 }
 }

FIGURE 1.10 The sort method.

14 CHAPTER 1 Creating a Program

is the sort method taking the file names as shown in FIGURE 1.15. Given that we have already seen

how to do it for the test cases, it is very easy to do. The test for this method is shown in FIGURE 1.16.

1.4.5 User Interfaces
We now have an implementation of StringSorter and a reasonable belief that it works as intended.

We realize that our tests were not that extensive; however, we can go on to build a user interface,

43
44
45
46
47
48
49
50
51
52
53
54
55

 public void testSort1() {
 StringSorter ss= new StringSorter () ;
 ss . lines=make123 () ;

 ArrayList<String> l2=new ArrayList<String>() ;
 l2 . add ("one") ;
 l2 . add ("three") ;
 l2 . add ("two") ;

 ss . sort () ;

 assertEquals (l2 , ss . lines) ;
 }

FIGURE 1.11 The testSort1 method.

22
23
24
25
26
27
28

 public void writeToStream (Writer w) throws IOException {
 PrintWriter pw=new PrintWriter (w) ;
 Iterator i=lines . iterator () ;
 while (i . hasNext ()) {
 pw . println ((String) (i . next ())) ;
 }
 }

FIGURE 1.13 The writeToStream method.

60
61
62

 void sort () {
 java . util . Collections . sort (lines) ;
 }

FIGURE 1.12 The sort method using Java’s standard library.

57
58
59
60
61
62
63
64
65
66
67
68
69

 public void testWriteToStream () throws IOException{
 StringSorter ss1=new StringSorter () ;
 ss1 . lines=make123 () ;
 Writer out=new FileWriter ("test.out") ;
 ss1 . writeToStream (out) ;
 out . close () ;

 // then read it and compare
 Reader in=new FileReader ("in.txt") ;
 StringSorter ss2=new StringSorter () ;
 ss2 . readFromStream (in) ;
 assertEquals (ss1 . lines , ss2 . lines) ;
 }

FIGURE 1.14 The testWriteToStream method.

 1.4 Implementations 15

which is an actual program that lets us access the functionality of StringSorter. Our first

implementation is a command-line, not GUI, version, as shown in FIGURE 1.17. It takes the names

of the input and output files as command parameters. Its implementation is as shown in the figure.

We would use it by typing the following command:

java StringSorterCommandLine abc.txt abc_sorted.txt

Do you believe this is a useful user interface? Actually, for many people it is. If you have a command-

line window open all the time or if you are working without a GUI, then it is not that hard to type

65
66
67
68
69
70
71
72
73
74
75
76

 public void sort (String inputFileName , String outputFileName) throws IOException{
 Reader in=new FileReader (inputFileName) ;
 Writer out=new FileWriter (outputFileName) ;

 StringSorter ss=new StringSorter () ;
 ss . readFromStream (in) ;
 ss . sort () ;
 ss . writeToStream (out) ;

 in . close () ;
 out . close () ;
 }

FIGURE 1.15 The sort method (taking �le names).

71
72
73
74
75
76
77
78
79
80
81
82

 public void testSort2 () throws IOException{
 StringSorter ss1=new StringSorter () ;
 ss1 . sort ("in.txt" , "test2.out") ;
 ArrayList<String> l=new ArrayList<String> () ;
 l . add ("one") ;
 l . add ("three") ;
 l . add ("two") ;
 Reader in=new FileReader ("test2 . out") ;
 StringSorter ss2=new StringSorter () ;
 ss2 . readFromStream (in) ;
 assertEquals (l , ss2 . lines) ;
 }

FIGURE 1.16 The testSort2 method.

1
2
3
4
5
6
7
8
9

10
11

import java. io . IOException ;
public class StringSorterCommandLine {
 public static void main (String args []) throws IOException {
 if (args . length ! =2) {
 System . out . println ("Usage: java Sort1 inputfile outputfile") ;
 } else {
 StringSorter ss=new StringSorter () ;
 ss . sort (args [0] , args [1]) ;
 }
 }
}

FIGURE 1.17 The StringSorter-CommandLine class, which implements a command-line
interface for StringSorter functionality.

16 CHAPTER 1 Creating a Program

the command. Also, it is very easy to use this command inside a script, to sort many files. In fact,

you could use a script to more thoroughly test your implementation. Another important advantage,

besides scriptability, is how easy it is to build the interface. This means less effort, lower costs, and

fewer errors.

However, for some people this would not be a useful interface. If you are accustomed to

only using GUIs or if you do not usually have a command window open and are not going

to be sorting many files, then a GUI would be better. Nevertheless, GUI is not necessarily a

better interface than a CLI. It depends on the use and the user. Also, it is extremely easy to

design bad GUIs, such as the implementation shown in FIGURE 1.18. The code in this figure

would display the dialog box shown in FIGURE 1.19. After the user presses OK, the dialog

box in FIGURE 1.20 would be shown. Notice the title “Input” in the top of the dialog box and

the message “Please enter output file name” in Figure 1.20. This could be a communication

contradiction for the user.

4
5
6
7
8
9

10
11
12
13
14
15

public class StringSorterBadGUI {
 public static void main (String args []) throws IOException {
 try {
 StringSorter ss=new StringSorter () ;
 String inputFileName= JOptionPane . showInputDialog ("Please enter input file name") ;
 String outputFileName= JOptionPane . showInputDialog ("Please enter output file name") ;
 ss . sort (inputFileName , outputFileName) ;
 } finally {
 System . exit (1) ;
 }
 }
}

FIGURE 1.18 StringSorterBadGUI class, which implements a hard-to-use GUI for
StringSorter functionality.

FIGURE 1.19 An input �le name dialog box for a hard-to-use GUI.

Screenshot(s) reprinted with permission from Apple Inc.

 1.4 Implementations 17

This does not involve much more effort than the command-line version, but it is very inefficient to

use. Although it is a GUI, it is worse than the CLI for almost every user. A better interface is shown in

FIGURE 1.21. Although it is not a lot better, at least both inputs are in the same place. What makes it more

useful is that the buttons on the right open a dialog box as shown in FIGURE 1.22 for choosing a file.

This would at least be a decent interface for most GUI users. Not terribly pretty, but simple

and functional. The code for this GUI is available on the website for this book. We are not printing

it because it requires knowledge of Java and Swing to be understood. We will note that the code

is 75 lines long in Java, a language for which GUI building is one of its strengths, and it took us

longer to produce than the StringSorter class! Sometimes GUIs come with a heavy cost. We

will discuss user-interface design in Chapter 7.

FIGURE 1.20 An output �le name dialog for a hard-to-use GUI.

Screenshot(s) reprinted with permission from Apple Inc.

FIGURE 1.21 Input and Output �le name dialog for GUI.

Screenshot(s) reprinted with permission from Apple Inc.

18 CHAPTER 1 Creating a Program

1.5 Summary
In this chapter we have discussed some of the many issues involved in writing a simple program. By

now, you should have realized that even for simple programs there is much more than just writing

the code. One has to consider many of the following items:

 ▸ Requirements

 ▸ Design

 ▸ Code implementation

 ▸ Unit testing

 ▸ Personal e�ort estimation

 ▸ User interface

Much of that material belongs to software engineering, and in this text we will provide an

overview of it.

FIGURE 1.22 File Open dialog for GUI.

Screenshot(s) reprinted with permission from Apple Inc.

 1.5 Summary 19

1.6 Review Questions
1.1 What are statements that define and qualify what the program needs to do?

1.2 What are statements that constrain the ways in which the software can be designed and

implemented?

1.3 Which type of requirement statement defines what the program needs to do?

1.4 What requirements qualify as functional requirements? Specify in what manner they need

to be achieved.

1.5 Which decisions are those taken by the software engineer about the best ways (processes,

techniques, and technologies) to achieve the requirements?

1.6 What type of testing refers to testing done by the clients (or somebody on their behalf) to

make sure the program runs as specified?

1.7 What is GUI? What is CLI?

1.8 List three of the typical kinds of nonfunctional requirements.

1.7 Exercises
1.1 For your next two software projects (assuming that you are getting programming assignments;

otherwise consider a program to find the max and the min of a set of rational numbers)

estimate how much effort they would take before doing them, then keep track of the actual

time spent. How accurate were your estimates?

1.2 What sequence of activities did you observe in considering the programming effort discussed

in this chapter?

1.3 Discuss whether you think a programming language constraint may be viewed as a require-

ment. Explain why you think so.

1.4 Download the programs for this chapter, and add at least one more test case for each method

of the StringSorter class.

1.5 In the discussion of the simple program in this chapter, what were the items considered for

“basic” design? Would you have written down these considerations and perhaps reviewed

them with a trusted person before the actual coding?

1.6 Consider a CLI that, rather than taking the file names as parameters, asks for them from

the keyboard (e.g., it displays “Input file name:” then reads it from the keyboard). Would

this be a better user interface? Why or why not?

1.7 Consider a new user interface for our sorting program that combines the CLI and the GUI.

If it receives parameters in the command line, it does the sort. If it does not, it displays the

dialog. Would this be a better interface? What would be its advantages and disadvantages

compared with other interfaces?

20 CHAPTER 1 Creating a Program

1.8 References and Suggested Readings
Beck, K., and C. Andres. 2004. Extreme Programming Explained: Embrace Change, 2nd ed. Reading,

MA: Addison-Wesley.

Dale, N., C. Weems, and M. R. Headington. 2003. Programming and Problem Solving with Java.

Sudbury, MA: Jones and Bartlett.

Humphrey, W. 1996. Introduction to the Personal Software Process. Reading, MA: Addison-Wesley.

Hunt, A., and D. Thomas. 2003. Pragmatic Unit Testing in Java with Junit. Sebastopol, CA: Pragmatic

Bookshelf.

Kernighan, B. W., and R. Pike. 1999. The Practice of Programming. Reading, MA: Addison-Wesley.

Main, M., and W. Savitch. 2010. Data Structures and Other Objects Using C++, 4th ed. Reading,

MA: Addison-Wesley.

McConnell, S. 2004. Code Complete 2. Redmond, WA: Microsoft Press.

Mead, N. R., and T. Stehney. 2005. “Security Quality Requirements Engineering (SQUARE) Meth-

odology.” In SESS ’05 Proceedings of the 2005 Workshop on Software Engineering for Secure

Systems, 1–7. New York: Association for Computing Machinery.

Wu, C. T. 2009. Introduction to Objected Oriented Programming with Java, 5th ed. New York:

McGraw-Hill.

 1.8 References and Suggested Readings 21

CHAPTER 2

Objectives

 ▸ Characterize the size and complexity issues of a system.

 ▸ Describe the technical issues in development and support of a system.

 ▸ Describe the nontechnical issues of developing and supporting a system.

 ▸ Demonstrate the concerns in the development and support activities of a large

application software, using a payroll system example.

 ▸ Describe the coordination efforts needed for process, product, and people.

These software engineering topics are expanded in later chapters.

Building a System

Chapter opener image: © Zally23/Shutterstock

23

2.1 Characteristics of Building a System
The previous chapter focused on the environment and the conditions under which a single program

may be developed by one person for, perhaps, just a few users. We have already seen multiple items

that must be considered even when one person is writing a single program. In this chapter we

will describe the problems and concerns associated with building a system that contains multiple

components—anything from just a few components to maybe hundreds or thousands of compo-

nents. The increase in number of components and complexity is what requires us to study and

understand the various aspects, principles, and techniques of software engineering. This discussion

introduces the rationale for software engineering as a discipline, especially for large and complex

projects that require a team of people.

2.1.1 Size and Complexity
As software becomes ubiquitous, the development of systems involving software is also becoming

more complex. Inherently, large projects involve more parts, more tasks, more people, and more

sophisticated tools. Project size and complexity are closely intertwined. Software engineers are

asked to solve both simple and complex problems and to deal with the distinct differences between

them. The complex problems come in multiple levels of both: breadth and depth. The breadth issue

addresses the sheer numbers involving the following:

 ▸ Number of major functions

 ▸ Number of features within each functional area

 ▸ Number of interfaces and linkages to other components or to other external systems

 ▸ Number of simultaneous users

 ▸ Number of types of data and data structures

The depth issue addresses the linkage and the relationships among items. The linkages may

either be through the sharing of data or through the transfer of control or both. These relationships

may be hierarchical, sequential, loop, recursive, or some other form. In the case of hierarchical

relationships, the number of levels of the hierarchy is an example of the depth problem. Also, rela-

tionships such as nested loops tend to be more complex. Recursive relationships are a special kind

of nested loop that requires extra attention to design and to test. In developing solutions to these

complex problems, software engineers must design with possibly yet another set of relationships

different from that of the problem. FIGURE 2.1 shows the effect of introducing both (1) the size in

terms of breadth and (2) the complexity in terms of depth and number of interactions. Although

you can get a natural “feel” of the difference by just viewing the diagram, it would be worth tak-

ing the time to analyze the differences. The simple case in this figure has three major segments:

(1) start process, (2) perform three normal tasks, and (3) stop process. In Figure 2.1(b), the number

of normal tasks has increased from three to five with the addition of the “wait for signal” and

“perform task A2.” There is also a new decision task, represented by the diamond-shaped figure

in the center. The decision task has greatly increased the number of paths or choices, and thus it

causes the increase of complexity. In addition, the complexity is further exacerbated by introducing

a loop relationship with the decision task. There are many more interactions involved in a loop

24 ChaptER 2 Building a System

or repeat relationship, which is more complex than the straight sequential relationship among the

tasks portrayed in Figure 2.1(a).

As shown in Figure 2.1, a relatively minor increase in the number of tasks and decisions has

greatly increased the complexity. As is the case for a single programming module, when both size

and complexity are magnified several times in a software system problem, the solution to those

problems also involves a comparable expansion in size and complexity. Software engineers are not

only concerned with the detailed design but must take into account of the complexity impact to

the overall architecture, coding, testing, customer deployment, subsequent customer support, and

future extensions/modifications.

2.1.2 technical Considerations of Development
and Support
In the following three sections we will discuss a variety of technical issues related to developing

and supporting a system.

problem and Design Decomposition

When we move from a simple to a complex situation of building software systems, there are some

technical issues that we must consider. The basic issue is how to handle all the pieces, parts, and

relationships. One common solution is based on the concept of divide and conquer. This has its

roots in the modularization concept first presented by Parnas (1972). Modularization will be

further discussed in Chapter 7. The natural question—how we divide a large, complex problem

and its solution into smaller parts—is more difficult than it sounds. We first need to simplify the

Start

Perform task A

Simple(a) (b)

Stop

Perform task B

Perform task C

Start

Wait for signal

Increased Size and Complexity

Other
b

a

Signal is?

Perform task A

Perform task A2

Perform task B

Perform task C

Stop

FIGURE 2.1 Size and complexity (a) Simple (b) Increased size and complexity.

 2.1 Characteristics of Building a System 25

large, complex problem by addressing the problem in smaller segments. After we have successfully

completed that process, our next step is to decide whether we should design and decompose the

software system solution along the dividing lines of the problem segments. Thus, if the problem

description, or the requirement, is segmented by function and feature, should we design the solution

along the same function and feature segments? Alternatively, should we choose another decomposi-

tion method for the solution, perhaps along the line of “objects”? (Further discussions on objects

can be found in Chapter 7.) The key to attacking large and complex problems is to consider some

form of simplification through the following types of activities:

 ▸ Decomposition

 ▸ Modularization

 ▸ Separation

 ▸ Incremental iterations

This notion is further expanded in Section 2.2.2, which discusses the design of a payroll system.

technology and tool Considerations

Aside from the important issue of decomposing a problem and its solution, there are problems

related to technology and tool considerations that will also need to be addressed. If you are not

writing a program alone for a limited set of users, the choice of the specific programming language

may become an issue. A large, complex system requires more than one person to develop the soft-

ware solution. Although all the developers involved may know several languages, each individual

usually comes with different experience. This diversity in background and experience often results

in personal biases for or against a certain programming language and the choice of development

tool. A common development language and development environment needs to be picked. Beyond

the programming language and the development tools, there are further considerations of other

technical choices related to the following:

 ▸ Database

 ▸ Network

 ▸ Middleware

 ▸ Other technical components such as code version control

These must be agreed upon by all parties involved in building and supporting a complex

software system.

process and Methodology

We alluded to methodology and process earlier when we discussed the need for simplification and

decomposition. When there is only a single person developing the solution, there is still a need to

understand the problem or requirements. There is often a need to take the time to put together or

design the solution and then implement it. The testing of the solution may be performed by the

same person and, possibly, with a user. Under such conditions, there is very little communication

among people. No material, such as a design document, is passed from the author to another person.

26 ChaptER 2 Building a System

There still may be a need to document the work performed because even a single developer forgets

some of the rationale behind the decisions made. There is usually no need to coordinate the work

items because there may not be that many parts. The specific methodology used in performing any

of the tasks does not need to be coordinated when only one or two people are involved.

In a large, complex development situation, the problem is

decomposed and worked on by many different experts. A software

development process is needed to guide and coordinate the group of

people. Simple items, such as the syntax for the expression of a design,

need agreement among all the developers so that they can all review,

understand, author, and produce a consistent and cohesive design.

Each method used for a specific task along with the entire develop-

ment process must be agreed to by the group of people involved in

the project. Software development and support processes were invented to coordinate and manage

complex projects involving many people. The process is greatly facilitated when a group of people

can be converted into a cooperating team of individuals. Although continuous improvements and

new proposals are constantly being made, no one has yet proposed the complete elimination of

process or methodology. Regardless of what is believed about software processes, it is commonly

accepted that some process must exist to help coordinate a complex and successful software project.

Traditional software process models and emerging process models, including the currently popular

Agile methods, will be discussed in Chapters 4 and 5.

Consider the simple scenario of depicting the six major tasks shown in FIGURE 2.2. These are

the common tasks often performed in software development and support. Each task appears as an

independent item, and each one begs the questions of what is expected and how we perform it. For

example, is there a methodology to gathering requirements? If there is more than one person performing

the requirements-gathering task, how that task should be broken down needs to be defined. Similarly,

we might ask what constitutes user support and what problems must be fixed.

The tasks in Figure 2.2 are displayed independently. When several individuals are involved in

software development and support, there has to be a clear understanding of the sequence, overlap,

Integration
and test

User support and
problem fixes

Requirements
gathering, definition

and specification
Design Code/Unit test

Software project management
(planning, organizing, measuring, adjusting)

FIGURE 2.2 Independent tasks.

Software development process
The set of tasks, the sequence and �ow
of these tasks, the inputs to and the
outputs from the tasks, and the precon-
ditions and postconditions for each of
the tasks involved in the production
of a software.

 2.1 Characteristics of Building a System 27

and starting conditions. For example, the designers and coders may be one group of people that

is different from the requirements analysts who are working with the customers. At what point

should the designers and coders start their tasks? How much can these tasks overlap? How should

the completed code be integrated and tested? The process definition should answer these questions

and help in coordinating the various tasks and in ensuring that they are carried out according to

previously agreed on methodologies.

FIGURE 2.3 represents one approach that employs the concept of incremental development

and continuous integration. Software integration is the process of linking together individually

tested units into a coordinated whole system. Continuous integration has been practiced since

the 1970s, when large systems were first being built (Tsui and Priven

1976). Recently, because of the widespread use of incremental devel-

opment and Agile methodologies, continuous integration is gaining

general popularity. The currently popular term CI/CD, continuous

integration/continuous deployment (Pittet 2017), has expanded the

process and now includes the tasks of continuously (1) integrating the

completed functionality, (2) delivering that feature, and (3) having

the users deploying that feature. The methodologies involved in

incremental development must all be agreed to and practiced by the

Specific
requirements

Architecture and high level design

Specific
requirements

Understanding the broad problem (Req.)

Detail design Detail design

CodeCode

Software integration

Test/Fix Test/Fix

. . . .

. . . .

. . . .

Software develop plan (SDP)

FIGURE 2.3 One possible process approach.

Continuous integration/continuous
deployment (CI/CD) The extension of
incremental software development
process to include the quick deployment
of a completed functionality via (1)
continuously integrating completed
functionalities into the product, (2)
delivering those functionalities to the
users, and (3) having the users quickly
deploy those functionalities.

28 ChaptER 2 Building a System

entire development team. The seemingly simple boxes depicting the test–fix–integrate cycle in

Figure 2.3 are extremely deceptive. That simple cycle requires a description of a methodology that

answers the following questions:

 ▸ Is there a separate and independent test group?

 ▸ When a problem is found, how and to whom should it be reported?

 ▸ How much information must accompany a problem description?

 ▸ Who decides the severity level of a problem?

 ▸ How is a problem-�x returned to the tester?

 ▸ Should all problem-�xes be retested?

 ▸ How are the problem-�xes integrated back into the code?

 ▸ What should be done with the problems that are not �xed?

These are just some of the questions that must be determined and worked out for a portion of the

process depicted in Figure 2.3. The process also assumes that incremental development is used

and that both the problem and the design can be decomposed into increments. Figure 2.3 does

not include the support and customer problem-fix activities. We must not forget that software

products need usage support, problem-fixes, and enhancements. Process plays a vital part in

defining and coordinating the activities for large, complex systems development and support.

We will expand on the specifics relating to testing and integration methodologies and process in

Chapters 10 and 11.

In Chapter 4, we will show how the two figures 4.3 and 4.4, which demonstrate the variation

and growth of incremental development process, formulated the precursor to the current CI/

CD. The notion of CI/CD will also be brought up in the discussion of Agile process and Kanban

methodology in Chapter 5.

2.1.3 Nontechnical Considerations of Development
and Support
In addition to technical implications, large and complex systems also require a cognizance of

nontechnical issues. We will discuss two such issues here.

Effort Estimation and Schedule

For a small and fairly simple software project that involves a team of one to three people, the effort

estimation and scheduling of the project is relatively easy. Both the functional and nonfunctional

requirements of the project are fewer in number and complexity. Even then it is still not a trivial

task. For complex and large systems, capturing and understanding the requirements alone can be

overwhelming. Estimating the total effort and coming up with a reliable project schedule under

this difficult condition is one of the main reasons behind so many software project failures; see

Jorgensen (2004) for more details. The inaccurate effort estimates and schedules for large, complex

systems are often extremely optimistic and aggressive; this places unrealistic expectations on both

the customers and the suppliers of these systems.

 2.1 Characteristics of Building a System 29

As an example, consider a relatively simple software project that requires three major

functions with a total of twelve features. The effort estimation of this project requires a good

understanding of all the functional features and the productivity of the individuals in the small

team who will be working on these twelve features. For a large, complex software system, the

number of major functions is often in the tens or hundreds. The total number of features within

these major functions may easily be in the hundreds and thousands. The number of people

needed to develop such a system may easily be in the hundreds. Under such circumstances, the

probability of understanding all the requirements well and of knowing the productivity of all

the individuals accurately is very low. The sorting of the number of combinations of individuals

assigned to the design and coding of such a large number of features alone can be a daunting

task. The resulting effort estimation and the schedule is often a good “guess” and far from being

accurate. The software industry has long recognized this problem and has been confronting this

issue. In Chapter 13 we will address some of the techniques that have been developed and are

now available.

assignments and Communications

We touched on the problem of assigning people to designing and coding the different functional

features when the number of features increases and the corresponding number of developers

increases. Furthermore, there are other activities that require people resources. The assignment

of different people to different tasks such as testing, integration, or tool support requires more

understanding of the skills of the people involved and the specific tasks they have to perform. The

assignment of the most effective and properly skilled people to the right tasks requires a deeper

level of granularity and a finer level of scheduling.

Another related problem with the increase in personnel is the problem of communications. For

a small project involving two or three people, the number of communications paths is one between

two people and three among three people. FIGURE 2.4 illustrates how maximum communication

paths increase as the number of participants increases. The nodes in this figure represent the people,

2 people:

1 path

4 people:

Possibly 6 paths

6 people:

Increase to
potentially 15 paths

FIGURE 2.4 Maximizing communication paths.

30 ChaptER 2 Building a System

and the lines represent the communication paths. The number of possible communications paths

more than doubled when the number of team members increased from four to six.

In general, the number of communication paths for n people is SUM(n–1), where SUM is the

arithmetic sum function of 1, 2, . . ., n (notice this is very close to n2/2). Thus a modest increase from

a four-person team to a twelve-person team would increase the potential number of communica-

tion paths from 6 to 66. A tripling of a small team would increase the potential communication

paths by more than ten times!

Associated with this increase in the sheer number of communication paths is the chance of

an error in communications. Consider, for example, that the chance of communicating correctly

a particular message between any two people is 2/3. The probability that we will communicate

properly from one person to another and then from that second person to a third person would

be (2/3 × 2/3) = 4/9. In general, for n people where n is 2 or more, the probability of correctly com-

municating this message would be (2/3)n–1. Thus for this message, there is only a 16/81 chance of

correctly passing it from the first person to the fifth person in the team. Suddenly, we have reduced

a 2/3 chance of correctly communicating a message to less than 1/4. Such a low probability of cor-

rect communication among team members may be a serious problem, especially if the message is

critical. Organizational structures of people need to be put in place to reduce the complexity and

increase the chance of correct communications.

2.2 Building a Hypothetical System
In this section we will use a hypothetical payroll system to illustrate some of the problems introduced

in Section 2.1. The discussion here will cover the major tasks of developing such a system and of

supporting the system once it is released to users. The intent of this section is to provide only a

glimpse of the different problems and concerns that arise in building our system but not to delve

into all the details of constructing and supporting this system.

2.2.1 Requirements of the payroll System
Everyone has some idea of what a payroll system is. Take a moment to think about what you would

consider as the major functional and the nonfunctional requirements of a payroll system. The

following functional capabilities represent only some of the tasks a payroll system should be able

to perform. This list is far short of what a real payroll system would need.

 ▸ Add, modify, and delete the names and associated personal information of all employees.

 ▸ Add, modify, and delete all the bene�ts associated with all employees.

 ▸ Add, modify, and delete all the tax and other deductions associated with all employees.

 ▸ Add, modify, and delete all the gross income associated with all employees.

 ▸ Add, modify, and delete all the algorithms related to computing the net pay for each employee.

 ▸ Generate a paper check or an electronic direct bank deposit for each employee.

Each of these functional requirements may be expanded to several levels of more details. For

example, just for the first item of names and associated personal information, one would need to

 2.2 Building a Hypothetical System 31

understand what the associated information is. This is a simple question, but would require the

software engineer to solicit the input for this. Where and who would the software engineer ask?

Should the software engineer ask the users, some designated official requirements person, or the

project leader? Once the question is answered, should the answer be documented? The next func-

tional requirement in the preceding list speaks to all the benefits. What are all the benefits? What

does having a benefit mean to an employee’s payroll? Is there a list of all possible benefits? It does

not take much to realize that the requirements solicitation, gathering, documentation, analysis,

and validation of a payroll system will need a considerable effort. In order to properly handle the

application side of the payroll system requirement, we may need to understand something about

benefits, tax laws, and other domain-specific knowledge.

In addition, the payroll system must be able to generate the paychecks and direct deposits

several times a month. What is the allowable payroll cycle? In other words, if the checks and deposits

must be completed by the middle and end of the month, when must the inputs to the cycle, such

as salary increase, be closed? Here we are interested in understanding the payroll-processing-cycle

window that is allowable within the business environment and what performance capability the

system must have to satisfy that processing window. This involves the nonfunctional require-

ment—performance. The answer to this question will require the software engineer to know the

volume of payroll transactions and the speed of processing each payroll transaction. To analyze

and handle this type of requirement, we may need to know the hardware and operating system

environment capability on top of which the payroll system will be running. Some of the payroll

system requirements will require, in addition to payroll domain knowledge, the knowledge of

technical system and interface information.

There also needs to be an understanding of how the actual payroll run process works at the

user/customer site. For example, if there is a bad record, how should that person’s paycheck be

reprocessed? Does this imply that there is a requirement to rerun the payroll system several times?

The nonfunctional requirement of security should be addressed. What protection in the face of

possible error, malice, or mischance is needed? There may also be some requirements that the

users/customers may not even remember to provide initially. In Chapter 6 we discuss how we may

handle these late requirements.

Once the requirements information of a payroll system is documented, the complexity of

such a system will most likely necessitate a review with the users/customers before having the

requirements specification passed forward to the design and coding phase. These reviews may

be conducted gradually as the requirements are incrementally analyzed and documented or all at

once when all the requirements are analyzed and specified together. Either situation will require a

coordination of effort between the users/customers and the requirements analysts.

It is thus clear that the total number of activities needed to complete a payroll system require-

ment phase alone may be extremely high as well as time consuming. The requirement phase is

critical for the system’s success. Not just a single requirements analyst but a team of requirements

analysts—individuals having diverse skills spanning everything from payroll domain-specific

knowledge to IT and systems development expertise—may be needed. From a quality perspec-

tive, it has also been pointed out by Jones (1992) that approximately 15 percent of software defects

are due to requirements errors. The activities related to completing a requirements specification

32 ChaptER 2 Building a System

for a system, such as that in our payroll example, are difficult and have significant impact on all

downstream activities and on the final product. Complete books have been written on just this

topic. (See the References and Suggested Readings section at the end of this chapter.)

2.2.2 Designing the payroll System
Once the requirements of the payroll system are understood and agreed to, the system must still

be designed. Put aside the fact that the payroll system requirements expressed in Section 2.2.1 are

just an example and are incomplete. For example, we might naturally ask whether all the “add,

update, and delete” functional requirements should be grouped together into a single component

called “payroll administrative functions.” We might then ask if all the processing functions such

as the calculations of all the deductions and the net pay amount should be grouped together into a

component called “payroll processing.” Certainly, we must be prepared to handle errors and excep-

tions. So, those functions dealing with errors and exceptions processing may be aggregated into

an exceptions-processing component. In addition, the payroll system must interface with external

systems such as direct bank deposits or batch transmissions to remote sites for local check printing.

We may decide to place all the interface functions into a component called “payroll interfaces.”

This grouping of related functions into components has several advantages:

 ▸ Provides some design cohesiveness within the component

 ▸ Matches the business �ow and the payroll processing environment

 ▸ Provides a potential assignment of work by components

 ▸ Allows easier packaging of the so�ware by components

There may be some drawbacks to this approach. It is conceivable that there are still heavy

interactions or coupling among these components. The coupling, in this case, may arise from

extensive usage of a common data file or a common table in a relational database. Even at this high

level, designers need to look at both the characteristics of design cohesiveness and coupling. The

concepts related to these topics are discussed extensively in Chapter 8.

There are also nonfunctional specific, but common-service, needs that must be designed. For

example, the help service or the message service must be designed for all the functional components.

These services may all be placed in one component called the services component. The combina-

tion of functional components and common services is shown in FIGURE 2.5 as horizontal and

vertical design entities. The horizontal entities are the common service functions such as the error

handler that crosses all the individual application features. The vertical entities are the different

application domain-specific functions such as the tax and benefits deduction function in a payroll

system. The interaction, or coupling, of the various functional components with these common

services is a key design concern.

It is during design that the screen interface layout is finalized. In the case of a payroll system,

this is a heavily batch-oriented system rather than an interactive system. User interface in terms of

screen architecture is thus not a prime design concern. Nevertheless, it needs to be addressed. The

database tables and search keys, however, are important and would be a significant design concern

for a large batch-processing application.

 2.2 Building a Hypothetical System 33

Although there are many ways to perform high-level and detailed design, the design of a

payroll system requires a broad set of skills because of the breadth and depth of the system.

From the breadth perspective, the design skills needed require complex knowledge: data-

base, network, and transmission interfaces; printing interfaces; operating system interfaces;

 development tools environment; and the payroll application domain. From a depth perspec-

tive, the designer needs to understand and appreciate the specifics of a payroll system, such as

performance and error processing. Although it is a batch-processing system, the sheer volume

of payroll records for large enterprises often requires special design concerns that would make

the seemingly simple process of error handling into a complex task. The design must not only

catch erroneous information or conflicting information but must also consider what should

happen to the people whose records cannot be processed. If these records are not dealt with

immediately and allowed to accumulate until the end of the payroll cycle, there is no time to

react. These records must be handled so that they can be converted to a paycheck within the

payroll processing cycle. The designer must consider the payroll environment and the pos-

sibility of having to hand code the paychecks for a small number of unfortunate people. Thus

the designer must design the system to include hand-processing exits from the system and the

reconciliation of these hand-processed records back into the automated payroll system. The

depth of error processing in a large system such as payroll can be a challenge for even the most

experienced designers.

The payroll design mentioned here uses functional decomposition and synthesis techniques

within each of the components. In addition to the intercomponent interactions, the various pieces

within a component must be clearly divided and the intracomponent interaction between the pieces

must also be designed. Clearly, designing a complex system is quite different from designing a

single programming module and will require greater discipline and additional guiding principles

as well as the possibility of several more team members.

Different vertical functions

Common messages

Common screens

Horizontal
functions

FIGURE 2.5 Vertical and horizontal design entities.

34 ChaptER 2 Building a System

2.2.3 Code and Unit testing the payroll System
The high-level design or architecture for the payroll system needs to be further refined and converted

into running code. Within each design component, the individual, interacting, functional unit needs

to be designed and converted into code. This activity is familiar to most people who enter the IT

and computing field. The first course often taught to students entering software engineering or

computer science involves a small problem that must be solved with a detailed functional design

and code. At times, when the solution is small enough, the detail design is not even recorded and

only the source code of the module is available.

For each of the functional units, the programmer must address and develop the

 following material:

 ▸ Precise layout of the screen interface in some language

 ▸ Precise functional processing logic in some programming language

 ▸ Precise data access and storage logic in some language

 ▸ Precise interface logic in some language

Furthermore, if there are many of these programming units, some common standards

must be set. An example would be a naming convention for each of the modules that would

uniquely identify each as the module of a specific component. Conventions may also need to

be set for different database records such that all elements from a specific relational table have

the same prefix. There may be conventions set to document some of the detail design such as

providing comments on the conditions under which this module may be entered and exited.

The comments may also describe the data that are vital to the processing and a short description

of the intended function. A very important part is the design, code, and the documentation

of how to handle the various error conditions. The error messages displayed from the differ-

ent program modules need to be consistent; thus each program unit must follow the error

 message standard.

After the program module has been completed, the individual who performed the task should

test the module to confirm that it performs the intended tasks. The first step in this unit-testing

task is to set the conditions of the module and to choose the appropriate input data. The next step

is to execute or run the module and observe the behavior of the module, mainly through checking

the output from the module, to ensure that it is performing what it is intended to do. Finally, if

there is any problem discovered through unit testing, it must be fixed and retested. When all the

problems are fixed, the module is ready for integration into a larger unit such as a functional unit

or into a component if the module itself is a functional unit.

The programming or coding and unit testing of a module is usually performed by one

 individual. For a large system, such as a payroll system, there may be hundreds of modules

that need to be coded and unit tested. Thus, programming is a heavily human resource

intensive activity. When the number of programmers increases to a large figure, then the

coordination and integration of all the programming efforts become a management challenge.

Once again, principles of software engineering management need to be brought in to alleviate

the situation.

 2.2 Building a Hypothetical System 35

2.2.4 Integration and Functional testing
of the payroll System
As the modules are completed and unit tested, they have to be formally collected from the

individual programmers. The collection activity is known as integration, which is a part of a

larger control mechanism known as configuration management. Configuration management

will be mentioned throughout this text but will be formally discussed in Chapter 11. A simple

reason for the integration step is that if the completed modules are left with the individual

programmers, the programmers tend to make changes to an already unit-tested module and get

confused about which is indeed the latest version. To ensure that the latest unit-tested modules

do work together as a functional unit, these modules need to be compiled and linked together.

A functional unit, in the case of the payroll system, may be a part of the previously mentioned

administrative component that performs the add, modify, and delete functions of all the federal

deduction laws, which almost always change annually. The integrated set of modules is then

tested with functional test cases generated by a more objective group than the programmers

who coded the modules.

Functional testing usually uncovers some problems that will require fixing by the

 programmers. The cycle of problem detection to problem-fix needs to be coordinated between

the testers and the code fixers. The fix code must be integrated into the functional unit and

be retested to ensure that all the fixes as a group have not impacted each other negatively. As

a set of modules in a functional unit completes the functional test, it is electronically labeled

as such and is locked from further changes. These functional units need to be managed by the

configuration management mechanism as do the module units. In the case of a simple one or

two module situation, there is not much need for an integration and configuration manage-

ment mechanism. In a very large software system construction such as a payroll system, there

is usually a tool, such as PVCS from Serena Software, used to help automate the configuration

management mechanism. An additional reason of needing sophisticated tools today is the

aforementioned CI/CD process with which we are releasing incremental functionalities to the

users at a faster speed. The people and skills required to tackle the integration and functional

testing of a payroll system are usually different from those needed for coding, designing, or

requirements gathering. However, test scenarios and test scripts often require the knowledge of

the requirements and the design. Various integration and configuration management concept

and tools will be discussed in Chapter 11.

2.2.5 Release of the payroll System
After the functional units are tested and integrated into components, these components must

be tested together to ensure that the complete system works as a whole. This is important to

ensure that all the interfaces across components actually do work. Also, the various fixes for the

functional units and components may impact some other previously working functional units

and components. Even after the entire payroll system is tested through all the user scenarios in

the context of the user business environment, the system cannot be released unless no problem

36 ChaptER 2 Building a System

was found. At least all the major problems and showstoppers must be fixed before the system can

be considered releasable to the users. Once again, the tested payroll system must be managed and

protected from further changes.

Even if the payroll system is totally error free, the users must still be educated in the usage of

the system—a process that for a large system cannot be an afterthought and must be planned and

orchestrated. The development of the educational material alone for such a system is a nontrivial

task. The effort may take several people and several months. The delivery of user education may

require some different skills from technical design or coding. The emphasis would be presenta-

tion and communication skills. The people who develop the educational material content may be

different from those who deliver the education.

Another area of preparation before releasing the payroll system would be the preparation

of user support personnel. It would be rare that the users can master all the details of a payroll

system just through education. Furthermore, it is also rare that a large and complex system will be

totally error free. The support personnel themselves must be educated on the payroll system, user

environments, and tools needed for supporting customers.

Once the system test is complete, the users have been trained, and the support group is trained

and established, the payroll system is then ready for release to the users. Who should be the person

who makes the final call of a product release? Should this be a group decision? And what criteria

should that person use in making the determination for release? These topics fall under the umbrella

of software project management, discussed further in Chapter 13.

2.2.6 Support and Maintenance
For a small, one- or two-module software product that is used by a few people, the support effort

is not a major concern. For a large system such as payroll, the postrelease support of the users and

customers may be a very complex set of tasks. Who does the user call for help, after consulting the

user manual, when the payroll system stalls and pops up a message with several possible choices

for the user before the payroll system can continue processing? Who does the user call when the

direct deposit interface on the bank side has changed and the existing payroll system interface

needs to be modified? Who does the user call when the payroll system shows a different behavioral

problem after applying a previous problem-fix? These are just a few of the many questions that

will arise after the payroll system is released. Several assumptions must be made and be included

in the calculation of the expected payroll system support effort. Many of the following decision

factors will play a role:

 ▸ Number of expected users and customers

 ▸ Number and type of known problems that existed at release time

 ▸ Projected number of problems that will be discovered by users

 ▸ Amount of user training

 ▸ Amount of support personnel training

 ▸ Number of development personnel committed to support the system

 ▸ Expected number of problem-�x releases and future functional releases

 2.2 Building a Hypothetical System 37

