


Table B-1 Critical Values of the t-Distribution

Level of Significance

Degrees of 
Freedom

One-Sided: 10% 
Two-Sided: 20%

5% 
10%

2.5% 
5%

1% 
2%

0.5% 
1%

  1 3.078 6.314 12.706 31.821 63.657

  2 1.886 2.920 4.303 6.965 9.925

  3 1.638 2.353 3.182 4.541 5.841

  4 1.533 2.132 2.776 3.747 4.604

  5 1.476 2.015 2.571 3.365 4.032

  6 1.440 1.943 2.447 3.143 3.707

  7 1.415 1.895 2.365 2.998 3.499

  8 1.397 1.860 2.306 2.896 3.355

  9 1.383 1.833 2.262 2.821 3.250

 10 1.372 1.812 2.228 2.764 3.169

 11 1.363 1.796 2.201 2.718 3.106

 12 1.356 1.782 2.179 2.681 3.055

 13 1.350 1.771 2.160 2.650 3.012

 14 1.345 1.761 2.145 2.624 2.977

 15 1.341 1.753 2.131 2.602 2.947

 16 1.337 1.746 2.120 2.583 2.921

 17 1.333 1.740 2.110 2.567 2.898

 18 1.330 1.734 2.101 2.552 2.878

 19 1.328 1.729 2.093 2.539 2.861

 20 1.325 1.725 2.086 2.528 2.845

 21 1.323 1.721 2.080 2.518 2.831

 22 1.321 1.717 2.074 2.508 2.819

 23 1.319 1.714 2.069 2.500 2.807

 24 1.318 1.711 2.064 2.492 2.797

 25 1.316 1.708 2.060 2.485 2.787

 26 1.315 1.706 2.056 2.479 2.779

 27 1.314 1.703 2.052 2.473 2.771

 28 1.313 1.701 2.048 2.467 2.763

 29 1.311 1.699 2.045 2.462 2.756

 30 1.310 1.697 2.042 2.457 2.750

 40 1.303 1.684 2.021 2.423 2.704

 60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

(Normal)

∞ 1.282 1.645 1.960 2.326 2.576

Source: Reprinted from Table IV in Sir Ronald A. Fisher, Statistical Methods for Research 

Workers, 14th ed. (copyright © 1970, University of Adelaide) with permission of Hafner, a 

 division of the Macmillan Publishing Company, Inc.
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PREFACE

Econometric education is a lot like learning to fly a plane; you learn 

more from actually doing it than you learn from reading about it.

Using Econometrics represents an innovative approach to the understand-
ing of elementary econometrics. It covers the topic of single-equation lin-
ear regression analysis in an easily understandable format that emphasizes 
real-world examples and exercises. As the subtitle A Practical Guide implies, 
the book is aimed not only at beginning econometrics students but also at 
regression users looking for a refresher and at experienced practitioners who 
want a convenient reference.

What’s New in the Seventh Edition?

Using Econometrics has been praised as “one of the most important new texts 
of the last 30 years,” so we’ve retained the clarity and practicality of previous 
editions. However, we’re delighted to have made a number of substantial 
improvements in the text.

The most exciting upgrades are:

1. Econometric Labs: These new and innovative learning tools are 
optional appendices that give students hands-on opportunities to bet-
ter understand the econometric principles that they’re reading about 
in the chapters. The labs originally were designed to be assigned in a 
classroom setting, but they also have turned out to be extremely valu-
able for readers who are not in a class or for individual students in 
classes where the labs aren’t assigned. Hints on how best to use these 
econometric labs and answers to the lab questions are available in the 
instructor’s manual on the Using Econometrics Web site.

2. The Use of Stata throughout the Text: In our opinion, Stata has 
become the econometric software package of choice among economic 
researchers. As a result, we have estimated all the text examples and 
exercises with Stata and have included a short appendix to help stu-
dents get started with Stata. Beyond this, we have added a complete 
guide to Using Stata to our Web site. This guide, written by John Perry 
of Centre College, explains in detail all the Stata commands needed to 
replicate the text’s equations and answer the text’s exercises. However, 
even though we use Stata extensively, Using Econometrics is not tied to 

xiii



Stata or any other econometric software, so the text works well with all 
standard regression packages.

3. Expanded Econometric Content: We have added coverage of a number 
of econometric tests and procedures, for example the Breusch-Pagan 
test and the Prais–Winsten approach to Generalized Least Squares. 
In addition, we have expanded the coverage of even more topics, for 
example the F-test, confidence intervals, the Lagrange Multiplier test, 
and the Dickey–Fuller test. Finally, we have simplified the notation and 
improved the clarity of the explanations in Chapters 12–16, particu-
larly in topics like dynamic equations, dummy dependent variables, 
instrumental variables, and panel data.

4. Answers to Many More Exercises: In response to requests from instruc-
tors and students, we have more than tripled the number of exercises 
that are answered in the text’s appendix. These answers will allow stu-
dents to learn on their own, because students will be able to attempt an 
exercise and then check their answers against those in the back of the 
book without having to involve their professors. In order to continue 
to provide good exercises for professors to include in problem sets and 
exams, we have expanded the number of exercises contained in the 
text’s Web site.

5. Dramatically Improved PowerPoint Slides: We recognize the impor-
tance of PowerPoint slides to instructors with large classes, so we have 
dramatically improved the quality of the text’s PowerPoints. The slides 
replicate each chapter’s main equations and examples, and also pro-
vide chapter summaries and lists of the key concepts in each chapter. 
The PowerPoint slides can be downloaded from the text’s Web site, and 
they’re designed to be easily edited and individualized.

6. An Expanded and Improved Web Site: We believe that this edition’s 
Web site is the best we’ve produced. As you’d expect, the Web site 
includes all the text’s data sets, in easily downloadable Stata, EViews, 
Excel, and ASCII formats, but we have gone far beyond that. We have 
added Using Stata, a complete guide to the Stata commands needed 
to estimate the book’s equations; we have dramatically improved the 
PowerPoint slides; and we have added answers to the new economet-
ric labs and instructions on how best to use these labs in a classroom 
setting. In addition, the Web site also includes an instructor’s manual, 
additional exercises, extra interactive regression learning exercises, and 
additional data sets. But why take our word for it? Take a look for your-
self at http://www.pearsonhighered.com/studenmund
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Features

1. Our approach to the learning of econometrics is simple, intuitive, and 
easy to understand. We do not use matrix algebra, and we relegate 
proofs and calculus to the footnotes or exercises.

2. We include numerous examples and example-based exercises. We feel 
that the best way to get a solid grasp of applied econometrics is through 
an example-oriented approach.

3. Although most of this book is at a simpler level than other economet-
rics texts, Chapters 6 and 7 on specification choice are among the most 
complete in the field. We think that an understanding of specification 
issues is vital for regression users.

4. We use a unique kind of learning tool called an interactive regression 

learning exercise to help students simulate econometric analysis by 
 giving them feedback on various kinds of decisions without relying on 
computer time or much instructor supervision.

5. We’re delighted to introduce a new innovative learning tool called an 
econometric lab. These econometric labs, developed by Bruce Johnson 
of Centre College and tested successfully at two other institutions, 
are optional appendices aimed at giving students hands-on experi-
ence with the econometric procedures they’re reading about. Students 
who complete these econometric labs will be much better prepared to 
undertake econometric research on their own.

The formal prerequisites for using this book are few. Readers are assumed 
to have been exposed to some microeconomic and macroeconomic theory, 
basic mathematical functions, and elementary statistics (even if they have 
forgotten most if it). Students with little statistical background are encour-
aged to begin their study of econometrics by reading Chapter 17, “Statistical 
Principles,” on the text’s Web site.

Because the prerequisites are few and the statistics material is self-contained, 
Using Econometrics can be used not only in undergraduate courses but also in 
MBA-level courses in quantitative methods. We also have been told that the 
book is a helpful supplement for graduate-level econometrics courses.

The Stata and EViews Options

We’re delighted to be able to offer our readers the chance to purchase the 
student version of Stata or EViews at discounted prices when bundled with 
the textbook. Stata and EViews are two of the best econometric software 
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programs available, so it’s a real advantage to be able to buy them at sub-
stantial savings.

We urge professors to make these options available to their students 
even if Stata or EViews aren’t used in class. The advantages to students of 
owning their own regression software are many. They can run regressions 
when they’re off-campus, they will add a marketable skill to their résumé 
if they learn Stata or EViews, and they’ll own a software package that will 
allow them to run regressions after the class is over if they choose the 
EViews option.

Acknowledgments

This edition of Using Econometrics has been blessed by superb contribu-
tions from Ron Michener of the University of Virginia and Bruce Johnson of 
 Centre College. Ron was the lead reviewer, and in that role he commented on 
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Nobel Prize winner Rob Engle of New York University, Gary Smith of 
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1

1.1 What Is Econometrics?

1.2 What Is Regression Analysis?

1.3 The Estimated Regression Equation

1.4 A Simple Example of Regression Analysis

1.5 Using Regression to Explain Housing Prices

1.6 Summary and Exercises

1.7 Appendix: Using Stata

An Overview of  
Regression Analysis

1.1  What Is Econometrics?

“ Econometrics is too mathematical; it’s the reason my best friend isn’t 

majoring in economics.”

“ There are two things you are better off not watching in the making: 

sausages and econometric estimates.”1

“ Econometrics may be defined as the quantitative analysis of actual  

economic phenomena.”2

“ It’s my experience that ‘economy-tricks’ is usually nothing more than a 

justification of what the author believed before the research was begun.”

Obviously, econometrics means different things to different people. To 
beginning students, it may seem as if econometrics is an overly complex 
obstacle to an otherwise useful education. To skeptical observers, econometric 

Chapter 1

1. Ed Leamer, “Let’s take the Con out of Econometrics,” American Economic Review, Vol. 73,  
No. 1, p. 37.

2. Paul A. Samuelson, T. C. Koopmans, and J. R. Stone, “Report of the Evaluative Committee for 
Econometrica,” Econometrica, 1954, p. 141.



2 CHAPTER 1 AN OVERVIEW OF REGRESSION ANALYSIS 

results should be trusted only when the steps that produced those results are 
completely known. To professionals in the field, econometrics is a fascinat-
ing set of techniques that allows the measurement and analysis of economic 
phenomena and the prediction of future economic trends.

You’re probably thinking that such diverse points of view sound like the 
statements of blind people trying to describe an elephant based on which 
part they happen to be touching, and you’re partially right. Econometrics 
has both a formal definition and a larger context. Although you can easily 
memorize the formal definition, you’ll get the complete picture only by 
understanding the many uses of and alternative approaches to econometrics.

That said, we need a formal definition. Econometrics—literally, “economic 
measurement”—is the quantitative measurement and analysis of actual 
economic and business phenomena. It attempts to quantify economic 
reality and bridge the gap between the abstract world of economic theory 
and the real world of human activity. To many students, these worlds may 
seem far apart. On the one hand, economists theorize equilibrium prices 
based on carefully conceived marginal costs and marginal revenues; on 
the other, many firms seem to operate as though they have never heard of 
such concepts. Econometrics allows us to examine data and to quantify the 
actions of firms, consumers, and governments. Such measurements have a 
number of different uses, and an examination of these uses is the first step to 
understanding econometrics.

Uses of Econometrics

Econometrics has three major uses:

1. describing economic reality

2. testing hypotheses about economic theory and policy

3. forecasting future economic activity

The simplest use of econometrics is description. We can use econometrics 
to quantify economic activity and measure marginal effects because econo-
metrics allows us to estimate numbers and put them in equations that previ-
ously contained only abstract symbols. For example, consumer demand for 
a particular product often can be thought of as a relationship between the 
quantity demanded 1Q2 and the product’s price 1P2, the price of a substitute 1Ps2, and disposable income 1Yd2. For most goods, the relationship between 
consumption and disposable income is expected to be positive, because 
an increase in disposable income will be associated with an increase in the 
consumption of the product. Econometrics actually allows us to estimate that 



3 WHAT IS ECONOMETRICS?

relationship based upon past consumption, income, and prices. In other 
words, a general and purely theoretical functional relationship like:

 Q = β0 + β1P + β2PS + β1Yd (1.1)

can become explicit:

 Q = 27.7 - 0.11P + 0.03PS + 0.23Yd (1.2)

This technique gives a much more specific and descriptive picture of the 
function.3 Let’s compare Equations 1.1 and 1.2. Instead of expecting con-
sumption merely to “increase” if there is an increase in disposable income, 
Equation 1.2 allows us to expect an increase of a specific amount (0.23 units 
for each unit of increased disposable income). The number 0.23 is called an 
estimated regression coefficient, and it is the ability to estimate these coeffi-
cients that makes econometrics valuable.

The second use of econometrics is hypothesis testing, the evaluation of 
alternative theories with quantitative evidence. Much of economics involves 
building theoretical models and testing them against evidence, and hypoth-
esis testing is vital to that scientific approach. For example, you could test the 
hypothesis that the product in Equation 1.1 is what economists call a normal 
good (one for which the quantity demanded increases when disposable income 
increases). You could do this by applying various statistical tests to the estimated 
coefficient (0.23) of disposable income (Yd) in Equation 1.2. At first glance, 
the evidence would seem to support this hypothesis, because the coefficient’s 
sign is positive, but the “statistical significance” of that estimate would have to 
be investigated before such a conclusion could be justified. Even though the 
estimated coefficient is positive, as expected, it may not be sufficiently different 
from zero to convince us that the true coefficient is indeed positive.

The third and most difficult use of econometrics is to forecast or predict 
what is likely to happen next quarter, next year, or further into the future, based 
on what has happened in the past. For example, economists use economet-
ric models to make forecasts of variables like sales, profits, Gross Domestic  
Product (GDP), and the inflation rate. The accuracy of such forecasts depends 
in large measure on the degree to which the past is a good guide to the future. 
Business leaders and politicians tend to be especially interested in this use of 

3. It’s of course naïve to build a model of sales (demand) without taking supply into consider-
ation. Unfortunately, it’s very difficult to learn how to estimate a system of simultaneous equa-
tions until you’ve learned how to estimate a single equation. As a result, we will postpone our 
discussion of the econometrics of simultaneous equations until Chapter 14. Until then, you 
should be aware that we sometimes will encounter right-hand-side variables that are not truly 
“independent” from a theoretical point of view.
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econometrics because they need to make decisions about the future, and the 
penalty for being wrong (bankruptcy for the entrepreneur and political defeat 
for the candidate) is high. To the extent that econometrics can shed light on 
the impact of their policies, business and government leaders will be better 
equipped to make decisions. For example, if the president of a company 
that sold the product modeled in Equation 1.1 wanted to decide whether to 
increase prices, forecasts of sales with and without the price increase could be 
calculated and compared to help make such a decision.

Alternative Econometric Approaches

There are many different approaches to quantitative work. For example, the 
fields of biology, psychology, and physics all face quantitative questions simi-
lar to those faced in economics and business. However, these fields tend to use 
somewhat different techniques for analysis because the problems they face 
aren’t the same. For example, economics typically is an observational disci-
pline rather than an experimental one. “We need a special field called econo-
metrics, and textbooks about it, because it is generally accepted that economic 
data possess certain properties that are not considered in standard statistics 
texts or are not sufficiently emphasized there for use by economists.”4

Different approaches also make sense within the field of economics. A 
model built solely for descriptive purposes might be different from a forecast-
ing model, for example.

To get a better picture of these approaches, let’s look at the steps used in 
nonexperimental quantitative research:

1. specifying the models or relationships to be studied

2. collecting the data needed to quantify the models

3. quantifying the models with the data

The specifications used in step 1 and the techniques used in step 3 differ 
widely between and within disciplines. Choosing the best specification for 
a given model is a theory-based skill that is often referred to as the “art” of 
econometrics. There are many alternative approaches to quantifying the same 
equation, and each approach may produce somewhat different results. The 
choice of approach is left to the individual econometrician (the researcher 
using econometrics), but each researcher should be able to justify that choice.

4. Clive Granger, “A Review of Some Recent Textbooks of Econometrics,” Journal of Economic 

Literature, Vol. 32, No. 1, p. 117.
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This book will focus primarily on one particular econometric approach: 
single-equation linear regression analysis. The majority of this book will thus 
concentrate on regression analysis, but it is important for every econometri-
cian to remember that regression is only one of many approaches to econo-
metric quantification.

The importance of critical evaluation cannot be stressed enough; a good 
econometrician can diagnose faults in a particular approach and figure out 
how to repair them. The limitations of the regression analysis approach must 
be fully perceived and appreciated by anyone attempting to use regression 
analysis or its findings. The possibility of missing or inaccurate data, incor-
rectly formulated relationships, poorly chosen estimating techniques, or 
improper statistical testing procedures implies that the results from regres-
sion analyses always should be viewed with some caution.

1.2  What Is Regression Analysis?

Econometricians use regression analysis to make quantitative estimates of 
economic relationships that previously have been completely theoretical in 
nature. After all, anybody can claim that the quantity of iPhones demanded 
will increase if the price of those phones decreases (holding everything else  
constant), but not many people can put specific numbers into an equation and 
estimate by how many iPhones the quantity demanded will increase for each 
dollar that price decreases. To predict the direction of the change, you need a 
knowledge of economic theory and the general characteristics of the product 
in question. To predict the amount of the change, though, you need a sample of 
data, and you need a way to estimate the relationship. The most frequently used 
method to estimate such a relationship in econometrics is regression analysis.

Dependent Variables, Independent Variables, and Causality

Regression analysis is a statistical technique that attempts to “explain” move-
ments in one variable, the dependent variable, as a function of movements in a 
set of other variables, called the independent (or explanatory) variables, through  
the quantification of one or more equations. For example, in Equation 1.1:

 Q = β0 + β1P + β2PS + β1Yd (1.1)

Q is the dependent variable and P, PS, and Yd are the independent variables. 
Regression analysis is a natural tool for economists because most (though 
not all) economic propositions can be stated in such equations. For example, 
the quantity demanded (dependent variable) is a function of price, the prices 
of substitutes, and income (independent variables).
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Much of economics and business is concerned with cause-and-effect 
propositions. If the price of a good increases by one unit, then the quantity 
demanded decreases on average by a certain amount, depending on the 
price elasticity of demand (defined as the percentage change in the quantity 
demanded that is caused by a one percent increase in price). Similarly, if the 
quantity of capital employed increases by one unit, then output increases by 
a certain amount, called the marginal productivity of capital. Propositions 
such as these pose an if-then, or causal, relationship that logically postulates 
that a dependent variable’s movements are determined by movements in a 
number of specific independent variables.

Don’t be deceived by the words “dependent” and “independent,” how-
ever. Although many economic relationships are causal by their very 
nature, a regression result, no matter how statistically significant, cannot 
prove causality. All regression analysis can do is test whether a signifi-
cant quantitative relationship exists. Judgments as to causality must also 
include a healthy dose of economic theory and common sense. For 
example, the fact that the bell on the door of a flower shop rings just be-
fore a customer enters and purchases some flowers by no means implies 
that the bell causes purchases! If events A and B are related statistically, it 
may be that A causes B, that B causes A, that some omitted factor causes 
both, or that a chance correlation exists between the two.

The cause-and-effect relationship often is so subtle that it fools even the 
most prominent economists. For example, in the late nineteenth century, 
English economist Stanley Jevons hypothesized that sunspots caused an 
increase in economic activity. To test this theory, he collected data on national  
output (the dependent variable) and sunspot activity (the independent 
variable) and showed that a significant positive relationship existed. This 
result led him, and some others, to jump to the conclusion that sunspots 
did indeed cause output to rise. Such a conclusion was unjustified because 
regression analysis cannot confirm causality; it can only test the strength and 
direction of the quantitative relationships involved.

Single-Equation Linear Models

The simplest single-equation regression model is:

 Y = β0 + β1X (1.3)
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Equation 1.3 states that Y, the dependent variable, is a single-equation linear 
function of X, the independent variable. The model is a single-equation 
model because it’s the only equation specified. The model is linear because if 
you were to plot Equation 1.3 it would be a straight line rather than a curve.

The βs are the coefficients that determine the coordinates of the straight line 
at any point. β0 is the constant or intercept term; it indicates the value of Y 
when X equals zero. β1 is the slope coefficient, and it indicates the amount that 
Y will change when X increases by one unit. The line in Figure 1.1 illustrates the 
relationship between the coefficients and the graphical meaning of the regres-
sion equation. As can be seen from the diagram, Equation 1.3 is indeed linear.

The slope coefficient, β1, shows the response of Y to a one-unit increase in X. 
Much of the emphasis in regression analysis is on slope coefficients such as β1.  
In Figure 1.1 for example, if X were to increase by one from X1 to X2 1∆X2, 
the value of Y in Equation 1.3 would increase from Y1 to Y2 1∆Y2. For linear 
(i.e., straight-line) regression models, the response in the predicted value of Y 
due to a change in X is constant and equal to the slope coefficient β1:

 
1Y2 - Y121X2 - X12 =

∆Y

∆X
= β1

Y

Y2

Intercept = d0

Y1

0 X1
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¢Y

X2

Y = d0 + d1X

X

¢Y
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Slope = d1 =

(Y2 - Y1)
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=

Figure 1.1 Graphical Representation of the Coefficients  

of the Regression Line

The graph of the equation Y = β0 + β1X is linear with a constant slope equal to 
β1 = ∆Y/∆X.
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where ∆ is used to denote a change in the variables. Some readers may recog-
nize this as the “rise” 1∆Y2 divided by the “run” 1∆X2. For a linear model, 
the slope is constant over the entire function.

If linear regression techniques are going to be applied to an equation, that 
equation must be linear. An equation is linear if plotting the function in 
terms of X and Y generates a straight line; for example, Equation 1.3 is linear.5

 Y = β0 + β1X (1.3)

The Stochastic Error Term

Besides the variation in the dependent variable (Y) that is caused by the 
independent variable (X), there is almost always variation that comes from 
other sources as well. This additional variation comes in part from omitted 
explanatory variables (e.g., X2 and X3). However, even if these extra variables 
are added to the equation, there still is going to be some variation in Y that 
simply cannot be explained by the model.6 This variation probably comes 
from sources such as omitted influences, measurement error, incorrect func-
tional form, or purely random and totally unpredictable occurrences. By 
random we mean something that has its value determined entirely by chance.

Econometricians admit the existence of such inherent unexplained varia-
tion (“error”) by explicitly including a stochastic (or random) error term in 
their regression models. A stochastic error term is a term that is added to 
a regression equation to introduce all of the variation in Y that cannot be 
explained by the included Xs. It is, in effect, a symbol of the econometrician’s 
ignorance or inability to model all the movements of the dependent variable. 
The error term (sometimes called a disturbance term) usually is referred to 
with the symbol epsilon 1e2, although other symbols (like u or v) sometimes 
are used.

5. Technically, as you will learn in Chapter 7, this equation is linear in the coefficients β0 and β1 
and linear in the variables Y and X. The application of regression analysis to equations that are 
nonlinear in the variables is covered in Chapter 7. The application of regression techniques to 
equations that are nonlinear in the coefficients, however, is much more difficult.

6. The exception would be the extremely rare case where the data can be explained by some sort 
of physical law and are measured perfectly. Here, continued variation would point to an omitted 
independent variable. A similar kind of problem is often encountered in astronomy, where 
planets can be discovered by noting that the orbits of known planets exhibit variations that can 
be caused only by the gravitational pull of another heavenly body. Absent these kinds of physi-
cal laws, researchers in economics and business would be foolhardy to believe that all variation 
in Y can be explained by a regression model because there are always elements of error in any 
attempt to measure a behavioral relationship.
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The addition of a stochastic error term 1e2 to Equation 1.3 results in a 
typical regression equation:

 Y = β0 + β1X + e (1.4)

Equation 1.4 can be thought of as having two components, the deterministic  
component and the stochastic, or random, component. The expression 
β0 + β1X is called the deterministic component of the regression equation 
because it indicates the value of Y that is determined by a given value  
of X, which is assumed to be nonstochastic. This deterministic component 
can also be thought of as the expected value of Y given X, the mean value 
of the Ys associated with a particular value of X. For example, if the average 
height of all 13-year-old girls is 5 feet, then 5 feet is the expected value of a 
girl’s height given that she is 13. The deterministic part of the equation may 
be written:

 E1Y �X2 = β0 + β1X (1.5)

which states that the expected value of Y given X, denoted as E1Y �X2, is a 
linear function of the independent variable (or variables if there are more 
than one).

Unfortunately, the value of Y observed in the real world is unlikely to be 
exactly equal to the deterministic expected value E1Y �X2. After all, not all 
13-year-old girls are 5 feet tall. As a result, the stochastic element 1e2 must be 
added to the equation:

 Y = E1Y �X2 + e = β0 + β1X + e (1.6)

The stochastic error term must be present in a regression equation 
because there are at least four sources of variation in Y other than the 
variation in the included Xs:

 1.  Many minor influences on Y are omitted from the equation (for 
example, because data are unavailable).

 2.  It is virtually impossible to avoid some sort of measurement error in 
the dependent variable.

 3.  The underlying theoretical equation might have a different functional 

form (or shape) than the one chosen for the regression. For example, 
the underlying equation might be nonlinear.

 4.  All attempts to generalize human behavior must contain at least 
some amount of unpredictable or purely random variation.
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To get a better feeling for these components of the stochastic error term, 
let’s think about a consumption function (aggregate consumption as a func-
tion of aggregate disposable income). First, consumption in a particular year 
may have been less than it would have been because of uncertainty over the 
future course of the economy. Since this uncertainty is hard to measure, there 
might be no variable measuring consumer uncertainty in the equation. In 
such a case, the impact of the omitted variable (consumer uncertainty) would 
likely end up in the stochastic error term. Second, the observed amount of 
consumption may have been different from the actual level of consump-
tion in a particular year due to an error (such as a sampling error) in the 
measurement of consumption in the National Income Accounts. Third, the 
underlying consumption function may be nonlinear, but a linear consump-
tion function might be estimated. (To see how this incorrect functional 
form would cause errors, see Figure 1.2.) Fourth, the consumption function 

Y

0

Errors

“True” Relationship

(nonlinear)

Linear Functional Form

X

g2

g1

g3

Figure 1.2 Errors Caused by Using a Linear Functional Form to Model  

a Nonlinear Relationship

One source of stochastic error is the use of an incorrect functional form. For example,  
if a linear functional form is used when the underlying relationship is nonlinear,  
systematic errors (the es) will occur. These nonlinearities are just one component of the 
stochastic error term. The others are omitted variables, measurement error, and purely 
random variation.
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attempts to portray the behavior of people, and there is always an element of 
unpredictability in human behavior. At any given time, some random event 
might increase or decrease aggregate consumption in a way that might never 
be repeated and couldn’t be anticipated.

These possibilities explain the existence of a difference between the 
observed values of Y and the values expected from the deterministic com-
ponent of the equation, E1Y �X2. These sources of error will be covered in 
more detail in the following chapters, but for now it is enough to recognize 
that in econometric research there will always be some stochastic or random 
element, and, for this reason, an error term must be added to all regression 
equations.

Extending the Notation

Our regression notation needs to be extended to allow the possibility of 
more than one independent variable and to include reference to the number 
of observations. A typical observation (or unit of analysis) is an individual 
person, year, or country. For example, a series of annual observations starting 
in 1985 would have Y1 = Y for 1985, Y2 for 1986, etc. If we include a specific 
reference to the observations, the single-equation linear regression model 
may be written as:

 Yi = β0 + β1Xi + ei  1i = 1, 2, c, N2 (1.7)

where: Yi = the ith observation of the dependent variable
 Xi = the ith observation of the independent variable
 ei = the ith observation of the stochastic error term
 β0, β1 = the regression coefficients
 N = the number of observations

This equation is actually N equations, one for each of the N observations:

  Y1 = β0 + β1X1 + e1

  Y2 = β0 + β1X2 + e2

  Y3 = β0 + β1X3 + e3

 f

 YN = β0 + β1XN + eN

That is, the regression model is assumed to hold for each observation. The 
coefficients do not change from observation to observation, but the values of 
Y, X, and e do.
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A second notational addition allows for more than one independent vari-
able. Since more than one independent variable is likely to have an effect on 
the dependent variable, our notation should allow these additional explana-
tory Xs to be added. If we define:

X1i = the ith observation of the first independent variable
X2i = the ith observation of the second independent variable
X3i = the ith observation of the third independent variable

then all three variables can be expressed as determinants of Y.

The resulting equation is called a multivariate (more than one indepen-
dent variable) linear regression model:

 Yi = β0 + β1X1i + β2X2i + β3X3i + ei (1.8)

The meaning of the regression coefficient β1 in this equation is the impact 
of a one-unit increase in X1 on the dependent variable Y, holding constant 
X2 and X3. Similarly, β2 gives the impact of a one-unit increase in X2 on 
Y, holding X1 and X3 constant.

These multivariate regression coefficients (which are parallel in nature to 
partial derivatives in calculus) serve to isolate the impact on Y of a change in 
one variable from the impact on Y of changes in the other variables. This is 
possible because multivariate regression takes the movements of X2 and X3 
into account when it estimates the coefficient of X1. The result is quite similar 
to what we would obtain if we were capable of conducting controlled labora-
tory experiments in which only one variable at a time was changed.

In the real world, though, it is very difficult to run controlled economic 
experiments,7 because many economic factors change simultaneously, often 
in opposite directions. Thus the ability of regression analysis to measure the 
impact of one variable on the dependent variable, holding constant the influence 

of the other variables in the equation, is a tremendous advantage. Note that if a 
variable is not included in an equation, then its impact is not held constant in 
the estimation of the regression coefficients. This will be discussed further 
in Chapter 6.

7. Such experiments are difficult but not impossible. See Section 16.1.
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This material is pretty abstract, so let’s look at two examples. As a first 
example, consider an equation with only one independent variable, a model 
of a person’s weight as a function of their height. The theory behind this 
equation is that, other things being equal, the taller a person is the more they 
tend to weigh.

The dependent variable in such an equation would be the weight of the 
person, while the independent variable would be that person’s height:

 Weighti = β0 + β1Heighti + ei (1.9)

What exactly do the “i” subscripts mean in Equation 1.9? Each value of i 
refers to a different person in the sample, so another way to think about the 
subscripts is that:

 Weightwoody = β0 + β1Heightwoody + ewoody

 Weightlesley  = β0 + β1Heightlesley + elesley

  Weightbruce  = β0 + β1Heightbruce + ebruce

 Weightmary  = β0 + β1Heightmary + emary

Take a look at these equations. Each person (observation) in the sample 
has their own individual weight and height; that makes sense. But why does 
each person have their own value for e, the stochastic error term? The answer 
is that random events (like those expressed by e) impact people differently, 
so each person needs to have their own value of e in order to reflect these 
differences. In contrast, note that the subscripts of the regression coefficients 
(the βs) don’t change from person to person but instead apply to the entire 
sample. We’ll learn more about this equation in Section 1.4.

As a second example, let’s look at an equation with more than one inde-
pendent variable. Suppose we want to understand how wages are determined 
in a particular field, perhaps because we think that there might be discrimi-
nation in that field. The wage of a worker would be the dependent variable 
(WAGE), but what would be good independent variables? What variables 
would influence a person’s wage in a given field? Well, there are literally doz-
ens of reasonable possibilities, but three of the most common are the work 
experience (EXP), education (EDU), and gender (GEND) of the worker, so 
let’s use these. To create a regression equation with these variables, we’d rede-
fine the variables in Equation 1.8 to meet our definitions:

Y  = WAGE = the wage of the worker
X1 = EXP = the years of work experience of the worker
X2 = EDU = the years of education beyond high school of the worker
X3 = GEND = the gender of the worker (1 = male and 0 = female)
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The last variable, GEND, is unusual in that it can take on only two values, 
0 and 1; this kind of variable is called a dummy variable, and it’s extremely 
useful when we want to quantify a concept that is inherently qualitative (like 
gender). We’ll discuss dummy variables in more depth in Sections 3.3 and 7.4.

If we substitute these definitions into Equation 1.8, we get:

 WAGEi = β0 + β1EXPi + β2EDUi + β3GENDi + ei (1.10)

Equation 1.10 specifies that a worker’s wage is a function of the experience, 
education, and gender of that worker. In such an equation, what would the 
meaning of β1 be? Some readers will guess that β1 measures the amount by 
which the average wage increases for an additional year of experience, but 
such a guess would miss the fact that there are two other independent vari-
ables in the equation that also explain wages. The correct answer is that β1

gives us the impact on wages of a one-year increase in experience, holding con-

stant education and gender. This is a significant difference, because it allows 
researchers to control for specific complicating factors without running con-
trolled experiments.

Before we conclude this section, it’s worth noting that the general multi-
variate regression model with K independent variables is written as:

 Yi = β0 + β1X1i + β2X2i + g + βKXKi + ei (1.11)

where i goes from 1 to N and indicates the observation number.
If the sample consists of a series of years or months (called a time series), 

then the subscript i is usually replaced with a t to denote time.8

1.3  The Estimated Regression Equation

Once a specific equation has been decided upon, it must be quantified. This 
quantified version of the theoretical regression equation is called the esti-

mated regression equation and is obtained from a sample of data for actual 
Xs and Ys. Although the theoretical equation is purely abstract in nature:

 Yi = β0 + β1Xi + ei (1.12)

8. The order of the subscripts doesn’t matter as long as the appropriate definitions are presented. 
We prefer to list the variable number first 1X1i2 because we think it’s easier for a beginning 
econometrician to understand. However, as the reader moves on to matrix algebra and com-
puter spreadsheets, it will become common to list the observation number first, as in Xi1. 
Often the observational subscript is deleted, and the reader is expected to understand that the 
equation holds for each observation in the sample.
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the estimated regression equation has actual numbers in it:

 YN i = 103.40 + 6.38Xi (1.13)

The observed, real-world values of X and Y are used to calculate the coef-
ficient estimates 103.40 and 6.38. These estimates are used to determine YN  
(read as “Y-hat”), the estimated or fitted value of Y.

Let’s look at the differences between a theoretical regression equation and 
an estimated regression equation. First, the theoretical regression coefficients 
β0 and β1 in Equation 1.12 have been replaced with estimates of those coef-
ficients like 103.40 and 6.38 in Equation 1.13. We can’t actually observe the 
values of the true9 regression coefficients, so instead we calculate estimates 
of those coefficients from the data. The estimated regression coefficients, 
more generally denoted by βN 0 and βN 1 (read as “beta-hats”), are empirical best 
guesses of the true regression coefficients and are obtained from data from a 
sample of the Ys and Xs. The expression

 YN i = βN 0 + βN 1Xi (1.14)

is the empirical counterpart of the theoretical regression Equation 1.12. The 
calculated estimates in Equation 1.13 are examples of the estimated regression 
coefficients βN 0 and βN 1. For each sample we calculate a different set of esti-
mated regression coefficients.

YN i is the estimated value of Yi, and it represents the value of Y calculated 
from the estimated regression equation for the ith observation. As such, YN i is 
our prediction of E1Yi �Xi2 from the regression equation. The closer these YN s 
are to the Ys in the sample, the better the fit of the equation. (The word fit 
is used here much as it would be used to describe how well clothes fit.)

The difference between the estimated value of the dependent variable 1YN i2  
and the actual value of the dependent variable 1Yi2 is defined as the  
residual 1ei2:

9. Our use of the word “true” throughout the text should be taken with a grain of salt. Many 
philosophers argue that the concept of truth is useful only relative to the scientific research 
program in question. Many economists agree, pointing out that what is true for one genera-
tion may well be false for another. To us, the true coefficient is the one that you’d obtain if you 
could run a regression on the entire relevant population. Thus, readers who so desire can substi-
tute the phrase “population coefficient” for “true coefficient” with no loss in meaning.

 ei = Yi - YN i (1.15)
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Note the distinction between the residual in Equation 1.15 and the error 
term:

 ei = Yi - E1Yi �Xi2 (1.16)

The residual is the difference between the observed Y and the estimated regres-
sion line 1YN 2, while the error term is the difference between the observed 
Y and the true regression equation (the expected value of Y). Note that the 
error term is a theoretical concept that can never be observed, but the residual 
is a real-world value that is calculated for each observation every time a 
regression is run. The residual can be thought of as an estimate of the error 
term, and e could have been denoted as eN. Most regression techniques not 
only calculate the residuals but also attempt to compute values of βN 0 and βN 1 
that keep the residuals as low as possible. The smaller the residuals, the better 
the fit, and the closer the YN s will be to the Ys.

All these concepts are shown in Figure 1.3. The 1X, Y2 pairs are shown 
as points on the diagram, and both the true regression equation (which 
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Figure 1.3 True and Estimated Regression Lines

The true relationship between X and Y (the solid line) typically cannot be observed, but 
the estimated regression line (the dashed line) can. The difference between an observed 
data point (for example, i = 6) and the true line is the value of the stochastic error  
term 1e62. The difference between the observed Y6 and the estimated value from the  
regression line 1YN62 is the value of the residual for this observation, e6.
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cannot be seen in real applications) and an estimated regression equation are 
included. Notice that the estimated equation is close to but not equivalent to 
the true line. This is a typical result.

In Figure 1.3, YN6, the computed value of Y for the sixth observation, lies on 
the estimated (dashed) line, and it differs from Y6, the actual observed value 
of Y for the sixth observation. The difference between the observed and esti-
mated values is the residual, denoted by e6. In addition, although we usually 
would not be able to see an observation of the error term, we have drawn the 
assumed true regression line here (the solid line) to see the sixth observation 
of the error term, e6, which is the difference between the true line and the 
observed value of Y, Y6.

The following table summarizes the notation used in the true and esti-
mated regression equations:

True Regression Equation Estimated Regression Equation

β0 βN 0

β1 βN 1
ei ei

The estimated regression model can be extended to more than one inde-
pendent variable by adding the additional Xs to the right side of the equation. 
The multivariate estimated regression counterpart of Equation 1.14 is:

 YN i = βN 0 + βN 1X1i + βN 2X2i + g+  βN KXKi (1.17)

Diagrams of such multivariate equations, by the way, are not possible for 
more than two independent variables and are quite awkward for exactly two 
independent variables.

1.4  A Simple Example of Regression Analysis

Let’s look at a fairly simple example of regression analysis. Suppose you’ve 
accepted a summer job as a weight guesser at the local amusement park, 
Magic Hill. Customers pay two dollars each, which you get to keep if you 
guess their weight within 10 pounds. If you miss by more than 10 pounds, 
then you have to return the two dollars and give the customer a small prize 
that you buy from Magic Hill for three dollars each. Luckily, the friendly 
managers of Magic Hill have arranged a number of marks on the wall 
behind the customer so that you are capable of measuring the customer’s 
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height accurately. Unfortunately, there is a five-foot wall between you and 
the customer, so you can tell little about the person except for height and 
(usually) gender.

On your first day on the job, you do so poorly that you work all day and 
somehow manage to lose two dollars, so on the second day you decide to 
collect data to run a regression to estimate the relationship between weight 
and height. Since most of the participants are male, you decide to limit your 
sample to males. You hypothesize the following theoretical relationship:

 +

 Yi = β0 + β1Xi + ei (1.18)

where: Yi  = the weight (in pounds) of the ith customer
 Xi = the height (in inches above 5 feet) of the ith customer
 ei  = the value of the stochastic error term for the ith customer

In this case, the sign of the theoretical relationship between height and 
weight is believed to be positive (signified by the positive sign above β1 in 
the general theoretical equation), but you must quantify that relationship in 
order to estimate weights when given heights. To do this, you need to collect 
a data set, and you need to apply regression analysis to the data.

The next day you collect the data summarized in Table 1.1 and run your 
regression on the Magic Hill computer, obtaining the following estimates:

 βN 0 = 103.40  βN 1 = 6.38

This means that the equation

Estimated weight = 103.40 + 6.38 # Height (inches above five feet) (1.19)

is worth trying as an alternative to just guessing the weights of your customers. 
Such an equation estimates weight with a constant base of 103.40 pounds 
and adds 6.38 pounds for every inch of height over 5 feet. Note that the sign 
of βN 1 is positive, as you expected.

How well does the equation work? To answer this question, you need to 
calculate the residuals (Yi minus YN i) from Equation 1.19 to see how many 
were greater than ten. As can be seen in the last column in Table 1.1, if you 
had applied the equation to these 20 people, you wouldn’t exactly have got-
ten rich, but at least you would have earned $25.00 instead of losing $2.00. 
Figure 1.4 shows not only Equation 1.19 but also the weight and height data 
for all 20 customers used as the sample. With a different group of people, the 
results would of course be different.

Equation 1.19 would probably help a beginning weight guesser, but it 
could be improved by adding other variables or by collecting a larger sample. 
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Such an equation is realistic, though, because it’s likely that every successful 
weight guesser uses an equation like this without consciously thinking about 
that concept.

Our goal with this equation was to quantify the theoretical weight/height 
equation, Equation 1.18, by collecting data (Table 1.1) and calculating an 
estimated regression, Equation 1.19. Although the true equation, like obser-
vations of the stochastic error term, can never be known, we were able to 
come up with an estimated equation that had the sign we expected for βN 1 
and that helped us in our job. Before you decide to quit school or your job 
and try to make your living guessing weights at Magic Hill, there is quite a bit 
more to learn about regression analysis, so we’d better move on.

Table 1.1 Data for and Results of the Weight-Guessing Equation

Observation 
i  

(1)

Height  
Above 5′ Xi

(2)

Weight  
Yi  
(3)

Predicted  
Weight YNi  

(4)

Residual  
ei 
(5)

$ Gain or 
Loss  

(6)

 1  5.0 140.0 135.3 4.7 +2.00

 2  9.0 157.0 160.8 -3.8 +2.00

 3 13.0 205.0 186.3 18.7 -3.00

 4 12.0 198.0 179.9 18.1 -3.00

 5 10.0 162.0 167.2 -5.2 +2.00

 6 11.0 174.0 173.6 0.4 +2.00

 7  8.0 150.0 154.4 -4.4 +2.00

 8  9.0 165.0 160.8 4.2 +2.00

 9 10.0 170.0 167.2 2.8 +2.00

10 12.0 180.0 179.9 0.1 +2.00

11 11.0 170.0 173.6 -3.6 +2.00

12  9.0 162.0 160.8 1.2 +2.00

13 10.0 165.0 167.2 -2.2 +2.00

14 12.0 180.0 179.9 0.1 +2.00

15  8.0 160.0 154.4 5.6 +2.00

16  9.0 155.0 160.8 -5.8 +2.00

17 10.0 165.0 167.2 -2.2 +2.00

18 15.0 190.0 199.1 -9.1 +2.00

19 13.0 185.0 186.3 -1.3 +2.00

20 11.0 155.0 173.6 -18.6 -3.00

TOTAL = $25.00

Note: This data set, and every other data set in the text, is available on the text’s website in  
four formats. Datafile = HTWT1
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1.5  Using Regression to Explain Housing Prices

As much fun as guessing weights at an amusement park might be, it’s hardly 
a typical example of the use of regression analysis. For every regression run on 
such an off-the-wall topic, there are literally hundreds run to describe the reac-
tion of GDP to an increase in the money supply, to test an economic theory 
with new data, or to forecast the effect of a price change on a firm’s sales.

As a more realistic example, let’s look at a model of housing prices. The 
purchase of a house is probably the most important financial decision in an 
individual’s life, and one of the key elements in that decision is an appraisal of 
the house’s value. If you overvalue the house, you can lose thousands of dollars 
by paying too much; if you undervalue the house, someone might outbid you.

All this wouldn’t be much of a problem if houses were homogeneous 
products, like corn or gold, that have generally known market prices with 
which to compare a particular asking price. Such is hardly the case in the 
real estate market. Consequently, an important element of every housing 
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Figure 1.4 A Weight-Guessing Equation

If we plot the data from the weight-guessing example and include the estimated regres-
sion line, we can see that the estimated Yns come fairly close to the observed Ys for all 
but three observations. Find a male friend’s height and weight on the graph. How well 
does the regression equation work?
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purchase is an appraisal of the market value of the house, and many real 
estate appraisers use regression analysis to help them in their work.

Suppose your family is about to buy a house, but you’re convinced that 
the owner is asking too much money. The owner says that the asking price 
of $230,000 is fair because a larger house next door sold for $230,000 about 
a year ago. You’re not sure it’s reasonable to compare the prices of different-
sized houses that were purchased at different times. What can you do to help 
decide whether to pay the $230,000?

Since you’re taking an econometrics class, you decide to collect data on all 
local houses that were sold within the last few weeks and to build a regres-
sion model of the sales prices of the houses as a function of their sizes.10 Such 
a data set is called cross-sectional because all of the observations are from 
the same point in time and represent different individual economic entities 
(like countries or, in this case, houses) from that same point in time.

To measure the impact of size on price, you include the size of the house 
as an independent variable in a regression equation that has the price of that 
house as the dependent variable. You expect a positive sign for the coefficient 
of size, since big houses cost more to build and tend to be more desirable 
than small ones. Thus the theoretical model is:

 +

 PRICEi = β0 + β1SIZEi + ei (1.20)

where: PRICEi = the price (in thousands of $) of the ith house
 SIZEi   = the size (in square feet) of that house
 ei         = the value of the stochastic error term for that house

You collect the records of all recent real estate transactions, find that 43 
local houses were sold within the last 4 weeks, and estimate the following 
regression of those 43 observations:

 PRICEi = 40.0 + 0.138SIZEi (1.21)

What do these estimated coefficients mean? The most important coefficient 
is βN 1 = 0.138, since the reason for the regression is to find out the impact of 
size on price. This coefficient means that if size increases by 1 square foot, 

h

10. It’s unusual for an economist to build a model of price without including some measure of 
quantity on the right-hand side. Such models of the price of a good as a function of the attributes 
of that good are called hedonic models and will be discussed in greater depth in Section 11.8. 
The interested reader is encouraged to skim the first few paragraphs of that section before con-
tinuing on with this example.
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price will increase by 0.138 thousand dollars ($138). βN 1 thus measures the 
change in PRICEi associated with a one-unit increase in SIZEi. It’s the slope of 
the regression line in a graph like Figure 1.5.

What does βN 0 = 40.0 mean? βN 0 is the estimate of the constant or intercept 
term. In our equation, it means that price equals 40.0 when size equals zero. 
As can be seen in Figure 1.5, the estimated regression line intersects the price 
axis at 40.0. While it might be tempting to say that the average price of a 
vacant lot is $40,000, such a conclusion would be unjustified for a number 
of reasons, which will be discussed in Section 7.1. It’s much safer either to 
interpret βN 0 = 40.0 as nothing more than the value of the estimated regres-
sion when Si = 0, or to not interpret βN 0 at all.

What does βN 1 = 0.138 mean? βN 1 is the estimate of the coefficient of SIZE 
in Equation 1.20, and as such it’s also an estimate of the slope of the line in 
Figure 1.5. It implies that an increase in the size of a house by one square 
foot will cause the estimated price of the house to go up by 0.138 thousand 
dollars or $138. It’s a good habit to analyze estimated slope coefficients to 
see whether they make sense. The positive sign of βN 1 certainly is what we 
expected, but what about the magnitude of the coefficient? Whenever you 
interpret a coefficient, be sure to take the units of measurement into consid-
eration. In this case, is $138 per square foot a plausible number? Well, it’s 

PRICEi

0
Size of the house (square feet)

Slope = .138
Intercept = 40.0

PRICE

(thousands of $)

PRICEi = 40.0 + 0.138SIZEi

SIZEi

Figure 1.5 A Cross-Sectional Model of Housing Prices

A regression equation that has the price of a house as a function of the size of that 
house has an intercept of 40.0 and a slope of 0.138, using Equation 1.21.
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hard to know for sure, but it certainly is a lot more reasonable than $1.38 per 
square foot or $13,800 per square foot!

How can you use this estimated regression to help decide whether to pay 
$230,000 for the house? If you calculate a YN  (predicted price) for a house that 
is the same size (1,600 square feet) as the one you’re thinking of buying, you 
can then compare this YN  with the asking price of $230,000. To do this, substi-
tute 1600 for SIZEi in Equation 1.21, obtaining:

 PRICEi = 40.0 + 0.138116002 = 40.0 + 220.8 = 260.8

The house seems to be a good deal. The owner is asking “only” $230,000 
for a house when the size implies a price of $260,800! Perhaps your original 
feeling that the price was too high was a reaction to steep housing prices in 
general and not a reflection of this specific price.

On the other hand, perhaps the price of a house is influenced by more 
than just the size of the house. Such multivariate models are the heart of 
econometrics, and we’ll add more independent variables to Equation 1.21 
when we return to this housing price example in Section 11.8.

1.6  Summary

 1. Econometrics—literally, “economic measurement”—is a branch of 
economics that attempts to quantify theoretical relationships. Regres-
sion analysis is only one of the techniques used in econometrics, but 
it is by far the most frequently used.

 2. The major uses of econometrics are description, hypothesis testing, 
and forecasting. The specific econometric techniques employed may 
vary depending on the use of the research.

 3. While regression analysis specifies that a dependent variable is a func-
tion of one or more independent variables, regression analysis alone 
cannot prove or even imply causality.

 4. A stochastic error term must be added to all regression equations 
to account for variations in the dependent variable that are not  
explained completely by the independent variables. The components 
of this error term include:
a. omitted or left-out variables
b. measurement errors in the data
c. an underlying theoretical equation that has a different functional 

form (shape) than the regression equation
d. purely random and unpredictable events

h
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EXERCISES

 5. An estimated regression equation is an approximation of the true 
equation that is obtained by using data from a sample of actual Ys 
and Xs. Since we can never know the true equation, econometric anal-
ysis focuses on this estimated regression equation and the estimates 
of the regression coefficients. The difference between a particular ob-
servation of the dependent variable and the value estimated from the 
regression equation is called the residual.

(The answers to the even-numbered exercises are in Appendix A.)

 1. Write the meaning of each of the following terms without referring to 
the book (or your notes), and compare your definition with the ver-
sion in the text for each:
a. constant or intercept (p. 7)
b. cross-sectional (p. 21)
c. dependent variable (p. 5)
d. estimated regression equation (p. 14)
e. expected value (p. 9)
f. independent (or explanatory) variable (p. 5)
g. linear (p. 8)
h. multivariate regression model (p. 12)
i. regression analysis (p. 5)
j. residual (p. 15)
k. slope coefficient (p. 7)
l. stochastic error term (p. 8)

 2. Use your own computer’s regression software and the weight (Y) 
and height (X) data from Table 1.1 to see if you can reproduce the 
estimates in Equation 1.19. There are two ways to load the data: You 
can type in the data yourself or you can download datafile HTWT1 
(in Stata, EViews, Excel, or ASCII formats) from the text’s website:  
http://www.pearsonhighered.com/studenmund. Once the datafile is 
loaded, run Y = f1X2, and your results should match Equation 1.19. 
Different programs require different commands to run a regression. 
For help in how to do this with Stata or EViews, either see the answer 
to this question in Appendix A or read Appendix 1.7.

http://www.pearsonhighered.com/studenmund
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 3. Not all regression coefficients have positive expected signs. For 
example, a Sports Illustrated article by Jaime Diaz reported on a study 
of golfing putts of various lengths on the Professional Golfers’ 
Association (PGA) Tour.11 The article included data on the percentage 
of putts made 1Pi2 as a function of the length of the putt in feet 1L i2. 
Since the longer the putt, the less likely even a professional is to make 
it, we’d expect L i to have a negative coefficient in an equation explain-
ing Pi. Sure enough, if you estimate an equation on the data in the 
article, you obtain:

 PN i = 83.6 - 4.1L i (1.22)

a. Carefully write out the exact meaning of the coefficient of L i.
b. Suppose someone else took the data from the article and estimated:

 Pi = 83.6 - 4.1L i + ei

 Is this the same result as that of Equation 1.22? If so, what definition 
do you need to use to convert this equation back to Equation 1.22?

c. Use Equation 1.22 to determine the percent of the time you’d expect 
a PGA golfer to make a 10-foot putt. Does this seem realistic? How 
about a 1-foot putt or a 25-foot putt? Do these seem as realistic?

d. Your answer to part c should suggest that there’s a problem in  
applying a linear regression to these data. What is that problem?

 4. Return to the housing price model of Section 1.5 and consider the 
following equation:

 SIZEi = -290 + 3.62 PRICEi (1.23)

  where: SIZEi   = the size (in square feet) of the ith house
   PRICEi = the price (in thousands of $) of that house

a. Carefully explain the meaning of each of the estimated regression 
coefficients.

b. Suppose you’re told that this equation explains a significant por-
tion (more than 80 percent) of the variation in the size of a house. 
Have we shown that high housing prices cause houses to be large? 
If not, what have we shown?

c. What do you think would happen to the estimated coefficients of 
this equation if we had measured the price variable in dollars in-
stead of in thousands of dollars? Be specific.

h

11. Jaime Diaz, “Perils of Putting,” Sports Illustrated, April 3, 1989, pp. 76–79.
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 5. If an equation has more than one independent variable, we have to 
be careful when we interpret the regression coefficients of that equa-
tion. Think, for example, about how you might build an equation to 
explain the amount of money that different states spend per pupil on 
public education. The more income a state has, the more they prob-
ably spend on public schools, but the faster enrollment is growing, 
the less there would be to spend on each pupil. Thus, a reasonable 
equation for per pupil spending would include at least two variables: 
income and enrollment growth:

 Si = β0 + β1Yi + β2Gi + ei (1.24)

  where:  Si  =  educational dollars spent per public school student 
in the ith state

   Yi  = per capita income in the ith state (in dollars)
   Gi =  the percent growth of public school enrollment in 

the ith state

a. State the economic meaning of the coefficients of Y and G. (Hint: 
Remember to hold the impact of the other variable constant.)

b. If we were to estimate Equation 1.24, what signs would you expect 
the coefficients of Y and G to have? Why?

c. Silva and Sonstelie estimated a cross-sectional model of per student 
spending by state that is very similar to Equation 1.24:12

 SN i = -183 + 0.1422Yi - 5926Gi (1.25)
 N = 49

 Do these estimated coefficients correspond to your expectations? 
Explain Equation 1.25 in common sense terms.

d. The authors measured G as a decimal, so if a state had a 10 percent 
growth in enrollment, then G equaled .10. What would Equation 
1.25 have looked like if the authors had measured G in percentage 
points, so that if a state had 10 percent growth, then G would have 
equaled 10? (Hint: Write out the actual numbers for the estimated 
coefficients.)

 6. Your friend has an on-campus job making telephone calls to alumni 
asking for donations to your college’s annual fund, and she wonders 

12. Fabio Silva and Jon Sonstelie, “Did Serrano Cause a Decline in School Spending?” National 

Tax Review, Vol. 48, No. 2, pp. 199–215. The authors also included the tax price for spending per 
pupil in the ith state as a variable.
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whether her calling is making any difference. In an attempt to mea-
sure the impact of student calls on fund raising, she collects data from 
50 alums and estimates the following equation:

 GIFTi = 2.29 + 0.001INCOMEi + 4.62CALLSi (1.26)

  where:  GIFTi =  the 2016 annual fund donation (in dollars) 
from the ith alum

   INCOMEi =  the 2016 estimated income (in dollars) of the 
ith alum

   CALLSi =  the # of calls to the ith alum asking for a 
donation in 2016

a. Carefully explain the meaning of each estimated coefficient. Are 
the estimated signs what you expected?

b. Why is the left-hand variable in your friend’s equation GIFTi and 
not GIFTi?

c. Your friend didn’t include the stochastic error term in the estimated 
equation. Was this a mistake? Why or why not?

d. Suppose that your friend decides to change the units of INCOME 
from “dollars” to “thousands of dollars.” What will happen to the 
estimated coefficients of the equation? Be specific.

e. If you could add one more variable to this equation, what would it 
be? Explain.

 7. Let’s return to the wage determination example of Section 1.2. In that 
example, we built a model of the wage of the ith worker in a particu-
lar field as a function of the work experience, education, and gender 
of that worker:

 WAGEi = β0 + β1EXPi + β2EDUi + β3GENDi + ei (1.10)

  where: Yi   = WAGEi = the wage of the ith worker
    X1i = EXPi = the years of work experience of the ith worker
    X2i = EDUi = the years of education beyond high school 
     of the ith worker
    X3i = GENDi =  the gender of the ith worker (1 = male and
     0 = female)

a. What is the real-world meaning of β2? (Hint: If you’re unsure where 
to start, review Section 1.2.)

b. What is the real-world meaning of β3? (Hint: Remember that GEND 
is a dummy variable.)

h

h
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c. Suppose that you wanted to add a variable to this equation to mea-
sure whether there might be discrimination against people of color. 
How would you define such a variable? Be specific.

d. Suppose that you had the opportunity to add another variable to 
the equation. Which of the following possibilities would seem 
best? Explain your answer.

 i. the age of the ith worker
 ii. the number of jobs in this field
 iii. the average wage in this field
 iv.  the number of “employee of the month” awards won by the ith 

worker
 v. the number of children of the ith worker

 8. Have you heard of “RateMyProfessors.com”? On this website, students 
evaluate a professor’s overall teaching ability and a variety of other 
attributes. The website then summarizes these student-submitted 
ratings for the benefit of any student considering taking a class from 
the professor.

   Two of the most interesting attributes that the website tracks are how 
“easy” the professor is (in terms of workload and grading), and how 
“hot” the professor is (presumably in terms of physical attractiveness). 
An article by Otto and colleagues13 indicates that being “hot” improves 
a professor’s rating more than being “easy.” To investigate these ideas 
ourselves, we created the following equation for RateMyProfessors.com:

 RATINGi = β0 + β1EASEi + β2HOTi + ei (1.27)

  where: RATINGi = the overall rating (5 = best) of the ith professor
    EASEi  =  the easiness rating (5 = easiest) of the ith 

professor
    HOTi   =  1 if the ith professor is considered “hot,” 0 

otherwise

  To estimate Equation 1.27, we need data, and Table 1.2 contains 
data for these variables from 25 randomly chosen professors on 
RateMyProfessors.com. If we estimate Equation 1.27 with the data in 
Table 1.2, we obtain:

 RATINGi = 3.23 + 0.01EASEi + 0.59HOTi (1.28)

®

13. James Otto, Douglas Sanford, and Douglas Ross, “Does RateMyProfessors.com Really Rate 
My Professor?” Assessment and Evaluation in Higher Education, August 2008, pp. 355–368.

http://www.RateMyProfessors.com
http://www.RateMyProfessors.com
http://www.RateMyProfessors.com
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a. Take a look at Equation 1.28. Do the estimated coefficients support 
our expectations? Explain.

b. See if you can reproduce the results in Equation 1.28 on your 
own. To do this, take the data in Table 1.2 and use Stata or your 
own regression program to estimate the coefficients from these 
data. If you do everything correctly, you should be able to verify 
the estimates in Equation 1.28. (If you’re not sure how to get 
started on this question, either take a look at the answer to Exer-
cise 2 in Appendix A or read Appendix 1.7.)

Table 1.2 RateMyProfessors.com Ratings

Observation RATING EASE HOT

 1 2.8 3.7 0

 2 4.3 4.1 1

 3 4.0 2.8 1

 4 3.0 3.0 0

 5 4.3 2.4 0

 6 2.7 2.7 0

 7 3.0 3.3 0

 8 3.7 2.7 0

 9 3.9 3.0 1

10 2.7 3.2 0

11 4.2 1.9 1

12 1.9 4.8 0

13 3.5 2.4 1

14 2.1 2.5 0

15 2.0 2.7 1

16 3.8 1.6 0

17 4.1 2.4 0

18 5.0 3.1 1

19 1.2 1.6 0

20 3.7 3.1 0

21 3.6 3.0 0

22 3.3 2.1 0

23 3.2 2.5 0

24 4.8 3.3 0

25 4.6 3.0 0

Datafile = RATE1

http://www.RateMyProfessors.com
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c. This model includes two independent variables. Does it make 
sense to think that the teaching rating of a professor depends on 
just these two variables? What other variable(s) do you think might 
be important?

d. Suppose that you were able to add your suggested variable(s) to 
Equation 1.28. What do you think would happen to the coeffi-
cients of EASE and HOT when you added the variable(s)? Would 
you expect them to change? Would you expect them to remain the 
same? Explain.

e. (optional) Go to the RateMyProfessors.com website, choose 25 obser-
vations at random, and estimate your own version of Equation 1.27. 
Now compare your regression results to those in Equation 1.28.  
Do your estimated coefficients have the same signs as those in 
Equation 1.28? Are your estimated coefficients exactly the same as 
those in Equation 1.28? Why or why not?

1.7  Appendix: Using Stata

Using Econometrics is about, well, using econometrics, and it doesn’t take long 
to realize that using econometrics requires software. The powerful and user-
friendly econometric software package referred to in the text is Stata14, and 
the purpose of this appendix15 is to give you a brief introduction to Stata.

For most people (including me!), learning new computer software 
involves some pain. Our goal in this Appendix is to take away as much of 
that pain as possible. We hope to give you a head start with Stata and also 
convince you that it’s worth your time to check out the complete “Using 
Stata” document found online at the Using Econometrics student companion 
website (http://www.pearsonhighered.com/studenmund). That free docu-
ment (yes, free!) is designed to get you up and running in Stata with as little 
pain as possible. It shows in plain English and clear pictures how to use all 
the econometric techniques you’ll encounter in the text (and more!)

How do you get Stata? There are a number of ways. Your college or uni-
versity may provide Stata access in official computer labs. If it doesn’t (or if 
you want a personal copy), you can buy and download Stata directly (http://
www.stata.com). Fortunately, reasonable student pricing is available.

14. Other econometric software programs that you might encounter include EViews, SAS, R, 
and SPSS. 

15. Written by John Perry, Centre College. Used with permission.

http://www.pearsonhighered.com/studenmund
http://www.stata.com
http://www.stata.com
http://www.RateMyProfessors.com
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With access to Stata, go ahead and “open” it as you would any program on 
your computer (like Word, Excel, etc.). When you open Stata on a PC, you 
should see something like this:

Stata also runs on a Mac, and while it looks slightly different, the com-
mands and functionality are almost the same as on a PC.

Let’s talk about what you see. There are five “windows” within Stata. The 
biggest one, squarely in the middle of the screen, is the “Results” window. 
Nicely, it shows you the results of what you tell Stata to do.

At the top left is the “Review” window. This window shows a history of all 
the commands you have given Stata. The top right is where the variables in 
your dataset will show up and the bottom right is where you’ll see properties 
of the variables.

The bottom, center window is the “Command” window. As the name sug-
gests, this is where you tell Stata what to do, where you actually “program.” 
(Don’t panic! You can work in Stata by typing commands one at a time or 
you can roll all your comments up into a single program—called in Stata 
language a “do-file.” The full “Using Stata” document covers do-files.)



32 CHAPTER 1 AN OVERVIEW OF REGRESSION ANALYSIS 

With Stata open, we should move along and open a dataset. In Section 1.4, 
you met a dataset from Magic Hill amusement park named HTWT1.dta (“.dta” 
is the format of a Stata dataset much like “docx” is the format for a Microsoft 
Word document). It contained the height and weight of 20 people where:

Yi  = weight (in pounds) of the ith customer
Xi = height (in inches above 5 feet) of the ith customer

You can (and should at this point) download and save the dataset to your 
computer from the student companion website. After doing that, to open the 
dataset, go to the top left in Stata and click on the folder icon. Next, you’ll be 
guided to find where you saved HTWT1.dta. Highlight it and click “open.” This 
is similar to how you’d open a file in any other software (like Word, Excel, etc.). 
You should see something like this (this time we used Stata on a Mac):

1

2

3

Notice that what you commanded Stata to do—to open HTWT1.dta—is 
recorded in the Results window (indicated by arrow 1). In Stata, “use” means 
open. The “use” statement is followed by the pathname (in quotes) where 
the file is saved on your computer (in my case “/Volumes/ECONOMICS/
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Econometrics/HTWT1.dta”). This command is also recorded in the Review 
window and indicated by arrow 2.

At the top right, signaled by arrow 3, you see that you have two variables 
in your Variables window (X and Y). This means you now have data in Stata.

Things are about to get exciting! With our data open in Stata we’re now 
in a position to replicate Equation 1.19. To do so, type “reg Y X” into the 
Command window in Stata and hit enter.

The “reg” command, which is short for “regress,” tells Stata to perform a 
regression. Directly after “reg,” insert the dependent variable (Y in our case). 
The dependent variable is followed by the model’s independent variables. 
Equation 1.19 has one independent variable named X. Note that Stata is case 
sensitive. If you type “y” when the variable’s name is “Y,” Stata will yell.

After giving the “reg Y X” command, you should see something like this:

4

5

6

What you see in the Results window above could easily overwhelm a 
person. For now, focus on where the three arrows direct. Arrow 4 points to 
the command that had Stata produce the estimation. Arrow 5 points to the 
column that lists the variables in the regression: Y, X, and something called 
“_cons”. That “something” is the model’s intercept term, otherwise known  
as β0.



34 CHAPTER 1 AN OVERVIEW OF REGRESSION ANALYSIS 

Arrow 6 points to the “Coef.” column, which reports the estimated coef-
ficients. The first number in the Coef. column is 6.377093. That is βN 1, the 
coefficient estimate for X, and matches the 6.38 (rounded) of Equation 1.19. 
Moving down the Coef. column and next to the _cons is 103.3971. That is βN 0, 
the estimate of the intercept, which rounds to 103.40.

And with that, you’ve estimated your first regression in Stata! Keep in 
mind, however, that this short appendix is meant only to help get you started 
in Stata. The full “Using Stata” document will show you much more—while 
trying to minimize the pain.
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2.1 Estimating Single-Independent-Variable Models with OLS

2.2 Estimating Multivariate Regression Models with OLS

2.3 Evaluating the Quality of a Regression Equation

2.4 Describing the Overall Fit of the Estimated Model

2.5 An Example of the Misuse of R  

2

2.6 Summary and Exercises

2.7 Appendix: Econometric Lab #1

Ordinary Least Squares

The bread and butter of regression analysis is the estimation of the coef-
ficients of econometric models using a technique called Ordinary Least 
Squares (OLS). The first two sections of this chapter summarize the reason-
ing behind and the mechanics of OLS. Regression users rely on computers 
to do the actual OLS calculations, so the emphasis here is on understanding 
what OLS attempts to do and how it goes about doing it.

How can you tell a good equation from a bad one once it has been esti-
mated? There are a number of useful criteria, including the extent to which 
the estimated equation fits the actual data. A focus on fit is not without per-
ils, however, so we share an example of the misuse of this criterion.

The chapter concludes with a new kind of learning tool that we call an 
econometric lab.

2.1   Estimating Single-Independent-Variable  
Models with OLS

The purpose of regression analysis is to take a purely theoretical equation like:

 Yi = β0 + β1Xi + ei (2.1)

Chapter 2


