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iii

Spreadsheets are one of the most popular and ubiquitous software packages on the 
planet. Every day, millions of business people use spreadsheet programs to build models 
of the decision problems they face as a regular part of their work activities. As a result, 
employers look for experience and ability with spreadsheets in the people they recruit.

Spreadsheets have also become the standard vehicle for introducing undergraduate 
and graduate students in business and engineering to the concepts and tools covered in 
the introductory quantitative analysis course. This simultaneously develops students’ 
skills with a standard tool of today’s business world and opens their eyes to how a 
variety of quantitative analysis techniques can be used in this modeling environment. 
Spreadsheets also capture students’ interest and add a new relevance to quantitative 
analysis, as they see how it can be applied with popular commercial software being 
used in the business world.  

Spreadsheet Modeling & Decision Analysis: A Practical Introduction to Business Analytics 
provides an introduction to the most commonly used quantitative analysis techniques 
and shows how these tools can be implemented using Microsoft® Excel. Prior experience 
with Excel is certainly helpful, but is not a requirement for using this text. In general, a 
student familiar with computers and the spreadsheet concepts presented in most intro-
ductory computer courses should have no trouble using this text. Step-by-step instruc-
tions and screen shots are provided for each example, and software tips are included 
throughout the text as needed.

What’s New in the Seventh Edition?
The most signi�cant changes in the seventh edition of Spreadsheet Modeling & Decision 
Analysis are its new focus on business analytics, a new chapter on data mining, and ex-
tensive coverage and use of Analytic Solver Platform for Education by Frontline Sys-
tems, Inc. Analytic Solver Platform for Education is an add-in for Excel that provides 
access to analytical tools for performing optimization, simulation, sensitivity analysis, 
and decision tree analysis, as well as a variety of tools for data mining. Analytic Solver 
Platform for Education makes it easy to run multiple parameterized optimizations and 
simulations and apply optimization techniques to simulation models in one integrated, 
coherent interface. Analytic Solver Platform also offers amazing interactive simulation 
features in which simulation results are automatically updated in real-time whenever 
a manual change is made to a spreadsheet.  Additionally, when run in its optional 
“Guided Mode,” Analytic Solver Platform provides students with over 100 customized 
dialogs that provide diagnoses of various model conditions and explain the steps in-
volved in solving problems. Analytic Solver Platform also includes Frontline’s XLMiner 
product that offers easy access to a variety of data mining techniques including discri-
minant analysis, logistic regression, neural networks, classi�cation and regression trees, 
k-nearest neighbor classi�cation, cluster analysis, and af�nity analysis. Analytic Solver 
Platform offers numerous other features and, I believe, will transform the way we ap-
proach education in quantitative analysis now and in the future. 
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The most signi�cant changes in the seventh edition of Spreadsheet Modeling & Decision 
Analysis from the sixth edition include:

● Microsoft® Of�ce 2013 is featured throughout.
● Data �les and software that accompany the book are now available for download 

online at www.cengagebrain.com.
● Chapter 1 is re-written from a business analytics perspective and focuses on the use 

of quantitative analysis to leverage business opportunities. The new business ana-
lytics perspective is carried on throughout the text.

● Chapter 4 features new enhancements to Analytic Solver Platform that simplify the 
creation of spider plots and solver tables.

● Chapter 7 contains new discussion of the triple bottom line perspective as it relates 
to multi-criteria optimization. 

● Chapter 10 (formerly covering discriminant analysis) now provides a full introduc-
tion to the topic of data mining including descriptions and examples of the major 
data mining techniques and the use of XLMiner. 

● Several new and revised end-of-chapter problems are incorporated throughout.

Innovative Features
Aside from its strong spreadsheet orientation, the seventh edition of Spreadsheet Mod-
eling & Decision Analysis contains several other unique features that distinguish it from 
traditional quantitative analysis texts.

● Algebraic formulations and spreadsheets are used side-by-side to help develop con-
ceptual thinking skills.

● Step-by-step instructions and numerous annotated screen shots make examples 
easy to follow and understand.

● Emphasis is placed on model formulation and interpretation rather than on algo-
rithms.

● Realistic examples motivate the discussion of each topic.
● Solutions to example problems are analyzed from a managerial perspective.
● Spreadsheet �les for all the examples are provided online.
● A unique and accessible chapter covering data mining is provided.
● Sections entitled “The World of Business Analytics” show how each topic has been 

applied in a real company.

Organization
The table of contents for Spreadsheet Modeling & Decision Analysis is laid out in a fairly tra-
ditional format, but topics may be covered in a variety of ways. The text begins with an 
overview of business analytics in Chapter 1. Chapters 2 through 8 cover various topics in 
deterministic modeling techniques: linear programming, sensitivity analysis, networks, 
integer programming, goal programming and multiple objective optimization, and non-
linear and evolutionary programming. Chapters 9 through 11 cover predictive modeling 
and forecasting techniques: regression analysis, data mining, and time series analysis.

Chapters 12 and 13 cover stochastic modeling techniques: simulation and queuing 
theory. Chapter 14 covers decision analysis and Chapter 15 (available online) provides 
an introduction to project management.
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After completing Chapter 1, a quick refresher on spreadsheet fundamentals (enter-
ing and copying formulas, basic formatting and editing, etc.) is always a good idea. 
Suggestions for the Excel review may be found at Cengage’s Decision Sciences website. 
Following this, an instructor could cover the material on optimization, forecasting, or 
simulation, depending on personal preferences. The chapters on queuing and project 
management make general references to simulation and, therefore, should follow the 
discussion of that topic.

Ancillary Materials
Several excellent ancillaries for the instructor accompany the revised edition of Spread-
sheet Modeling & Decision Analysis. All instructor ancillaries are provided online at  
www.cengagebrain.com. Included in this convenient format are: 

● Instructor’s Manual. The Instructor’s Manual, prepared by the author, contains so-
lutions to all the text problems and cases.

● Test Bank. The Test Bank, prepared by Tom Bramorski of the University of 
Wisconsin-Whitewater, includes multiple choice, true/false, and short answer prob-
lems for each text chapter. It also includes mini-projects that may be assigned as 
take-home assignments. The Test Bank is included as Microsoft® Word �les. The 
Test Bank also comes separately in a computerized ExamView™ format that allows 
instructors to use or modify the questions and create original questions.

● PowerPoint Presentation Slides. PowerPoint presentation slides, prepared by the 
author, provide ready-made lecture material for each chapter in the book.
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1

1.0 Introduction
This book is titled Spreadsheet Modeling and Decision Analysis: A Practical Introduction to 
Business Analytics, so let’s begin by discussing exactly what this title means. By the very 
nature of life, all of us must continually make decisions that we hope will solve prob-
lems and lead to increased opportunities for ourselves or the organizations for which 
we work. But making good decisions is rarely an easy task. The problems faced by de-
cision makers in today’s competitive, data-intensive, fast-paced business environment 
are often extremely complex and can be addressed by numerous possible courses of 
action. Evaluating these alternatives and choosing the best course of action represents 
the essence of decision analysis.

Since the inception of the electronic spreadsheet in the early 1980s, millions of busi-
ness people have discovered that one of the most effective ways to analyze and evaluate 
decision alternatives involves using a spreadsheet package to build computer models 
of the business opportunities and decision problems they face. A computer model is 
a set of mathematical relationships and logical assumptions implemented in a com-
puter as a representation of some real-world object, decision problem, or phenomenon. 
Today, electronic spreadsheets provide the most convenient and useful way for busi-
ness people to implement and analyze computer models. In fact, most business people 
would probably rate the electronic spreadsheet as their most important analytical tool 
apart from their brain! Using a spreadsheet model (a computer model implemented 
via a spreadsheet), a businessperson can analyze decision alternatives before having to 
choose a speci�c plan for implementation.

This book introduces you to a variety of techniques from the �eld of  business analyt-
ics that can be applied in spreadsheet models to assist in the  decision-analysis process. 
For our purposes, we will de�ne business analytics as a �eld of study that uses data, 
computers, statistics, and mathematics to solve  business problems. It involves using 
the methods and tools of science to drive business decision making. It is the science of 
making better decisions. Business analytics is also sometimes referred to as operations 
research, management science, or decision science. See Figure 1.1 for a summary of how 
business analytics has been applied successfully in a number of real-world situations.

In the not too distant past, business analytics was a highly specialized �eld that gener-
ally could be practiced only by those who had access to mainframe computers and who 
possessed advanced knowledge of mathematics, computer programming languages, 
and specialized software packages. However, the proliferation of powerful PCs and 
the development of easy-to-use electronic spreadsheets have made the tools of business 
analytics far more practical and available to a much larger audience. Virtually everyone 

Chapter 1
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Home Runs in Business Analytics 
Over the past decade, scores of business analytics projects saved companies mil-
lions of dollars. Each year, the Institute for Operations Research and the Manage-
ment Sciences (INFORMS) sponsors the Franz Edelman Awards competition to 
recognize some of the most outstanding business analytics projects during the 
past year. Here are some of the “home runs” from the 2010 and 2011 Edelman 
Awards (described in Interfaces, Vol. 41, No. 1, January-February, 2010, and Vol. 
42, No. 1, January-February 2011).

● New Brunswick Department of Transportation (NBDoT) is charged with 
maintaining a strong transportation system throughout the province of New 
Brunswick, Canada—and on a limited budget. As a public entity accountable 
to its taxpayers, NBDoT must ensure that its strategic plan is defensible to 
the public it serves. To assist in this process, NBDoT built a linear program-
ming model to help determine how better decisions could be developed. This 
model incorporates long-term objectives and operational constraints that con-
sider costs, timings, and asset life cycles to produce optimal activity plans. This 
analysis helped secure a three-year commitment from the Government of New 
Brunswick for increased funding. NBDoT projects $72 million in annual sav-
ings as the return on this $2 million investment. 

● In the early 2000s, Procter & Gamble (P&G) needed more advanced inven-
tory tools to allow it to lower inventories while maintaining customer service. 
It used a multi-echelon inventory planning engine based on the guaranteed 
service model of safety stock optimization, allowing P&G to capture the multi-
echelon nature of its supply chains. Since 2006, multi-echelon inventory op-
timization has been applied to more than 80% of P&G’s global Beauty Care 
supply chains to address tactical and strategic production-inventory planning 
problems. Some applications of the multi-echelon decision tool have yielded 
cost reductions of more than 25%. P&G estimates this technique has reduced 
investments in inventory by $1.5 billion.

● Industrial and Commercial Bank of China (ICBC) is the world’s largest pub-
licly traded bank in terms of pro�tability, market capitalization, and deposit 
volume. ICBC has a network of more than 16,000 branch locations and needed 
to recon�gure them to match its evolving customer distribution. As a result, 
it required an analytic tool to quickly predict where new branches should be 
opened to serve promising, new, high-potential markets. The bank partnered 
with IBM to create a custom branch network optimization system. ICBC has 
implemented this system in more than 40 major cities in China. ICBC attrib-
utes over $1 billion in new deposits to this system in a typical major city. 

● Although most consumers of electricity don’t give its availability much thought, 
a lot of work goes into ensuring a constant balance in the real-time demand and 
generation of power. Midwest Independent Transmission System Operator Inc. 
(MISO) has transformed this process in the power industry of 13 Midwestern 
states in the United States through the development of energy and ancillary 
services markets. MISO uses a mixed-integer optimization model to determine 
when various power plants should be on or off and has developed other mod-
els to predict energy output levels and trading prices. This has increased the 
ef�ciency of the existing power plants and transmission lines, improved the 
reliability of the power grid, and reduced the need for additional investments 
in infrastructure. It is estimated that the MISO region has saved between $2.1 
billion and $3.0 billion from 2007 through 2010 as a result of these efforts. 

Figure 1.1

Examples of  
successful business 
analytics  
applications
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 Characteristics and Benefits of Modeling  3

who uses a spreadsheet today for model building and decision making is a practitioner 
of business analytics—whether they realize it or not. 

1.1 The Modeling Approach  
to Decision Making
The idea of using models in problem solving and decision analysis is really not new and 
is certainly not tied to the use of computers. At some point, we all have used a mod-
eling approach to make a decision. For example, if you have ever moved into a dormi-
tory, apartment, or house, you undoubtedly faced a decision about how to arrange the 
furniture. There were probably a number of different arrangements to consider. One 
arrangement might give you the most open space but require that you build a loft. An-
other might give you less space but allow you to avoid the hassle and expense of build-
ing a loft. To analyze these different arrangements and make a decision, you did not 
build the loft. You more likely built a mental model of the two arrangements, picturing 
what each looked like in your mind’s eye. Thus, a simple mental model is sometimes all 
that is required to analyze a problem and make a decision.

For more complex decisions, a mental model might be impossible or insuf�cient, 
and other types of models might be required. For example, a set of drawings or blue-
prints for a house or building provides a visual model of the real-world structure. These 
drawings help illustrate how the various parts of the structure will �t together when it 
is completed. A road map is another type of visual model because it assists a driver in 
analyzing the various routes from one location to another.

You have probably also seen car commercials on television showing automotive 
engineers using physical, or scale, models to study the aerodynamics of various car 
designs to �nd the shape that creates the least wind resistance and maximizes fuel 
economy. Similarly, aeronautical engineers use scale models of airplanes to study the 
�ight characteristics of various fuselage and wing designs. And civil engineers might 
use scale models of buildings and bridges to study the strengths of different construc-
tion techniques.

Another common type of model is a mathematical model, which uses mathemati-
cal relationships to describe or represent an object or decision problem. Throughout 
this book, we will study how various mathematical models can be implemented and 
analyzed on computers using spreadsheet software. But before we move to an in-depth 
discussion of spreadsheet models, let’s look at some of the more general characteristics 
and bene�ts of modeling.

1.2 Characteristics and Benefits  
of Modeling
Although this book focuses on mathematical models implemented in computers via 
spreadsheets, the examples of nonmathematical models given earlier are worth discuss-
ing a bit more because they help illustrate a number of important characteristics and 
bene�ts of modeling in general. First, the models mentioned earlier are usually simpli-
�ed versions of the object or decision problem they represent. To study the aerodynam-
ics of a car design, we do not need to build the entire car complete with engine and 
stereo because such components have little or no effect on aerodynamics. So, although 
a model is often a simpli�ed representation of reality, the model is useful as long as it is 
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valid. A valid model is one that accurately represents the relevant characteristics of the 
object or decision problem being studied.

Second, it is often less expensive to analyze decision problems using a model. This 
is especially easy to understand with respect to scale models of big-ticket items such as 
cars and planes. Besides the lower �nancial cost of building a model, the analysis of a 
model can help avoid costly mistakes that might result from poor decision making. For 
example, it is far less costly to discover a �awed wing design using a scale model of an 
aircraft than after the crash of a fully loaded jet liner.

Frank Brock, former executive vice president of the Brock Candy Company, related 
the following story about blueprints his company prepared for a new production facil-
ity. After months of careful design work, he proudly showed the plans to several of his 
production workers. When he asked for their comments, one worker responded, “It’s 
a �ne looking building Mr. Brock, but that sugar valve looks like it’s about twenty feet 
away from the steam valve.” “What’s wrong with that?” asked Brock. “Well, nothing,” 
said the worker, “except that I have to have my hands on both valves at the same time!”1 
Needless to say, it was far less expensive to discover and correct this “little” problem 
using a visual model before pouring the concrete and laying the pipes as originally 
planned.

Third, models often deliver needed information on a timelier basis. Again, it is rela-
tively easy to see that scale models of cars or airplanes can be created and analyzed 
more quickly than their real-world counterparts. Timeliness is also an issue when vital 
data will not become available until some later point in time. In these cases, we might 
create a model to help predict the missing data to assist in current decision making.

Fourth, models are frequently helpful in examining things that would be impossible 
to do in reality. For example, human models (crash dummies) are used in crash tests 
to see what might happen to an actual person if a car hits a brick wall at a high speed. 
Likewise, models of DNA can be used to visualize how molecules �t together. Both of 
these are dif�cult, if not impossible, to do without the use of models.

Finally, and probably most importantly, models allow us to gain insight and under-
standing about the object or decision problem under investigation. The ultimate pur-
pose of using models is to improve decision making. As you will see, the process of 
building a model can shed important light and understanding on a problem. In some 
cases, a decision might be made while building the model as a previously misunder-
stood element of the problem is discovered or eliminated. In other cases, a careful analy-
sis of a completed model might be required to “get a handle” on a problem and gain 
the insights needed to make a decision. In any event, it is the insight gained from the 
modeling process that ultimately leads to better decision making.

1.3 Mathematical Models
As mentioned earlier, the modeling techniques in this book differ quite a bit from scale 
models of cars and planes or visual models of production plants. The models we will 
build use mathematics to describe a decision problem. We use the term “mathematics” 
in its broadest sense, encompassing not only the most familiar elements of math, such 
as algebra, but also the related topic of logic. 

Now, let’s consider a simple example of a mathematical model:

 PROFIT 5 REVENUE 2 EXPENSES  1.1 

1  Colson, Charles, and Jack Eckerd, Why America Doesn’t Work (Denver, Colorado: Word Publish-
ing, 1991), 146–147.
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 Mathematical Models 5

Equation 1.1 describes a simple relationship between revenue, expenses, and 
profit. This mathematical relationship describes the operation of determining 
profit—or a mathematical model of profit. Of course, not all models are this simple, 
but taken piece by piece, the models we will discuss are not much more complex 
than this one.

Frequently, mathematical models describe functional relationships. For example, the 
mathematical model in equation 1.1 describes a functional relationship between rev-
enue, expenses, and pro�t. Using the symbols of mathematics, this functional relation-
ship is represented as follows:

 PROFIT 5 f(REVENUE, EXPENSES)  1.2 

In words, the previous expression means “pro�t is a function of revenue and ex-
penses.” We could also say that pro�t depends on (or is dependent on) revenue and 
expenses. Thus, the term PROFIT in equation 1.2 represents a dependent variable, 
whereas REVENUE and EXPENSES are independent variables. Frequently, com-
pact symbols (such as A, B, and C) are used to represent variables in an equation 
such as 1.2. For instance, if we let Y, X1, and X2 represent PROFIT, REVENUE, and  
EXPENSES, respectively, we could rewrite equation 1.2 as follows:

 Y 5 f(X1, X2)  1.3 

The notation f(?) represents the function that de�nes the relationship between the 
dependent variable Y and the independent variables X1 and X2. In the case of determin-
ing PROFIT from REVENUE and EXPENSES, the mathematical form of the function 
f(?) is quite simple because we know that f(X1, X2) 5 X1 2 X2. However, in many other 
situations we will model, the form of f(?) is quite complex and might involve many  
independent variables. But regardless of the complexity of f(?) or the number of inde-
pendent variables involved, many of the decision problems encountered in business can 
be represented by models that assume the general form,

 Y 5 f(X1, X2, . . . , Xk)  1.4 

In equation 1.4, the dependent variable Y represents some bottom-line performance 
measure of the problem we are modeling. The terms X1, X2, . . . , Xk represent the differ-
ent independent variables that play some role or have some impact in determining the 
value of Y. Again, f(?) is the function (possibly quite complex) that speci�es or describes 
the relationship between the dependent and independent variables. 

The relationship expressed in equation 1.4 is very similar to what occurs in most 
spreadsheet models. Consider a simple spreadsheet model to calculate the monthly 
payment for a car loan, as shown in Figure 1.2.

The spreadsheet in Figure 1.2 contains a variety of input cells (for example, pur-
chase price, down payment, trade-in, term of loan, annual interest rate) that corre-
spond conceptually to the independent variables X1, X2, . . . , Xk in equation 1.4. Simi-
larly, a variety of mathematical operations are performed using these input cells in  
a manner analogous to the function f(?) in equation 1.4. The results of these mathemat-
ical operations determine the value of some output cell in the spreadsheet (for exam-
ple, monthly payment) that corresponds to the dependent variable Y in equation 1.4. 
Thus, there is a direct correspondence between equation 1.4 and the spreadsheet in 
Figure 1.2. This type of correspondence exists for most of the spreadsheet models in 
this book. 
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1.4 Categories of Mathematical Models
Not only does equation 1.4 describe the major elements of mathematical or spreadsheet 
models, but it also provides a convenient means for comparing and contrasting the 
three categories of modeling techniques presented in this book: Prescriptive Models, 
Predictive Models, and Descriptive Models. Figure 1.3 summarizes the characteristics 
and some of the techniques associated with each of these categories.

Figure 1.2

Example of a 
simple spreadsheet 
model 

Figure 1.3

Categories and 
characteristics of 
business analytics 
modeling  
techniques

Model Characteristics:

Category Form of f (∙) 
Values of independent 
Variables

Business Analytics  
Techniques

Prescriptive 
Models

known,  
well-de�ned

known or under  
decision maker’s 
control

Linear Programming,  
Networks, Integer  
Programming, CPM, 
Goal Programming, EOQ, 
Nonlinear Programming

Predictive 
Models

unknown, 
ill-de�ned

known or under  
decision maker’s 
control

Regression Analysis,  
Time Series Analysis,  
Discriminant Analysis, 
Neural Networks, Logistic 
Regression, Af�nity  
Analysis, Cluster Analysis

Descriptive 
Models

known,  
well-de�ned

unknown or  
uncertain

Simulation, Queuing, 
PERT, Inventory Models
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In some situations, a manager might face a decision problem involving a very  
precise, well-de�ned functional relationship f(?) between the independent variables  
X1, X2, …, Xk and the dependent variable Y. If the values for the independent variables 
are under the decision maker’s control, the decision problem in these types of situations 
boils down to determining the values of the independent variables X1, X2, …, Xk that 
produce the best possible value for the dependent variable Y. These types of models are 
called Prescriptive Models because their solutions tell the decision maker what actions 
to take. For example, you might be interested in determining how a given sum of money 
should be allocated to different investments (represented by the independent variables) 
to maximize the return on a portfolio without exceeding a certain level of risk.

A second category of decision problems is one in which the objective is to predict or 
estimate what value the dependent variable Y will take on when the independent vari-
ables X1, X2, …, Xk take on speci�c values. If the function f(?) relating the dependent and 
independent variables is known, this is a very simple task—simply enter the speci�ed 
values for X1, X2, …, Xk into the function f(?) and compute Y. In some cases, however,  
the functional form of f(?) might be unknown and must be estimated in order for the 
decision maker to make predictions about the dependent variable Y. These types of 
models are called Predictive Models. For example, a real estate appraiser might know 
that the value of a commercial property (Y) is in�uenced by its total square footage  
(X1) and age (X2), among other things. However, the functional relationship f(?) that 
relates these variables to one another might be unknown. By analyzing the relationship 
between the selling price, total square footage, and age of other commercial properties, 
the appraiser might be able to identify a function f(?) that relates these two variables in 
a reasonably accurate manner.

The third category of models you are likely to encounter in the business world is 
called Descriptive Models. In these situations, a manager might face a decision problem 
that has a very precise, well-de�ned functional relationship f(?) between the independ-
ent variables X1, X2, …, Xk and the dependent variable Y. However, there might be great 
uncertainty as to the exact values that will be assumed by one or more of the independ-
ent variables X1, X2, …, Xk. In these types of problems, the objective is to describe the 
outcome or behavior of a given operation or system. For example, suppose a company is 
building a new manufacturing facility and has several choices about the type of machines 
to put in the new plant, as well as various options for arranging the machines. Manage-
ment might be interested in studying how the various plant con�gurations would affect 
on-time shipments of orders (Y), given the uncertain number of orders that might be 
received (X1) and the uncertain due dates (X2) that might be required by these orders.

1.5 Business Analytics and  
the Problem-Solving Process
Business analytics focuses on identifying and leveraging business opportunities. But 
business opportunities can often be viewed or formulated as decision problems that 
need to be solved. As a result, the words “opportunity” and “problem” are used some-
what synonymously throughout this book. Some even use the term “probortunity” to 
denote that every problem is also an opportunity. 

Throughout our discussion, we have said that the ultimate goal in building models 
is to assist managers in making decisions that solve problems. The modeling  techniques 
we will study represent a small but important part of the total problem-solving process. 
The problem-solving process discussed here is usually focused on leveraging a business 
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opportunity of one sort or another. To become an effective modeler, it is important to un-
derstand how modeling �ts into the entire process. Because a model can be used to repre-
sent a decision problem or phenomenon, we might be able to create a visual model of the 
phenomenon that occurs when people solve problems—what we call the problem-solving 
process. Although a variety of models could be equally valid, the one in Figure 1.4 sum-
marizes the key elements of the problem-solving process and is suf�cient for our purposes.

The �rst step of the problem-solving process, identifying the problem (or “probor-
tunity”), is also the most important. If we do not identify the correct decision problem 
associated with the business opportunity at hand, all the work that follows will amount 
to nothing more than wasted effort, time, and money. Unfortunately, identifying the 
problem to solve is often not as easy as it seems. We know that a problem exists when 
there is a gap or disparity between the present situation and some desired state. How-
ever, we usually are not faced with a neat, well-de�ned problem. Instead, we often �nd 
ourselves facing a “mess”!2 Identifying the real problem involves gathering a lot of in-
formation and talking with many people to increase our understanding of the mess. We 
must then sift through all this information and try to identify the root problem or prob-
lems causing the mess. Thus, identifying the real problem (and not just the symptoms of 
the problem) requires insight, some imagination, time, and a good bit of detective work.

The end result of the problem-identi�cation step is a well-de�ned statement of the 
problem. Simply de�ning a problem well often makes it much easier to solve. There is 
much truth in the saying, “A problem clearly stated is a problem half solved.” Having 
identi�ed the problem, we turn our attention to creating or formulating a model of the 
problem. Depending on the nature of the problem, we might use a  mental model, a 
visual model, a scale model, or a mathematical model. Although this book focuses on 
mathematical models, this does not mean that mathematical models are always appli-
cable or best. In most situations, the best model is the  simplest model that accurately 
re�ects the relevant characteristic or essence of the  problem being studied. 

We will discuss several different business analytics techniques in this book. It is im-
portant that you not develop too strong a preference for any one technique. Some peo-
ple have a tendency to want to formulate every problem they face as something that can 
be solved by their favorite modeling technique. This simply will not work.

As indicated earlier in Figure 1.3, there are fundamental differences in the types of 
problems a manager might face. Sometimes, the values of the independent variables af-
fecting a problem are under the manager’s control; sometimes they are not. Sometimes, 
the form of the functional relationship f(?) relating the dependent and independent vari-
ables is well-de�ned, and sometimes it is not. These fundamental characteristics of the 
problem should guide your selection of an appropriate business analytics modeling 
technique. Your goal at the model-formulation stage is to select a modeling technique 
that �ts your problem, rather than trying to �t your problem into the required format of 
a preselected modeling technique.

After you select an appropriate representation or formulation of your problem, the 
next step is to implement this formulation as a spreadsheet model. We will not dwell on 

2  This characterization is borrowed from Chapter 5, James R. Evans, Creative Thinking in the  
Decision and Management Sciences (Cincinnati, Ohio: South-Western Publishing, 1991), 89–115.
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A visual model 
of the problem-
solving process 
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the implementation process now because that is the focus of the remainder of this book. 
After you verify that your spreadsheet model has been implemented accurately, the next 
step in the problem-solving process is to use the model to analyze the problem it repre-
sents. The main focus of this step is to generate and evaluate alternatives that might lead 
to a solution of the problem. This often involves playing out a number of scenarios or 
asking several “What if?” questions. Spreadsheets are particularly helpful in analyzing 
mathematical models in this manner. In a well-designed spreadsheet model, it should be 
fairly simple to change some of the assumptions in the model to see what might happen 
in different situations. As we proceed, we will highlight some techniques for designing 
spreadsheet models that facilitate this type of “What if” analysis. “What if” analysis is 
also very appropriate and useful when working with nonmathematical models.

The end result of analyzing a model does not always provide a solution to the actual 
problem being studied. As we analyze a model by asking various “What if?” questions, 
it is important to test the feasibility and quality of each potential solution. The blue-
prints Frank Brock showed to his production employees represented the end result of 
his analysis of the problem he faced. He wisely tested the feasibility and quality of this 
alternative before implementing it and discovered an important �aw in his plans. Thus, 
the testing process can give important new insights into the nature of a problem. The 
testing process is also important because it provides the opportunity to double-check 
the validity of the model. At times, we might discover an alternative that appears too 
good to be true. This could lead us to �nd that some important assumption has been 
left out of the model. Testing the results of the model against known results (and simple 
common sense) helps ensure the structural integrity and validity of the model. After 
analyzing the model, we might discover that we need to go back and modify it.

The last step of the problem-solving process, implementation, is often the most dif-
�cult. Implementation begins by deriving managerial insights from our modeling  
efforts, framed in the context of the real-world problem we are solving, and communi-
cating those insights to in�uence actions that affect the business situation. This requires 
crafting a message that is understood by various stakeholders in an organization and 
persuading them to take a particular course of action. (See Grossman et al., 2008, for nu-
merous helpful suggestions on this process.) By their very nature, solutions to problems 
involve people and change. For better or for worse, most people resist change. However, 
there are ways to minimize the seemingly inevitable resistance to change. For example, it 
is wise, if possible, to involve anyone who will be affected by the decision in all steps of 
the problem-solving process. This not only helps develop a sense of ownership and un-
derstanding of the ultimate solution, but it also can be the source of important informa-
tion throughout the problem-solving process. As the Brock Candy story illustrates, even 
if it is impossible to include those affected by the solution in all steps, their input should 
be solicited and considered before a solution is accepted for implementation. Resistance 
to change and new systems can also be eased by creating �exible, user-friendly interfaces 
for the mathematical models that are often developed in the problem-solving process.

Throughout this book, we focus mostly on the model formulation, implementation, 
analysis, and testing steps of the problem-solving process, summarized previously in 
Figure 1.4. Again, this does not imply that these steps are more important than the oth-
ers. If we do not identify the correct problem, the best we can hope for from our mod-
eling effort is “the right answer to the wrong question,” which does not solve the real 
problem. Similarly, even if we do identify the problem correctly and design a model that 
leads to a perfect solution, if we cannot implement the solution, then we still have not 
solved the problem. Developing the interpersonal and investigative skills required to 
work with people in de�ning the problem and implementing the solution is as important 
as the mathematical modeling skills you will develop by working through this book.
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1.6 Anchoring and Framing Effects
At this point, some of you are probably thinking it is better to rely on subjective judg-
ment and intuition rather than models when making decisions. Most nontrivial deci-
sion problems do involve some issues that are dif�cult or impossible to structure and 
analyze in the form of a mathematical model. These unstructurable aspects of a decision 
problem may require the use of judgment and intuition. However, it is important to 
realize that human cognition is often �awed and can lead to incorrect judgments and ir-
rational decisions. Errors in human judgment often arise because of what psychologists 
term anchoring and framing effects associated with decision problems.

Anchoring effects arise when a seemingly trivial factor serves as a starting point (or 
anchor) for estimations in a decision-making problem. Decision makers adjust their es-
timates from this anchor but nevertheless remain too close to the anchor and usually 
under-adjust. In a classic psychological study on this issue, one group of subjects was 
asked to individually estimate the value of 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 (without using 
a calculator). Another group of subjects were each asked to estimate the value of 8 3 7 3  
6 3 5 3 4 3 3 3 2 3 1. The researchers hypothesized that the �rst number presented (or 
perhaps the product of the �rst three or four numbers) would serve as a mental anchor. 
The results supported the hypothesis. The median estimate of subjects shown the num-
bers in ascending sequence (1 3 2 3 3 . . . ) was 512, whereas the median estimate of 
subjects shown the sequence in descending order (8 3 7 3 6 . . . ) was 2,250. Of course, 
the order of multiplication for these numbers is irrelevant, and the product of both se-
ries is the same: 40,320. 

Framing effects refer to how a decision maker views or perceives the alternatives 
in a decision problem—often involving a win/loss perspective. The way a problem is 
framed often in�uences the choices made by a decision maker and can lead to irrational 
behavior. For example, suppose you have just been given $1,000 but must choose one 
of the following alternatives: (A1) Receive an additional $500 with certainty, or (B1) Flip 
a fair coin and receive an additional $1,000 if heads occurs or $0 additional if tails oc-
curs. Here, alternative A1 is a “sure win” and is the alternative most people prefer. Now 
suppose you have been given $2,000 and must choose one of the following alternatives: 
(A2) Give back $500 immediately, or (B2) Flip a fair coin and give back $0 if heads occurs 
or $1,000 if tails occurs. When the problem is framed this way, alternative A2 is a “sure 
loss,” and many people who previously preferred alternative A1 now opt for alternative 
B2 (because it holds a chance of avoiding a loss). However, Figure 1.5 shows a single 
decision tree for these two scenarios making it clear that, in both cases, the “A” alterna-
tive guarantees a total payoff of $1,500, whereas the “B” alternative offers a 50% chance 

Initial state

Alternative A
Payoffs
$1,500

$2,000

$1,000

Alternative B
(Flip coin)

Heads (50%)

Tails (50%)

Figure 1.5

Decision tree for 
framing effects
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of a $2,000 total payoff and a 50% chance of a $1,000 total payoff. (Decision trees will 
be covered in greater detail in a later chapter.) A purely rational decision maker should 
focus on the consequences of his or her choices and consistently select the same alterna-
tive, regardless of how the problem is framed.

Whether we want to admit it or not, we are all prone to make errors in estima-
tion due to anchoring effects and may exhibit irrationality in decision making due to 
framing effects. As a result, it is best to use computer models to do what they are best 
at (that is, modeling structurable portions of a decision problem) and let the human 
brain do what it is best at (that is, dealing with the unstructurable portion of a decision 
problem). 

1.7 Good Decisions vs. Good Outcomes
The goal of the modeling approach to problem solving is to help individuals make good 
decisions. But good decisions do not always result in good outcomes. For example, sup-
pose the weather report on the evening news predicts a warm, dry, sunny day tomor-
row. When you get up and look out the window tomorrow morning, there is not a cloud 
in sight. If you decide to leave your umbrella at home and subsequently get soaked 
in an unexpected afternoon thundershower, did you make a bad decision? Certainly 
not. Unforeseeable circumstances beyond your control caused you to experience a bad 
outcome, but it would be unfair to say that you made a bad decision. Good decisions 
sometimes result in bad outcomes. See Figure 1.6 for the story of another good decision 
with a bad outcome. 

The modeling techniques presented in this book can help you make good decisions 
but cannot guarantee that good outcomes will always occur as a result of those decisions. 
Figure 1.7 describes the possible combinations of good and bad decisions and good and 
bad outcomes. When a good or bad decision is made, luck often plays a role in determin-
ing whether a good or bad outcome occurs. However, consistently using a structured, 
model-based process to make decisions should produce good outcomes (and deserved 
success) more frequently than making decisions in a more haphazard manner.

Andre-Francois Raffray thought he had a great deal in 1965 when he agreed to 
pay a 90-year-old woman named Jeanne Calment $500 a month until she died 
to acquire her grand apartment in Arles, northwest of Marseilles in the south of 
France—a town Vincent van Gogh once roamed. Buying apartments “for life” is 
common in France. The elderly owner gets to enjoy a monthly income from the 
buyer who gambles on getting a real estate bargain—betting the owner doesn’t 
live too long. Upon the owner’s death, the buyer inherits the apartment regardless 
of how much was paid. But in December of 1995, Raffray died at age 77, having 
paid more than $180,000 for an apartment he never got to live in. 

On the same day, Calment, then the world’s oldest living person at 120, dined 
on foie gras, duck thighs, cheese, and chocolate cake at her nursing home near the 
sought-after apartment. And she does not need to worry about losing her $500 
monthly income. Although the amount Raffray already paid is twice the apartment’s 
current market value, his widow is obligated to keep sending the monthly check to 
Calment. If Calment also outlives her, then the Raffray children will have to pay. 
“In life, one sometimes makes bad deals,” said Calment of the outcome of Raffray’s  
decision. (Source: The Savannah Morning News, 12/29/95.)

Figure 1.6

A good decision 
with a bad outcome
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1.8 Summary 
This book introduces you to a variety of techniques from the �eld of business analytics 
that can be applied in spreadsheet models to assist in decision analysis and problem solv-
ing. This chapter discussed how spreadsheet models of decision problems can be used 
to analyze the consequences of possible courses of action before a particular alternative 
is selected for implementation. It described how models of decision problems differ in 
a number of important characteristics and how you should select a modeling technique 
that is most appropriate for the type of problem being faced. The chapter covered how 
spreadsheet modeling and analysis �t into the problem-solving process. It then discussed 
how the psychological phenomena of anchoring and framing can in�uence human judg-
ment and decision making. Finally, it described the importance of distinguishing be-
tween the quality of a decision-making process and the quality of decision outcomes.
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T H E  W O R L D  O F  B U S I N E S S  A N A LY T I C S

“Business Analysts Trained in Management Science Can Be 
a Secret Weapon in a CIO’s Quest for Bottom-Line Results.”

Ef�ciency nuts. These are the people you see at cocktail parties explaining how the 
host could disperse that crowd around the popular shrimp dip if he would divide 
it into three bowls and place them around the room. As she draws the improved 
traf�c �ow on a paper napkin, you notice that her favorite word is “optimize”—a 
tell-tale sign she has studied the �eld of “operations research” or “management 
science” (also known as OR/MS or business analytics).
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OR/MS professionals are driven to solve logistics problems. This trait may not 
make them the most popular people at parties, but it is exactly what today’s infor-
mation systems (IS) departments need to deliver more business value. Experts say 
smart IS executives will learn to exploit the talents of these mathematical wizards 
in their quest to boost a company’s bottom line.

According to Ron J. Ponder, chief information of�cer (CIO) at Sprint Corp. in 
Kansas City, Mo., and former CIO at Federal Express Corp., “If IS departments 
had more participation from operations research analysts, they would be building 
much better, richer IS solutions.” As someone who has a Ph.D. in operations re-
search and who built the renowned package-tracking systems at Federal Express, 
Ponder is a true believer in OR/MS. Ponder and others say analysts trained in OR/
MS can turn ordinary information systems into money-saving, decision-support 
systems and are ideally suited to be members of the business process reengineer-
ing team. “I’ve always had an operations research department reporting to me, 
and it’s been invaluable. Now I’m building one at Sprint,” says Ponder.

The Beginnings

OR/MS got its start in World War II, when the military had to make important 
decisions about allocating scarce resources to various military operations. One of 
the �rst business applications for computers in the 1950s was to solve operations 
research problems for the petroleum industry. A technique called linear program-
ming was used to �gure out how to blend gasoline for the right �ash point, vis-
cosity, and octane in the most economical way. Since then, OR/MS has spread 
throughout business and government, from designing ef�cient drive-thru win-
dow operations for Burger King Corp. to creating ultra-sophisticated computer-
ized stock-trading systems.

A classic OR/MS example is the crew-scheduling problem faced by all major 
airlines. How do you plan the itineraries of 8,000 pilots and 17,000 �ight attend-
ants when there is an astronomical number of combinations of planes, crews, and 
cities? The OR/MS analysts at United Airlines came up with a scheduling sys-
tem called Paragon that attempts to minimize the amount of paid time that crews 
spend waiting for �ights. The model factors in constraints such as union rules and 
Federal Aviation Administration regulations and is projected to save the airline at 
least $1 million a year.

OR / MS and IS

Somewhere in the 1970s, the OR/MS and IS disciplines went in separate direc-
tions. “The IS profession has had less and less contact with the operations research 
folks . . . and IS lost a powerful intellectual driver,” says Peter G. W. Keen, execu-
tive director of the International Center for Information Technologies in Washing-
ton, D.C. However, many feel that now is an ideal time for the two disciplines to 
rebuild some bridges. 

Today’s OR/MS professionals are involved in a variety of IS-related �elds, in-
cluding inventory management, electronic data interchange, computer-integrated 
manufacturing, network management, and practical applications of arti�cial intel-
ligence. Furthermore, each side needs something the other side has: OR/MS ana-
lysts need corporate data to plug into their models, and the IS folks need to plug 
the OR/MS models into their strategic information systems. At the same time, 

(Continued)
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Questions and Problems
 1. What is meant by the term decision analysis?
 2. De�ne the term computer model.
 3. What is the difference between a spreadsheet model and a computer model?
 4. De�ne the term business analytics.
 5. What is the relationship between business analytics and spreadsheet modeling?
 6. What kinds of spreadsheet applications would not be considered business analytics?
 7. In what ways do spreadsheet models facilitate the decision-making process?
 8. What are the bene�ts of using a modeling approach to decision making?
 9. What is a dependent variable?
 10. What is an independent variable?
 11. Can a model have more than one dependent variable?
 12. Can a decision problem have more than one dependent variable?
 13. In what ways are Prescriptive Models different from Descriptive Models?
 14. In what ways are Prescriptive Models different from Predictive Models?

CIOs need intelligent applications that enhance the bottom line and make them 
heroes with the CEO.

OR/MS analysts can develop a model of how a business process works now 
and simulate how it could work more ef�ciently in the future. Therefore, it makes 
sense to have an OR/MS analyst on the interdisciplinary team that tackles busi-
ness process reengineering projects. In essence, OR/MS professionals add more 
value to the IS infrastructure by building “tools that really help decision makers 
analyze complex situations,” says Andrew B. Whinston, director of the Center for 
Information Systems Management at the University of Texas at Austin. 

Although IS departments typically believe their job is done if they deliver accu-
rate and timely information, Thomas M. Cook, president of American Airlines De-
cision Technologies, Inc., says that adding OR/MS skills to the team can produce 
intelligent systems that actually recommend solutions to business problems. One 
of the big success stories at Cook’s operations research shop is a “yield manage-
ment” system that decides how much to overbook and how to set prices for each 
seat so that a plane is �lled up and pro�ts are maximized. The yield management 
system deals with more than 250 decision variables and accounts for a signi�cant 
amount of American Airlines’ revenue. 

Where to Start

So how can the CIO start down the road toward collaboration with OR/MS ana-
lysts? If the company already has a group of OR/MS professionals, the IS de-
partment can draw on their expertise as internal consultants. Otherwise, the CIO 
can simply hire a few OR/MS wizards, throw a problem at them, and see what 
happens. The payback may come surprisingly fast. As one former OR/MS profes-
sional put it, “If I couldn’t save my employer the equivalent of my own salary in 
the �rst month of the year, then I wouldn’t feel like I was doing my job.”

Adapted from: Mitch Betts, “Ef�ciency Einsteins,” ComputerWorld, March 22, 1993, p. 64.
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 15. In what ways are Descriptive Models different from Predictive Models?
 16. How would you de�ne the words description, prediction, and prescription? Carefully 

consider what is unique about the meaning of each word.
 17. Identify one or more mental models you have used. Can any of them be expressed 

mathematically? If so, identify the dependent and independent variables in your 
model.

 18. Consider the spreadsheet model shown in Figure 1.2. Is this model Descriptive, Pre-
dictive, or Prescriptive in nature, or does it not fall into any of these categories?

 19. Discuss the meaning of the term “probortunity.”
 20. What are the steps in the problem-solving process?
 21. Which step in the problem-solving process do you think is most important? Why?
 22. Must a model accurately represent every detail of a decision situation to be useful? 

Why or why not?
 23. If you were presented with several different models of a given decision problem, 

which would you be most inclined to use? Why?
 24. Describe an example in which business or political organizations may use anchoring 

effects to in�uence decision making.
 25. Describe an example in which business or political organizations may use framing 

effects to in�uence decision making.
 26. Suppose sharks have been spotted along the beach where you are vacationing with 

a friend. You and your friend have been informed of the shark sightings and are 
aware of the damage a shark attack can in�ict on human �esh. You both decide (in-
dividually) to go swimming anyway. You are promptly attacked by a shark while 
your friend has a nice time body sur�ng in the waves. Did you make a good or bad 
decision? Did your friend make a good or bad decision? Explain your answer.

 27. Describe an example in which a well-known business, political, or military leader 
made a good decision that resulted in a bad outcome, or made a bad decision that 
resulted in a good outcome.

Patrick’s Paradox
Patrick’s luck had changed overnight—but not his skill at mathematical reasoning. The 
day after graduating from college, he used the $20 that his grandmother had given him 
as a graduation gift to buy a lottery ticket. He knew his chances of winning the lottery 
were extremely low and it probably was not a good way to spend this money. But 
he also remembered from the class he took in management science that bad decisions 
sometimes result in good outcomes. So he said to himself, “What the heck? Maybe this 
bad decision will be the one with a good outcome.” And with that thought, he bought 
his lottery ticket.

The next day, Patrick pulled the crumpled lottery ticket out of the back pocket of his 
jeans and tried to compare his numbers to the winning numbers printed in the paper. 
When his eyes �nally came into focus on the numbers, they also just about popped out 
of his head. He had a winning ticket! In the ensuing days, he learned that his share of 
the jackpot would give him a lump sum payout of about $500,000 after taxes. He knew 
what he was going to do with part of the money, buy a new car, pay off his college loans, 
and send his grandmother on an all-expenses-paid trip to Hawaii. But he also knew that 
he couldn’t continue to hope for good outcomes to arise from more bad decisions. So he 
decided to take half of his winnings and invest it for his retirement.

CAse 1.1
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A few days later, Patrick was sitting around with two of his fraternity buddies, Josh 
and Peyton, trying to �gure out how much money his new retirement fund might be 
worth in 30 years. They were all business majors in college and remembered from their 
�nance class that if you invest p dollars for n years at an annual interest rate of i percent, 
then in n years you would have p(1 1 i)n dollars. So they �gured that if Patrick invested 
$250,000 for 30 years in an investment with a 10% annual return, then in 30 years he 
would have $4,362,351 (that is, $250,000(1 1 0.10)30 ). 

But after thinking about it a little more, they all agreed that it would be unlikely for 
Patrick to �nd an investment that would produce a return of exactly 10% each and every 
year for the next 30 years. If any of this money is invested in stocks, then some years the 
return might be higher than 10%, and some years it would probably be lower. So to help 
account for the potential variability in the investment returns, Patrick and his friends 
came up with a plan. They would assume he could �nd an investment that would pro-
duce a 17.5% annual return 70% of the time and a –7.5% return (or actually a loss) 30% of 
the time. Such an investment should produce an average annual return of 0.7(17.5%) 1  
0.3(–7.5%) 5 10%. Josh felt certain that this meant Patrick could still expect his $250,000 
investment to grow to $4,362,351 in 30 years (because $250,000(1 1 0.10)30 

5 $4,362,351).
After sitting quietly and thinking about it for a while, Peyton said that he thought 

Josh was wrong. The way Peyton looked at it, Patrick should see a 17.5% return in 
70% of the 30 years (or 0.7(30) 5 21 years) and a –7.5% return in 30% of the 30 years 
(or 0.3(30) 5 9 years). So, according to Peyton, that would mean Patrick should have 
$250,000(1 1 0.175)21(1 – 0.075)9 5 $3,664,467 after 30 years. But that’s $697,884 less  
than what Josh says Patrick should have.

After listening to Peyton’s argument, Josh said he thought Peyton was wrong be-
cause his calculation assumes that the “good” return of 17.5% would occur in each of 
the �rst 21 years, and the “bad” return of –7.5% would occur in each of the last 9 years. 
But Peyton countered this argument by saying that the order of good and bad returns 
does not matter. The commutative law of arithmetic says that when you add or multi-
ply numbers, the order doesn’t matter (that is, X 1 Y 5 Y 1 X and X 3 Y 5 Y 3 X). So 
Peyton says that because Patrick can expect 21 “good” returns and 9 “bad” returns, and 
it doesn’t matter in what order they occur, then the expected outcome of the investment 
should be $3,664,467 after 30 years. 

Patrick is now really confused. Both of his friends’ arguments seem to make perfect 
sense logically—but they lead to such different answers, and they can’t both be right. 
What really worries Patrick is that he is starting his new job as a business analyst in 
a couple of weeks. And if he can’t reason his way to the right answer in a relatively 
simple problem like this, what is he going to do when he encounters the more dif�cult 
problems awaiting him in the business world? Now he really wishes he had paid more 
attention in his business analytics class.

So what do you think? Who is right, Joshua or Peyton? And more importantly, why?
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2.0 Introduction
Our world is �lled with limited resources. The amount of oil we can pump out of the 
earth is limited. The amount of land available for garbage dumps and hazardous waste is 
limited and, in many areas, diminishing rapidly. On a more personal level, each of us has 
a limited amount of time in which to accomplish or enjoy the activities we schedule each 
day. Most of us have a limited amount of money to spend while pursuing these activities. 
Businesses also have limited resources. A manufacturing organization employs a limited 
number of workers. A restaurant has a limited amount of space available for seating.

Deciding how best to use the limited resources available to an individual or a busi-
ness is a universal problem. In today’s competitive business environment, it is in-
creasingly important to make sure that a company’s limited resources are used in the 
most ef�cient manner possible. Typically, this involves determining how to allocate 
the resources in such a way as to maximize pro�ts or minimize costs. Mathematical  
programming (MP) is an area in business analytics that �nds the optimal, or most ef�-
cient, way of using limited resources to achieve the objectives of an individual or a busi-
ness. For this reason, mathematical programming is often referred to as optimization.

2.1 Applications of Mathematical  
Optimization
To help you understand the purpose of optimization and the types of problems for 
which it can be used, let’s consider several examples of decision-making situations in 
which MP techniques have been applied.

Determining Product Mix. Most manufacturing companies can make a variety of 
products. However, each product usually requires different amounts of raw materials 
and labor. Similarly, the amount of pro�t generated by the products varies. The man-
ager of such a company must decide how many of each product to produce in order to 
maximize pro�ts or to satisfy demand at minimum cost.

Manufacturing. Printed circuit boards, like those used in most computers, often have 
hundreds or thousands of holes drilled in them to accommodate the different electrical 
components that must be plugged into them. To manufacture these boards, a computer-
controlled drilling machine must be programmed to drill in a given location, move the 

Chapter 2

Introduction to Optimization  
and Linear Programming
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drill bit to the next location, and then drill again. This process is repeated hundreds or 
thousands of times to complete all the holes on a circuit board. Manufacturers of these 
boards would bene�t from determining the drilling order that minimizes the total dis-
tance the drill bit must be moved.

Routing and Logistics. Many retail companies have warehouses around the country 
that are responsible for keeping stores supplied with merchandise to sell. The amount of 
merchandise available at the warehouses and the amount needed at each store tend to 
�uctuate, as does the cost of shipping or delivering merchandise from the warehouses 
to the retail locations. Large amounts of money can be saved by determining the least 
costly method of transferring merchandise from the warehouses to the stores.

Financial Planning. The federal government requires individuals to begin withdraw-
ing money from individual retirement accounts (IRAs) and other tax-sheltered retirement 
programs no later than age 70.5. Various rules must be followed to avoid paying penalty 
taxes on these withdrawals. Most individuals want to withdraw their money in a manner 
that minimizes the amount of taxes they must pay while still obeying the tax laws.

O p t i m i z a t i o n  I s  E v e r y w h e r e

Going to Disney World this summer? Optimization will be your ubiquitous  
companion—scheduling the crews and planes, pricing the airline tickets and 
hotel rooms, even helping to set capacities on the theme park rides. If you use  
Orbitz to book your �ights, an optimization engine sifts through millions of  
options to �nd the cheapest fares. If you get directions to your hotel from Map-
Quest, another optimization engine �gures out the most direct route. If you ship 
souvenirs home, an optimization engine tells UPS which truck to put the pack-
ages on, exactly where on the truck the packages should go to make them fast-
est to load and unload, and what route the driver should follow to make his  
deliveries most ef�ciently. 

(Adapted from: V. Postrel, “Operation Everything,” The Boston Globe, June 27, 2004.)

2.2 Characteristics of  
Optimization Problems
These examples represent just a few areas in which MP has been used successfully. We 
will consider many other examples throughout this book. However, these examples 
give you some idea of the issues involved in optimization. For instance, each example 
involves one or more decisions that must be made: How many of each product should 
be produced? Which hole should be drilled next? How much of each product should be 
shipped from each warehouse to the various retail locations? How much money should 
an individual withdraw each year from various retirement accounts?

Also, in each example, restrictions, or constraints, are likely to be placed on the al-
ternatives available to the decision maker. In the �rst example, when determining the 
number of products to manufacture, a production manager is probably faced with a 
limited amount of raw materials and a limited amount of labor. In the second example, 
the drill should never return to a position where a hole has already been drilled. In the 
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third example, there is a physical limitation on the amount of merchandise a truck can 
carry from one warehouse to the stores on its route. In the fourth example, laws deter-
mine the minimum and maximum amounts that can be withdrawn from retirement 
accounts without incurring a penalty. Many other constraints can also be identi�ed for 
these examples. Indeed, it is not unusual for real-world optimization problems to have 
hundreds or thousands of constraints.

A �nal common element in each of the examples is the existence of some goal or ob-
jective that the decision maker considers when deciding which course of action is best. 
In the �rst example, the production manager can decide to produce several different 
product mixes given the available resources, but the manager will probably choose the 
mix of products that maximizes pro�ts. In the second example, a large number of possi-
ble drilling patterns can be used, but the ideal pattern will probably involve moving the 
drill bit the shortest total distance. In the third example, merchandise can be shipped in 
numerous ways from the warehouses to supply the stores, but the company will prob-
ably want to identify the routing that minimizes the total transportation cost. Finally, in 
the fourth example, individuals can withdraw money from their retirement accounts in 
many ways without violating tax laws, but they probably want to �nd the method that 
minimizes their tax liability.

2.3 Expressing Optimization  
Problems Mathematically
From the preceding discussion, we know that optimization problems involve three ele-
ments: decisions, constraints, and an objective. If we intend to build a mathematical 
model of an optimization problem, we will need mathematical terms or symbols to 
represent each of these three elements.

2.3.1 DEcIsIOns

The decisions in an optimization problem are often represented in a mathematical 
model by the symbols X1, X2, . . . , Xn. We will refer to X1, X2, . . . , Xn as the decision  
variables (or simply the variables) in the model. These variables might represent the 
quantities of different products the production manager can choose to produce. They 
might represent the amount of different pieces of merchandise to ship from a ware-
house to a certain store. They might represent the amount of money to be withdrawn 
from different retirement accounts.

The exact symbols used to represent the decision variables are not particularly im-
portant. You could use Z1, Z2, . . . , Zn or symbols such as Dog, Cat, and Monkey to rep-
resent the decision variables in the model. The choice of which symbols to use is largely 
a matter of personal preference and might vary from one problem to the next.

2.3.2 cOnstRaInts

The constraints in an optimization problem can be represented in a mathematical model 
in a number of ways. Three general ways of expressing the possible constraint relation-
ships in an optimization problem are:

 A less than or equal to constraint: f(X1, X2, . . . , Xn) # b

 A greater than or equal to constraint: f(X1, X2, . . . , Xn) $ b

 An equal to constraint: f(X1, X2, . . . , Xn) 5 b
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In each case, the constraint is some function of the decision variables that must be 
less than or equal to, greater than or equal to, or equal to some speci�c value (repre-
sented by the letter b). We will refer to f(X1, X2, . . . , Xn) as the left-hand-side (LHS) of the 
constraint and to b as the right-hand-side (RHS) value of the constraint.

For example, we might use a less than or equal to constraint to ensure that the total 
labor used in producing a given number of products does not exceed the amount of 
available labor. We might use a greater than or equal to constraint to ensure that the 
total amount of money withdrawn from a person’s retirement accounts is at least the 
minimum amount required by the IRS. You can use any number of these constraints to 
represent a given optimization problem depending on the requirements of the situation.

2.3.3 ObjEctIvE

The objective in an optimization problem is represented mathematically by an objective 
function in the general format:

MAX (or MIN):   f(X1, X2, . . . , Xn)

The objective function identi�es some function of the decision variables that the deci-
sion maker wants to either MAXimize or MINimize. In our earlier examples, this func-
tion might be used to describe the total pro�t associated with a product mix, the total 
distance the drill bit must be moved, the total cost of transporting merchandise, or a 
retiree’s total tax liability.

The mathematical formulation of an optimization problem can be described in the 
general format:

 MAX (or MIN): f0(X1, X2, . . . , Xn) 2.1

 Subject to: f1(X1, X2, . . . , Xn) # b1 2.2

  fk(X1, X2, . . . , Xn) $ bk 2.3

   fm(X1, X2, . . . , Xn) 5 bm 2.4

This representation identi�es the objective function (equation 2.1) that will be maxi-
mized (or minimized) and the constraints that must be satis�ed (equations 2.2 through 
2.4). Subscripts added to the f and b in each equation emphasize that the functions de-
scribing the objective and constraints can all be different. The goal in optimization is 
to �nd the values of the decision variables that maximize (or minimize) the objective 
function without violating any of the constraints.

2.4 Mathematical Programming Techniques
Our general representation of an MP model is just that—general. You can use many 
kinds of functions to represent the objective function and the constraints in an MP 
model. Of course, you should always use functions that accurately describe the objec-
tive and constraints of the problem you are trying to solve. Sometimes, the functions in 
a model are linear in nature (that is, form straight lines or �at surfaces); other times, they 
are nonlinear (that is, form curved lines or curved surfaces). Sometimes, the optimal val-
ues of the decision variables in a model must take on integer values (whole numbers); 
other times, the decision variables can assume fractional values.

Given the diversity of MP problems that can be encountered, many techniques have 
been developed to solve different types of MP problems. In the next several chapters, 
we will look at these MP techniques and develop an understanding of how they differ 
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and when each should be used. We will begin by examining a technique called linear 
programming (LP), which involves creating and solving optimization problems with 
linear objective functions and linear constraints. LP is a very powerful tool that can be 
applied in many business situations. It also forms a basis for several other techniques 
discussed later and is, therefore, a good starting point for our investigation into the �eld 
of optimization.

2.5 An Example LP Problem
We will begin our study of LP by considering a simple example. You should not inter-
pret this to mean that LP cannot solve more complex or realistic problems. LP has been 
used to solve extremely complicated problems, saving companies millions of dollars. 
However, jumping directly into one of these complicated problems would be like start-
ing a marathon without ever having gone out for a jog—you would get winded and 
could be left behind very quickly. So we’ll start with something simple.

Blue Ridge Hot Tubs manufactures and sells two models of hot tubs: the Aqua-Spa 
and the Hydro-Lux. Howie Jones, the owner and manager of the company, needs 
to decide how many of each type of hot tub to produce during his next production 
cycle. Howie buys prefabricated �berglass hot tub shells from a local supplier and 
adds the pump and tubing to the shells to create his hot tubs. (This supplier has the 
capacity to deliver as many hot tub shells as Howie needs.) Howie installs the same 
type of pump into both hot tubs. He will have only 200 pumps available during his 
next production cycle. From a manufacturing standpoint, the main difference be-
tween the two models of hot tubs is the amount of tubing and labor required. Each 
Aqua-Spa requires 9 hours of labor and 12 feet of tubing. Each Hydro-Lux requires 
6 hours of labor and 16 feet of tubing. Howie expects to have 1,566 production labor 
hours and 2,880 feet of tubing available during the next production cycle. Howie 
earns a pro�t of $350 on each Aqua-Spa he sells and $300 on each Hydro-Lux he 
sells. He is con�dent that he can sell all the hot tubs he produces. The question is, 
how many Aqua-Spas and Hydro-Luxes should Howie produce if he wants to maxi-
mize his pro�ts during the next production cycle?

2.6 Formulating LP Models
The process of taking a practical problem—such as determining how many Aqua-Spas 
and Hydro-Luxes Howie should produce—and expressing it algebraically in the form 
of an LP model is known as formulating the model. Throughout the next several chap-
ters, you will see that formulating an LP model is as much an art as a science.

2.6.1 stEPs In FORMuLatIng an LP MODEL

There are some general steps you can follow to help make sure your formulation of 
a particular problem is accurate. We will walk through these steps using the hot tub 
example.

1. Understand the problem. This step appears to be so obvious that it hardly seems 
worth mentioning. However, many people have a tendency to jump into a problem 
and start writing the objective function and constraints before they really understand 
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the problem. If you do not fully understand the problem you face, it is unlikely that 
your formulation of the problem will be correct.

The problem in our example is fairly easy to understand: How many Aqua-Spas 
and Hydro-Luxes should Howie produce to maximize his pro�t, while using no 
more than 200 pumps, 1,566 labor hours, and 2,880 feet of tubing?

2. Identify the decision variables. After you are sure you understand the problem, 
you need to identify the decision variables. That is, what are the fundamental deci-
sions that must be made in order to solve the problem? The answers to this question 
often will help you identify appropriate decision variables for your model. Iden-
tifying the decision variables means determining what the symbols X1, X2, . . . , Xn 
represent in your model.

In our example, the fundamental decision Howie faces is this: How many Aqua-
Spas and Hydro-Luxes should be produced? In this problem, we will let X1 represent 
the number of Aqua-Spas to produce and X2 represent the number of Hydro-Luxes 
to produce.

3. State the objective function as a linear combination of the decision variables. 
After determining the decision variables you will use, the next step is to create 
the objective function for the model. This function expresses the mathematical re-
lationship between the decision variables in the model to be maximized or mini-
mized.

In our example, Howie earns a pro�t of $350 on each Aqua-Spa (X1) he sells and 
$300 on each Hydro-Lux (X2) he sells. Thus, Howie’s objective of maximizing the 
pro�t he earns is stated mathematically as:

 MAX:   350X1 1 300X2 

For whatever values might be assigned to X1 and X2, the previous function calcu-
lates the associated total pro�t that Howie would earn. Obviously, Howie wants to 
maximize this value.

4. State the constraints as linear combinations of the decision variables. As men-
tioned earlier, there are usually some limitations on the values that can be assumed 
by the decision variables in an LP model. These restrictions must be identi�ed and 
stated in the form of constraints.

In our example, Howie faces three major constraints. Because only 200 pumps 
are available and each hot tub requires 1 pump, Howie cannot produce more than a 
total of 200 hot tubs. This restriction is stated mathematically as:

 1X1 1 1X2 # 200 

This constraint indicates that each unit of X1 produced (that is, each Aqua-Spa 
built) will use 1 of the 200 pumps available—as will each unit of X2 produced (that is, 
each Hydro-Lux built). The total number of pumps used (represented by 1X1 1 1X2) 
must be less than or equal to 200. Another restriction Howie faces is that he has only 
1,566 labor hours available during the next production cycle. Because each Aqua-
Spa he builds (each unit of X1) requires 9 labor hours, and each Hydro-Lux (each 
unit of X2) requires 6 labor hours, the constraint on the number of labor hours is 
stated as:

 9X1 1 6X2 # 1,566 

The total number of labor hours used (represented by 9X1 1 6X2) must be less 
than or equal to the total labor hours available, which is 1,566.

The �nal constraint speci�es that only 2,880 feet of tubing is available for the 
next production cycle. Each Aqua-Spa produced (each unit of X1) requires 12 feet of 
tubing, and each Hydro-Lux produced (each unit of X2) requires 16 feet of tubing. 
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The following constraint is necessary to ensure that Howie’s production plan does 
not use more tubing than is available:

 12X1 1 16X2 # 2,880 

The total number of feet of tubing used (represented by 12X1 1 16X2) must be less 
than or equal to the total number of feet of tubing available, which is 2,880.

5. Identify any upper or lower bounds on the decision variables. Often, simple upper 
or lower bounds apply to the decision variables. You can view upper and lower 
bounds as additional constraints in the problem.

In our example, there are simple lower bounds of zero on the variables X1 and 
X2 because it is impossible to produce a negative number of hot tubs. Therefore, the 
following two constraints also apply to this problem:

 X1 $ 0 
 X2 $ 0 

Constraints like these are often referred to as nonnegativity conditions and are 
quite common in LP problems.

2.7 Summary of the LP Model  
for the Example Problem
The complete LP model for Howie’s decision problem can be stated as:

MAX: 350X1 1 300X2 2.5

Subject to: 1X1 1 1X2 # 200 2.6

 9X1 1 6X2 # 1,566 2.7

 12X1 1 16X2 # 2,880 2.8

 1X1   $ 0 2.9

   1X2 $ 0 2.10

In this model, the decision variables X1 and X2 represent the number of Aqua-Spas 
and Hydro-Luxes to produce, respectively. Our goal is to determine the values for X1 
and X2 that maximize the objective in equation 2.5 while simultaneously satisfying all 
the constraints in equations 2.6 through 2.10.

2.8 The General Form of an LP Model
The technique of linear programming is so-named because the MP problems to which it 
applies are linear in nature. That is, it must be possible to express all the functions in an 
LP model as some weighted sum (or linear combination) of the decision variables. So, 
an LP model takes on the general form:

MAX (or MIN): c1X1 1 c2X2 1 ? ? ? 1 cnXn 2.11

Subject to:  a11X1 1 a12X2 1 ? ? ? 1 a1nXn # b1 2.12

 ak1X1 1 ak2X2 1 ? ? ? 1 aknXn $ bk 2.13

 am1X1 1 am2X2 1 ? ? ? 1  amnXn 5 bm 2.14

Up to this point, we have suggested that the constraints in an LP model represent 
some type of limited resource. Although this is frequently the case, in later chapters, 
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you will see examples of LP models in which the constraints represent things other than 
limited resources. The important point here is that any problem that can be formulated 
in the preceding fashion is an LP problem.

The symbols c1, c2, . . . , cn in equation 2.11 are called objective function coef�cients 
and might represent the marginal pro�ts (or costs) associated with the decision vari-
ables X1, X2, . . . , Xn, respectively. The symbol aij found throughout equations 2.12 
through 2.14 represents the numeric coef�cient in the ith constraint for variable Xj. The 
objective function and constraints of an LP problem represent different weighted sums 
of the decision variables. The bi symbols in the constraints, once again, represent values 
that the corresponding linear combination of the decision variables must be less than or 
equal to, greater than or equal to, or equal to.

You should now see a direct connection between the LP model we formulated for 
Blue Ridge Hot Tubs in equations 2.5 through 2.10 and the general de�nition of an 
LP model given in equations 2.11 through 2.14. In particular, note that the various 
symbols used in equations 2.11 through 2.14 to represent numeric constants (that is, 
the cj, aij, and bi) were replaced by actual numeric values in equations 2.5 through 
2.10. Also, note that our formulation of the LP model for Blue Ridge Hot Tubs did not 
require the use of equal to constraints. Different problems require different types of 
constraints, and you should use whatever types of constraints are necessary for the 
problem at hand.

2.9 Solving LP Problems:  
An Intuitive Approach
After an LP model has been formulated, our interest naturally turns to solving it. But 
before we actually solve our example problem for Blue Ridge Hot Tubs, what do you 
think is the optimal solution to the problem? Just by looking at the model, what values 
for X1 and X2 do you think would give Howie the largest pro�t?

Following one line of reasoning, it might seem that Howie should produce as many 
units of X1 (Aqua-Spas) as possible because each of these generates a pro�t of $350, 
whereas each unit of X2 (Hydro-Luxes) generates a pro�t of only $300. But what is the 
maximum number of Aqua-Spas that Howie could produce?

Howie can produce the maximum number of units of X1 by making no units of X2 
and devoting all his resources to the production of X1. Suppose we let X2 5 0 in the 
model in equations 2.5 through 2.10 to indicate that no Hydro-Luxes will be produced. 
What then is the largest possible value of X1? If X2 5 0, then the inequality in equation 
2.6 tells us:

 X1 # 200 2.15

So we know that X1 cannot be any greater than 200 if X2 5 0. However, we also have 
to consider the constraints in equations 2.7 and 2.8. If X2 5 0, then the inequality in equa-
tion 2.7 reduces to:

 9X1 # 1,566 2.16

If we divide both sides of this inequality by 9, we �nd that the previous constraint is 
equivalent to:

 X1 # 174 2.17
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Now consider the constraint in equation 2.8. If X2 5 0, then the inequality in equation 
2.8 reduces to:

 12X1 # 2,880 2.18

Again, if we divide both sides of this inequality by 12, we �nd that the previous con-
straint is equivalent to:

 X1 # 240 2.19

So, if X2 5 0, the three constraints in our model imposing upper limits on the value of 
X1 reduce to the values shown in equations 2.15, 2.17, and 2.19. The most restrictive of 
these constraints is equation 2.17. Therefore, the maximum number of units of X1 that 
can be produced is 174. In other words, 174 is the largest value X1 can take on and still 
satisfy all the constraints in the model.

If Howie builds 174 units of X1 (Aqua-Spas) and 0 units of X2 (Hydro-Luxes), he will 
have used all of the labor that is available for production (9X1 5 1,566 if X1 5 174). How-
ever, he will have 26 pumps remaining (200 – X1 5 26 if X1 5 174) and 792 feet of tubing 
remaining (2,880 – 12X1 5 792 if X1 5 174). Also, notice that the objective function value 
(or total pro�t) associated with this solution is:

 $350X1 1 $300X2 5 $350 3 174 1 $300 3 0 5 $60,900 

From this analysis, we see that the solution X1 5 174, X2 5 0 is a feasible solution to the 
problem because it satis�es all the constraints of the model. But is it the optimal solution? 
In other words, is there any other possible set of values for X1 and X2 that also satis�es 
all the constraints and results in a higher objective function value? As you will see, the 
intuitive approach to solving LP problems that we have taken here cannot be trusted 
because there actually is a better solution to Howie’s problem.

2.10 Solving LP Problems:  
A Graphical Approach
The constraints of an LP model de�ne the set of feasible solutions—or the feasible  
region—for the problem. The dif�culty in LP is determining which point or points in 
the feasible region correspond to the best possible value of the objective function. For 
simple problems with only two decision variables, it is fairly easy to sketch the feasible 
region for the LP model and locate the optimal feasible point graphically. Because the 
graphical approach can be used only if there are two decision variables, it has limited 
practical use. However, it is an extremely good way to develop a basic understanding 
of the strategy involved in solving LP problems. Therefore, we will use the graphical 
approach to solve the simple problem faced by Blue Ridge Hot Tubs. Chapter 3 shows 
how to solve this and other LP problems using a spreadsheet.

To solve an LP problem graphically, you �rst must plot the constraints for the prob-
lem and identify its feasible region. This is done by plotting the boundary lines of the 
constraints and identifying the points that will satisfy all the constraints. So, how do we 
do this for our example problem (repeated here)?

MAX: 350X1 1 300X2 2.20

Subject to: 1X1 1 1X2 # 200 2.21

 9X1 1 6X2 # 1,566 2.22

 12X1 1 16X2 # 2,880 2.23

 1X1   $ 0 2.24

   1X2 $ 0 2.25
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2.10.1 PLOttIng thE FIRst cOnstRaInt

The boundary of the �rst constraint in our model, which speci�es that no more than 200 
pumps can be used, is represented by the straight line de�ned by the equation:

 X1 1 X2 5 200  2.26

If we can �nd any two points on this line, the entire line can be plotted easily by 
drawing a straight line through these points. If X2 5 0, we can see from equation 2.26 
that X1 5 200. Thus, the point (X1, X2) 5 (200, 0) must fall on this line. If we let X1 5 0, 
from equation 2.26, it is easy to see that X2 5 200. So, the point (X1, X2) 5 (0, 200) must 
also fall on this line. These two points are plotted on the graph in Figure 2.1 and con-
nected to form the straight line representing equation 2.26.

Note that the graph of the line associated with equation 2.26 actually extends beyond 
the X1 and X2 axes shown in Figure 2.1. However, we can disregard the points beyond 
these axes because the values assumed by X1 and X2 cannot be negative (because we also 
have the constraints given by X1 $ 0 and X2 $ 0).

The line connecting the points (0, 200) and (200, 0) in Figure 2.1 identi�es the points 
(X1, X2) that satisfy the equality X1 1 X2 5 200. But recall that the �rst constraint in the 
LP model is the inequality X1 1 X2 # 200. Thus, after plotting the boundary line of a 
constraint, we must determine which area on the graph corresponds to feasible solu-
tions for the original constraint. This can be done easily by picking an arbitrary point on 
either side of the boundary line and checking whether it satis�es the original constraint. 
For example, if we test the point (X1, X2) 5 (0, 0), we see that this point satis�es the �rst 
constraint. Therefore, the area of the graph on the same side of the boundary line as 
the point (0, 0) corresponds to the feasible solutions of our �rst constraint. This area of 
feasible solutions is shaded in Figure 2.1.

50

100

150

200

250

0

(0, 200)

Boundary line of
pump constraint:
X1 1 X2 5 200

(200, 0)

0 50 100 150 200 250
X1

X2

FIGURE 2.1

Graphical  
representation  
of the pump  
constraint

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 Solving LP Problems: A Graphical Approach  27

2.10.2 PLOttIng thE sEcOnD cOnstRaInt

Some of the feasible solutions to one constraint in an LP model usually will not satisfy 
one or more of the other constraints in the model. For example, the point (X1, X2) 5 
(200, 0) satis�es the �rst constraint in our model, but it does not satisfy the second 
constraint, which requires that no more than 1,566 labor hours be used (because 9 3 
200 1 6 3 0 5 1,800). So, what values for X1 and X2 will simultaneously satisfy both 
of these constraints? To answer this question, we need to plot the second constraint 
on the graph as well. This is done in the same manner as before—by locating two 
points on the boundary line of the constraint and connecting these points with a 
straight line.

The boundary line for the second constraint in our model is given by:

 9X1 1 6X2 5 1,566 2.27

If X1 5 0 in equation 2.27, then X2 5 1,566/6 5 261. So, the point (0, 261) must fall 
on the line de�ned by equation 2.27. Similarly, if X2 5 0 in equation 2.27, then X1 5  
1,566/9 5 174. So, the point (174, 0) must also fall on this line. These two points are 
plotted on the graph and connected with a straight line representing equation 2.27, as 
shown in Figure 2.2.

The line drawn in Figure 2.2 representing equation 2.27 is the boundary line for our 
second constraint. To determine the area on the graph that corresponds to feasible solu-
tions to the second constraint, we again need to test a point on either side of this line to 
see if it is feasible. The point (X1, X2) 5 (0, 0) satis�es 9X1 1 6X2 # 1,566. Therefore, all 
points on the same side of the boundary line satisfy this constraint.

FIGURE 2.2

Graphical  
representation 
of the pump and 
labor constraints
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2.10.3 PLOttIng thE thIRD cOnstRaInt

To �nd the set of values for X1 and X2 that satis�es all the constraints in the model, we 
need to plot the third constraint. This constraint requires that no more than 2,880 feet of 
tubing be used in producing the hot tubs. Again, we will �nd two points on the graph 
that fall on the boundary line for this constraint and connect them with a straight line.

The boundary line for the third constraint in our model is:

 12X1 1 16X2 5 2,880 2.28

If X1 5 0 in equation 2.28, then X2 5 2,880/16 5 180. So, the point (0, 180) must fall 
on the line de�ned by equation 2.28. Similarly, if X2 5 0 in equation 2.28, then X1 5  
2,880/12 5 240. So, the point (240, 0) must also fall on this line. These two points are 
plotted on the graph and connected with a straight line representing equation 2.28, as 
shown in Figure 2.3.

Again, the line drawn in Figure 2.3 representing equation 2.28 is the boundary line 
for our third constraint. To determine the area on the graph that corresponds to feasible 
solutions to this constraint, we need to test a point on either side of this line to see if it is 
feasible. The point (X1, X2) 5 (0, 0) satis�es 12X1 1 16X2 # 2,880. Therefore, all points on 
the same side of the boundary line satisfy this constraint.

2.10.4 thE FEasIbLE REgIOn

It is now easy to see which points satisfy all the constraints in our model. These 
points correspond to the shaded area in Figure 2.3, labeled “Feasible Region.” The 
feasible region is the set of points or values that the decision variables can assume 
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and simultaneously satisfy all the constraints in the problem. Take a moment now to 
carefully compare the graphs in Figures 2.1, 2.2, and 2.3. In particular, notice that when 
we added the second constraint in Figure 2.2, some of the feasible solutions associated 
with the �rst constraint were eliminated because these solutions did not satisfy the 
second constraint. Similarly, when we added the third constraint in Figure 2.3, another 
portion of the feasible solutions for the �rst constraint was eliminated.

2.10.5 PLOttIng thE ObjEctIvE FunctIOn

Now that we have isolated the set of feasible solutions to our LP problem, we need to 
determine which of these solutions is best. That is, we must determine which point in 
the feasible region will maximize the value of the objective function in our model. At 
�rst glance, it might seem that trying to locate this point is like searching for a needle in 
a haystack. After all, as shown by the shaded region in Figure 2.3, there are an in�nite 
number of feasible solutions to this problem. Fortunately, we can easily eliminate most 
of the feasible solutions in an LP problem from consideration. It can be shown that if an 
LP problem has an optimal solution with a �nite objective function value, this solution 
will always occur at a point in the feasible region where two or more of the bound-
ary lines of the constraints intersect. These points of intersection are sometimes called 
corner points or extreme points of the feasible region.

To see why the �nite optimal solution to an LP problem occurs at an extreme point of 
the feasible region, consider the relationship between the objective function and the fea-
sible region of our example LP model. Suppose we are interested in �nding the values 
of X1 and X2 associated with a given level of pro�t, such as $35,000. Then, mathemati-
cally, we are interested in �nding the points (X1, X2) for which our objective function 
equals $35,000, or where:

 $350X1 1 $300X2 5 $35,000 2.29

This equation de�nes a straight line, which we can plot on our graph. Speci�cally, if 
X1 5 0 then, from equation 2.29, X2 5 116.67. Similarly, if X2 5 0 in equation 2.29, then 
X1 5 100. So, the points (X1, X2) 5 (0, 116.67) and (X1, X2) 5 (100, 0) both fall on the line 
de�ning a pro�t level of $35,000. (Note that all the points on this line produce a pro�t 
level of $35,000.) This line is shown in Figure 2.4.

Now, suppose we are interested in �nding the values of X1 and X2 that produce some 
higher level of pro�t, such as $52,500. Then, mathematically, we are interested in �nd-
ing the points (X1, X2) for which our objective function equals $52,500, or where:

 $350X1 1 $300X2 5 $52,500 2.30

This equation also de�nes a straight line, which we could plot on our graph. If we do 
this, we’ll �nd that the points (X1, X2) 5 (0, 175) and (X1, X2) 5 (150, 0) both fall on this 
line, as shown in Figure 2.5.

2.10.6 FInDIng thE OPtIMaL sOLutIOn  

usIng LEvEL cuRvEs

The lines in Figure 2.5 representing the two objective function values are sometimes 
referred to as level curves because they represent different levels or values of the objec-
tive. Note that the two level curves in Figure 2.5 are parallel to one another. If we repeat 
this process of drawing lines associated with larger and larger values of our objective 
function, we will continue to observe a series of parallel lines shifting away from the 
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FIGURE 2.4
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origin—that is, away from the point (0, 0). The very last level curve we can draw that 
still intersects the feasible region determines the maximum pro�t we can achieve. This 
point of intersection, shown in Figure 2.6, represents the optimal feasible solution to the 
problem.

As shown in Figure 2.6, the optimal solution to our example problem occurs at the 
point where the largest possible level curve intersects the feasible region at a single 
point. This is the feasible point that produces the largest pro�t for Blue Ridge Hot Tubs. 
But how do we �gure out exactly what point this is and how much pro�t it provides?

If you compare Figure 2.6 to Figure 2.3, you see that the optimal solution occurs 
where the boundary lines of the pump and labor constraints intersect (or are equal). 
Thus, the optimal solution is de�ned by the point (X1, X2) that simultaneously satis�es 
equations 2.26 and 2.27, which are repeated here:

 X1 1   X2 5    200 
 9X1 1 6X2 5 1,566 

From the �rst equation, we easily conclude that X2 5 200 – X1. If we substitute this 
de�nition of X2 into the second equation we get:

 9X1 1 6(200 – X1) 5 1,566 

Using simple algebra, we can solve this equation to �nd that X1 5 122. And because 
X2 5 200 – X1, we can conclude that X2 5 78. Therefore, we have determined that the 
optimal solution to our example problem occurs at the point (X1, X2) 5 (122, 78). This 
point satis�es all the constraints in our model and corresponds to the point in Figure 2.6 
identi�ed as the optimal solution.
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The total pro�t associated with this solution is found by substituting the optimal 
values of X1 5 122 and X2 5 78 into the objective function. Thus, Blue Ridge Hot Tubs 
can realize a pro�t of $66,100 if it produces 122 Aqua-Spas and 78 Hydro-Luxes ($350 3 
122 1 $300 3 78 5 $66,100). Any other production plan results in a lower total pro�t. In 
particular, note that the solution we found earlier using the intuitive approach (which 
produced a total pro�t of $60,900) is inferior to the optimal solution identi�ed here.

2.10.7 FInDIng thE OPtIMaL sOLutIOn  

by EnuMERatIng thE cORnER POInts

Earlier, we indicated that if an LP problem has a �nite optimal solution, this solution 
will always occur at some corner point of the feasible region. So, another way of solving 
an LP problem is to identify all the corner points, or extreme points, of the feasible re-
gion and calculate the value of the objective function at each of these points. The corner 
point with the largest objective function value is the optimal solution to the problem.

This approach is illustrated in Figure 2.7, where the X1 and X2 coordinates for each of 
the extreme points are identi�ed along with the associated objective function values. As 
expected, this analysis also indicates that the point (X1, X2) 5 (122, 78) is optimal.

Enumerating the corner points to identify the optimal solution is often more dif�cult 
than the level curve approach because it requires that you identify the coordinates for all 
the extreme points of the feasible region. If there are many intersecting constraints, the 
number of extreme points can become rather large, making this procedure very tedious. 
Also, a special condition exists for which this procedure will not work. This condition, 
known as an unbounded solution, is described shortly.

FIGURE 2.7

Objective function 
values at each  
extreme point of 
the feasible region

(174, 0)
Objective function value: $60,900

(122, 78)
Objective function value: $66,100

(80, 120)
Objective function value: $64,000

(0, 0)
Objective function value: $0

(0, 180)
Objective function value: $54,000

50

100

150

200

250

0

0 50 100 150 200 250
X1

X2

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 Solving LP Problems: A Graphical Approach  33

2.10.8 suMMaRy OF gRaPhIcaL sOLutIOn tO LP PRObLEMs

To summarize this section, a two-variable LP problem is solved graphically by perform-
ing these steps:

1. Plot the boundary line of each constraint in the model.
2. Identify the feasible region, that is, the set of points on the graph that simultaneously 

satis�es all the constraints.
3. Locate the optimal solution by one of the following methods:
 a.  Plot one or more level curves for the objective function and determine the direc-

tion in which parallel shifts in this line produce improved objective function 
values. Shift the level curve in a parallel manner in the improving direction until 
it intersects the feasible region at a single point. Then �nd the coordinates for this 
point. This is the optimal solution.

 b.  Identify the coordinates of all the extreme points of the feasible region, and cal-
culate the objective function values associated with each point. If the feasible 
region is bounded, the point with the best objective function value is the optimal 
solution.

2.10.9 unDERstanDIng hOw thIngs changE

It is important to realize that if changes occur in any of the coef�cients in the objec-
tive function or constraints of this problem, then the level curve, feasible region, and 
optimal solution to this problem might also change. To be an effective LP modeler, it is 
important for you to develop some intuition about how changes in various coef�cients 
in the model will impact the solution to the problem. We will study this in greater de-
tail in Chapter 4 when discussing sensitivity analysis. However, the spreadsheet shown 
in Figure 2.8 (and the �le named Fig2-8.xlsm that accompanies this book) allows you 

FIGURE 2.8

Interactive spread-
sheet for the Blue 
Ridge Hot Tubs 
LP problem 
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