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vii

�e last thing one knows when writing a  

book is what to put �rst. 

 —Blaise Pascal

 Pensées, 1670

�e fourth edition of Linear Algebra: A Modern Introduction preserves the approach 
and features that users found to be strengths of the previous editions. However, I have 
streamlined the text somewhat, added numerous clari�cations, and freshened up the 
exercises.
 I want students to see linear algebra as an exciting subject and to appreciate its 
tremendous usefulness. At the same time, I want to help them master the basic con-
cepts and techniques of linear algebra that they will need in other courses, both in 
mathematics and in other disciplines. I also want students to appreciate the interplay 
of theoretical, applied, and numerical mathematics that pervades the subject. 
 �is book is designed for use in an introductory one- or two-semester course 
 sequence in linear algebra. First and foremost, it is intended for students, and I have 
tried my best to write the book so that students not only will �nd it readable but also 
will want to read it. As in the �rst three editions, I have taken into account the  reality 
that students taking introductory linear algebra are likely to come from a variety of 
disciplines. In addition to mathematics majors, there are apt to be majors from 
 engineering, physics, chemistry, computer science, biology, environmental science, 
 geography, economics, psychology, business, and education, as well as other students 
taking the course as an elective or to ful�ll degree requirements. Accordingly, the book 
balances theory and applications, is written in a conversational style yet is fully  rigorous, 
and combines a traditional presentation with concern for student-centered learning.
 �ere is no such thing as a universally best learning style. In any class, there will be 
some students who work well independently and others who work best in groups; 
some who prefer lecture-based learning and others who thrive in a workshop setting, 
doing  explorations; some who enjoy algebraic manipulations, some who are adept at 
 numerical calculations (with and without a computer), and some who exhibit strong 
geometric intuition. In this edition, I continue to present material in a variety of 
ways—algebraically, geometrically, numerically, and verbally—so that all types of learn-
ers can �nd a path to follow. I have also attempted to present the theoretical, computa-
tional, and applied topics in a �exible yet integrated way. In doing so, it is my hope that 
all  students will be exposed to the many sides of linear algebra.
 �is book is compatible with the recommendations of the Linear Algebra  Curriculum 
Study Group. From a pedagogical point of view, there is no doubt that for most students 

For more on the recommendations 

of the Linear Algebra Curriculum 

Study Group, see �e College 

Mathematics  Journal 24 (1993), 

41–46.

Preface
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concrete examples should precede abstraction. I have taken this approach here. I also 
believe strongly that linear algebra is essentially about vectors and that  students need to 
see vectors �rst (in a concrete setting) in order to gain some geometric insight. Moreover, 
introducing vectors early allows students to see how systems of linear equations arise 
naturally from geometric problems. Matrices then arise equally naturally as coe�cient 
matrices of linear systems and as agents of change  (linear transformations). �is sets the 
stage for eigenvectors and orthogonal projections, both of which are best understood 
geometrically. �e dart that appears on the cover of this book symbolizes  a vector and 
re�ects my conviction that geometric understanding should precede computational 
techniques.
 I have tried to limit the number of theorems in the text. For the most part, results 
labeled as theorems either will be used later in the text or summarize preceding work. 
Interesting results that are not central to the book have been included as exercises or 
explorations. For example, the cross product of vectors is discussed only in explo-
rations (in Chapters 1 and 4). Unlike most linear algebra textbooks, this book has no 
chapter on determinants. �e essential results are all in Section 4.2, with other inter-
esting material contained in an exploration. �e book is, however, comprehensive for 
an introductory text. Wherever possible, I have included elementary and accessible 
proofs of theorems in order to avoid having to say, “�e proof of this result is beyond 
the scope of this text.” �e result is, I hope, a work that is self-contained.
 I have not been stingy with the applications: �ere are many more in the book than 
can be covered in a single course. However, it is important that students see the impressive 
range of problems to which linear algebra can be applied. I have included some modern 
material on �nite linear algebra and coding theory that is not normally found in an intro-
ductory linear algebra text. �ere are also several impressive real-world applications of 
linear algebra and one item of historical, if not practical, interest; these applications are 
presented as self-contained “vignettes.”
 I hope that instructors will enjoy teaching from this book. More important, I hope 
that students using the book will come away with an appreciation of the beauty, power, 
and tremendous utility of linear algebra and that they will have fun along the way.

What’s New in the Fourth Edition

�e overall structure and style of Linear Algebra: A Modern Introduction remain the 
same in the fourth edition.
 Here is a summary of what is new:

  �e applications to coding theory have been moved to the new online  Chapter 8.
  To further engage students, �ve writing projects have been added to the exer-

cise sets. �ese projects give students a chance to research and write about aspects of 
the history and development of linear algebra. �e explorations, vignettes, and many 
of the applications provide additional material for student projects.

  �ere are over 200 new or revised exercises. In response to reviewers, com-
ments, there is now a full proof of the Cauchy-Schwarz Inequality in Chapter 1 in the 
form of a guided exercise.

  I have made numerous small changes in wording to improve the clarity or 
 accuracy of the exposition. Also, several de�nitions have been made more explicit by 
giving them their own de�nition boxes and a few results have been highlighted by 
labeling them as theorems.

  All existing ancillaries have been updated. 

viii       Preface
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Features

Clear Writing Style

�e text is written is a simple, direct, conversational style. As much as possible, I have 
used “mathematical English” rather than relying excessively on mathematical nota-
tion. However, all proofs that are given are fully rigorous, and Appendix A contains 
an introduction to mathematical notation for those who wish to streamline their own 
writing. Concrete examples almost always precede theorems, which are then followed 
by further examples and applications. �is �ow—from speci�c to general and back 
again—is consistent throughout the book.

Key Concepts Introduced Early

Many students encounter di�culty in linear algebra when the course moves from the 
computational (solving systems of linear equations, manipulating vectors and matri-
ces) to the theoretical (spanning sets, linear independence, subspaces, basis, and 
 dimension). �is book introduces all of the key concepts of linear algebra early, in a 
concrete setting, before revisiting them in full generality. Vector concepts such as dot 
product, length, orthogonality, and projection are �rst discussed in Chapter 1 in the 
concrete setting of R2 and R3 before the more general notions of inner product, norm, 
and orthogonal projection appear in Chapters 5 and 7. Similarly, spanning sets and 
linear independence are given a concrete treatment in Chapter 2 prior to their gener-
alization to vector spaces in Chapter 6. �e fundamental concepts of subspace, basis, 
and dimension appear �rst in Chapter 3 when the row, column, and null spaces of a 
matrix are introduced; it is not until Chapter 6 that these ideas are given a  general 
treatment. In Chapter 4, eigenvalues and eigenvectors are introduced and  explored 
for 2 3 2 matrices before their n 3 n counterparts appear. By the beginning of Chap-
ter 4, all of the key concepts of linear algebra have been introduced, with  concrete, 
computational examples to support them. When these ideas appear in full generality 
later in the book, students have had time to get used to them and, hence, are not so 
intimidated by them.

Emphasis on Vectors and Geometry

In keeping with the philosophy that linear algebra is primarily about vectors, this 
book stresses geometric intuition. Accordingly, the �rst chapter is about vectors, and 
it develops many concepts that will appear repeatedly throughout the text. Concepts 
such as orthogonality, projection, and linear combination are all found in Chapter 1, 
as is a comprehensive treatment of lines and planes in R3 that provides essential 
 insight into the solution of systems of linear equations. �is emphasis on vectors, 
geometry, and visualization is found throughout the text. Linear transformations are 
introduced as matrix transformations in Chapter 3, with many geometric examples, 
before general linear transformations are covered in Chapter 6. In Chapter 4, eigen-
values are introduced with “eigenpictures” as a visual aid. �e proof of Perron’s 
 �eorem is given �rst heuristically and then formally, in both cases using a geometric 
argument. �e geometry of linear dynamical systems reinforces and summarizes the 
material on eigenvalues and eigenvectors. In Chapter 5, orthogonal projections, or-
thogonal complements of subspaces, and the Gram-Schmidt Process are all presented 
in the concrete setting of R3 before being generalized to Rn and, in Chapter 7, to inner 

Preface       ix
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product spaces. �e nature of the singular value decomposition is also  explained in-
formally in Chapter 7 via a geometric argument. Of the more than 300 �gures in the 
text, over 200 are devoted to fostering a geometric understanding of linear algebra.

Explorations

�e introduction to each chapter is a guided exploration (Section 0) in which stu-
dents are invited to discover, individually or in groups, some aspect of the upcoming 
chapter. For example, “�e Racetrack Game” introduces vectors, “Matrices in Action” 
introduces matrix multiplication and linear transformations, “Fibonacci in (Vector) 
Space” touches on vector space concepts, and “Taxicab Geometry” sets up general-
ized norms and distance functions. Additional explorations found throughout the 
book include applications of vectors and determinants to geometry, an investigation 
of 3 3 3 magic squares, a study of symmetry via the tilings of M. C. Escher, an intro-
duction to complex linear algebra, and optimization problems using geometric 
 inequalities. �ere are also explorations that introduce important numerical consid-
erations and the analysis of algorithms. Having students do some of these explo-
rations is one way of encouraging them to become active learners and to give them 
“ownership” over a small part of the course.

Applications

�e book contains an abundant selection of applications chosen from a broad range 
of disciplines, including mathematics, computer science, physics, chemistry, engi-
neering, biology, business, economics, psychology, geography, and sociology. Note-
worthy among these is a strong treatment of coding theory, from error-detecting 
codes (such as International Standard Book Numbers) to sophisticated error- 
correcting codes (such as the Reed-Muller code that was used to transmit satellite 
photos from space). Additionally, there are �ve “vignettes” that brie�y showcase some 
very modern applications of linear  algebra: the Global Positioning System (GPS), ro-
botics, Internet search engines, digital image compression, and the Codabar System.

Examples and Exercises

�ere are over 400 examples in this book, most worked in greater detail than is cus-
tomary in an introductory linear algebra textbook. �is level of detail is in keeping 
with the philosophy that students should want (and be able) to read a textbook. 
 Accordingly, it is not intended that all of these examples be covered in class; many can 
be assigned for individual or group study, possibly as part of a project. Most examples 
have at least one counterpart exercise so that students can try out the skills covered in 
the example before exploring generalizations.
 �ere are over 2000 exercises, more than in most textbooks at a similar level. 
 Answers to most of the computational odd-numbered exercises can be found in the 
back of the book. Instructors will �nd an abundance of exercises from which to select 
homework assignments. �e exercises in each section are graduated, progressing from 
the routine to the challenging. Exercises range from those intended for hand computa-
tion to those requiring the use of a calculator or computer algebra system, and from 
theoretical and numerical  exercises to conceptual exercises. Many of the examples and 
exercises use actual data compiled from real-world situations. For example, there are 
problems on modeling the growth of caribou and seal populations, radiocarbon dating 
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of the Stonehenge monument, and predicting major league baseball players’ salaries. 
Working such problems reinforces the fact that linear algebra is a valuable tool for mod-
eling real-life problems.
 Additional exercises appear in the form of a review a�er each chapter. In each set, 
there are 10 true/false questions designed to test conceptual understanding, followed 
by 19 computational and theoretical exercises that summarize the main concepts and 
techniques of that chapter.

Biographical Sketches and Etymological Notes

It is important that students learn something about the history of mathematics and 
come to see it as a social and cultural endeavor as well as a scienti�c one. Accord-
ingly, the text contains short biographical sketches about many of the mathemati-
cians who contributed to the development of linear algebra. I hope that these will 
help to put a human face on the subject and give students another way of relating to 
the material. 
 I have found that many students feel alienated from mathematics because the 
terminology makes no sense to them—it is simply a collection of words to be learned. 
To help overcome this problem, I have included short etymological notes that give 
the origins of many of the terms used in linear algebra. (For example, why do we 
use the word normal to refer to a vector that is perpendicular to a plane?)

Margin Icons

�e margins of the book contain several icons whose purpose is to alert the reader in 
various ways. Calculus is not a prerequisite for this book, but linear algebra has many 
interesting and important applications to calculus. �e 

dy

dx  icon denotes an example or 
exercise that requires calculus. (�is material can be omitted if not everyone in the 
class has had at least one semester of calculus. Alternatively, this material can be as-
signed as projects.) �e a + bi  icon denotes an example or exercise involving complex 
numbers. (For students unfamiliar with complex numbers, Appendix C contains all 
the background material that is needed.) �e CAS  icon indicates that a computer  algebra 
 system (such as Maple, Mathematica, or MATLAB) or a calculator with matrix capa-
bilities (such as almost any graphing calculator) is required—or at least very useful—
for solving the example or exercise.
 In an e�ort to help students learn how to read and use this textbook most ef-
fectively, I have noted various places where the reader is advised to pause. �ese 
may be places where a calculation is needed, part of a proof must be supplied, a 
claim should be veri�ed, or some extra thought is required. �e  icon  appears 
in the margin at such places; the message is “Slow down. Get out your  pencil. 
�ink about this.”

Technology

�is book can be used successfully whether or not students have access to technol-
ogy. However, calculators with matrix capabilities and computer algebra systems 
are now commonplace and, properly used, can enrich the learning experience as 
well as help with tedious calculations. In this text, I take the point of view that stu-
dents need to master all of the basic techniques of linear algebra by solving by hand 
examples that are not too computationally di�cult. Technology may then be used 
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(in whole or in part) to solve subsequent examples and applications and to apply 
techniques that rely on earlier ones. For example, when systems of linear equations 
are �rst introduced, detailed solutions are provided; later, solutions are simply 
given, and the reader is  expected to verify them. �is is a good place to use some 
form of technology.  Likewise, when applications use data that make hand calcula-
tion impractical, use technology. All of the numerical methods that are discussed 
depend on the use of technology.
 With the aid of technology, students can explore linear algebra in some exciting 
ways and discover much for themselves. For example, if one of the coe�cients of a 
linear system is replaced by a parameter, how much variability is there in the solu-
tions? How does changing a single entry of a matrix a�ect its eigenvalues? �is book 
is not a tutorial on technology, and in places where technology can be used, I have not 
speci�ed a particular type of technology. �e student companion website that 
 accompanies this book o�ers an online appendix called Technology Bytes that gives 
instructions for solving a selection of examples from each chapter using Maple, Math-
ematica, and MATLAB. By imitating these examples, students can do further calcula-
tions and explorations using whichever CAS they have and exploit the power of these 
systems to help with the exercises throughout the book, particularly those marked 
with the CAS  icon. �e website also contains data sets and computer code in Maple, 
Mathematica, and MATLAB formats keyed to many exercises and examples in the 
text. Students and instructors can import these directly into their CAS to save  typing 
and eliminate errors.

Finite and Numerical Linear Algebra

�e text covers two aspects of linear algebra that are scarcely ever mentioned to-
gether: �nite linear algebra and numerical linear algebra. By introducing modular 
arithmetic early, I have been able to make �nite linear algebra (more properly, “linear 
algebra over �nite �elds,” although I do not use that phrase) a recurring theme 
throughout the book. �is approach provides access to the material on coding theory 
in Chapter 8 (online). �ere is also an application to �nite linear games in Section 2.4 
that students really enjoy. In addition to being exposed to the applications of �nite 
linear algebra, mathematics majors will bene�t from seeing the material on �nite 
�elds, because they are likely to encounter it in such courses as discrete mathematics, 
abstract algebra, and number theory. 
 All students should be aware that in practice, it is impossible to arrive at exact 
solutions of large-scale problems in linear algebra. Exposure to some of the tech-
niques of numerical linear algebra will provide an indication of how to obtain 
highly accurate approximate solutions. Some of the numerical topics included in 
the book are roundo� error and partial pivoting, iterative methods for solving 
linear systems and computing eigenvalues, the LU and QR factorizations, matrix 
norms and condition numbers, least squares approximation, and the singular 
value decomposition. �e  inclusion of numerical linear algebra also brings up 
some interesting and important issues that are completely absent from the theory 
of linear algebra, such as pivoting strategies, the condition of a linear system, and 
the convergence of iterative methods. �is book not only raises these questions 
but also shows how one might approach them. Gerschgorin disks, matrix norms, 
and the singular values of a matrix, discussed in Chapters 4 and 7, are useful in 
this regard.
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Appendices

Appendix A contains an overview of mathematical notation and methods of proof, 
and Appendix B discusses mathematical induction. All students will bene�t from 
these sections, but those with a mathematically oriented major may wish to pay 
particular attention to them. Some of the examples in these appendices are uncom-
mon (for instance, Example B.6 in Appendix B) and underscore the power of the 
methods. Appendix C is an introduction to complex numbers. For students  familiar 
with these results, this appendix can serve as a useful reference; for others, this sec-
tion contains everything they need to know for those parts of the text that use com-
plex numbers. Appendix D is about polynomials. I have found that many students 
require a refresher about these facts. Most students will be unfamiliar with Descartes’s 
Rule of Signs; it is used in Chapter 4 to explain the behavior of the eigenvalues of 
Leslie matrices.  Exercises to accompany the four appendices can be found on the 
book’s website.
 Short answers to most of the odd-numbered computational exercises are given at 
the end of the book. Exercise sets to accompany Appendixes A, B, C, and D are avail-
able on the companion website, along with their odd-numbered answers.

Ancillaries

For Instructors

Enhanced WebAssign®  
Printed Access Card: 978-1-285-85829-6
Online Access Code: 978-1-285-85827-2
Exclusively from Cengage Learning, Enhanced WebAssign combines the exceptional 
mathematics content that you know and love with the most powerful online home-
work solution, WebAssign. Enhanced WebAssign engages students with immediate 
feedback, rich tutorial content, and interactive, fully customizable eBooks (YouBook), 
helping students to develop a deeper conceptual understanding of their subject 
 matter. Flexible assignment options give instructors the ability to release assignments 
conditionally based on students’ prerequisite assignment scores. Visit us at www. 

cengage.com/ewa to learn more.

Cengage Learning Testing Powered by Cognero
Cengage Learning Testing Powered by Cognero is a �exible, online system that allows 
you to author, edit, and manage test bank content from multiple Cengage Learning 
solutions; create multiple test versions in an instant; and deliver tests from your LMS, 
your classroom, or wherever you want.

Complete Solutions Manual
�e Complete Solutions Manual provides detailed solutions to all exercises in the 
text, including Exploration and Chapter Review exercises. �e Complete Solutions 
Manual is available online.

Instructor’s Guide
�is online guide enhances the text with valuable teaching resources such as group 
work projects, teaching tips, interesting exam questions, examples and extra 
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 material for lectures, and other items designed to reduce the instructor’s prepara-
tion time and make linear algebra class an exciting and interactive experience. For 
each section of the text, the Instructor’s Guide includes suggested time and empha-
sis, points to stress, questions for discussion, lecture materials and examples, tech-
nology tips, student projects, group work with solutions, sample assignments, and 
suggested test  questions.

Solution Builder
www.cengage.com/solutionbuilder
Solution Builder provides full instructor solutions to all exercises in the text, includ-
ing those in the explorations and chapter reviews, in a convenient online format. 
Solution Builder allows instructors to create customized, secure PDF printouts of 
solutions matched exactly to the exercises assigned for class.

*Access Cognero and additional instructor resources online at login.cengage.com.

For Students

Student Solutions Manual (ISBN-13: 978-1-285-84195-3)
�e Student Solutions Manual and Study Guide includes detailed solutions to all odd- 
numbered exercises and selected even-numbered exercises; section and chapter 
 summaries of symbols, de�nitions, and theorems; and study tips and hints. Complex 
exercises are explored through a question-and-answer format designed to deepen 
 understanding. Challenging and entertaining problems that further explore selected 
exercises are also included.

Enhanced WebAssign®  
Printed Access Card: 978-1-285-85829-6
Online Access Code: 978-1-285-85827-2
Enhanced WebAssign (assigned by the instructor) provides you with instant feedback 
on homework assignments. �is online homework system is easy to use and includes 
helpful links to textbook sections, video examples, and problem-speci�c tutorials.

CengageBrain.com
To access additional course materials and companion resources, please visit www.
cengagebrain.com. At the CengageBrain.com home page, search for the ISBN of your 
title (from the back cover of your book) using the search box at the top of the page. 
�is will take you to the product page where free companion resources can be found.
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xvii

“Would you tell me, please, 
which way I ought to go from here?” 
“�at depends a good deal on where 
you want to get to,” said the Cat.

—Lewis Carroll  

Alice’s Adventures in  

Wonderland, 1865

�is text was written with �exibility in mind. It is intended for use in a one- or 
two-semester course with 36 lectures per semester. �e range of topics and applica-
tions makes it suitable for a variety of audiences and types of courses. However, 
there is more material in the book than can be covered in class, even in a two- 
semester course. A�er the following overview of the text are some brief suggestions 
for ways to use the book.

An Overview of the Text

Chapter 1: Vectors

�e racetrack game in Section 1.0 serves to introduce vectors in an informal way. (It’s also 
quite a lot of fun to play!) Vectors are then formally introduced from both algebraic and 
geometric points of view. �e operations of addition and scalar multiplication and their 
properties are �rst developed in the concrete settings of R2 and R3 before being general-
ized to Rn. Modular arithmetic and �nite linear algebra are also introduced. Section 1.2 
de�nes the dot product of vectors and the related notions of length, angle, and orthogo-
nality. �e very important concept of  (orthogonal) projection is developed here; it will 
reappear in Chapters 5 and 7. �e exploration “Vectors and Geometry” shows how vec-
tor methods can be used to prove certain results in Euclidean geometry. Section 1.3 is a 
basic but thorough  introduction to lines and planes in R2 and R3. �is section is crucial 
for understanding the geometric signi�cance of the solution of linear  systems in Chap-
ter 2. Note that the cross product of vectors in R3 is le� as an  exploration. �e chapter 
concludes with an application to force vectors.

Chapter 2: Systems of Linear Equations

�e introduction to this chapter serves to illustrate that there is more than one way to 
think of the solution to a system of linear equations. Sections 2.1 and 2.2 develop the 
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main computational tool for solving linear systems: row reduction of matrices (Gaus-
sian and Gauss-Jordan elimination). Nearly all subsequent computational methods in 
the book depend on this. �e Rank �eorem appears here for the �rst time; it shows 
up again, in more generality, in Chapters 3, 5, and 6. Section 2.3 is very important; it 
introduces the fundamental notions of spanning sets and linear independence of vec-
tors. Do not rush through this material. Section 2.4 contains six  applications from 
which instructors can choose depending on the time available and the interests of the 
class. �e vignette on the Global Positioning System provides  another application 
that students will enjoy. �e iterative methods in Section 2.5 will be optional for many 
courses but are essential for a course with an applied/numerical focus. �e three ex-
plorations in this chapter are related in that they all deal with  aspects of the use of 
computers to solve linear systems. All students should at least be made aware of these 
issues.

Chapter 3: Matrices

�is chapter contains some of the most important ideas in the book. It is a long 
 chapter, but the early material can be covered fairly quickly, with extra time allowed 
for the crucial material in Section 3.5. Section 3.0 is an exploration that introduces 
the notion of a linear transformation: the idea that matrices are not just static objects 
but rather a type of function, transforming vectors into other vectors. All of the basic 
facts about matrices, matrix operations, and their properties are found in the �rst two 
sections. �e material on partitioned matrices and the multiple representations of the 
matrix product is worth stressing, because it is used repeatedly in subsequent  sections. 
�e Fundamental �eorem of Invertible Matrices in Section 3.3 is very  important 
and will appear several more times as new characterizations of invert ibility are pre-
sented. Section 3.4 discusses the very important LU factorization of a  matrix. If this 
topic is not covered in class, it is worth assigning as a project or discussing in a work-
shop. �e point of Section 3.5 is to present many of the key concepts of linear  algebra 
(subspace, basis, dimension, and rank) in the concrete setting of matrices  before stu-
dents see them in full generality. Although the examples in this section are all famil-
iar, it is important that students get used to the new terminology and, in  particular, 
understand what the notion of a basis means. �e geometric treatment of linear 
transformations in Section 3.6 is intended to smooth the transition to general  linear 
transformations in Chapter 6. �e example of a projection is particularly  important 
because it will reappear in Chapter 5. �e vignette on robotic arms is a concrete 
demonstration of composition of linear (and a�ne) transformations. �ere are four 
applications from which to choose in Section 3.7. Either Markov chains or the Leslie 
model of population growth should be covered so that they can be used again in 
 Chapter 4, where their behavior will be explained.

Chapter 4: Eigenvalues and Eigenvectors

�e introduction Section 4.0 presents an interesting dynamical system involving 
graphs. �is exploration introduces the notion of an eigenvector and foreshadows the 
power method in Section 4.5. In keeping with the geometric emphasis of the book, 
Section 4.1 contains the novel feature of “eigenpictures” as a way of visualizing the 
eigenvectors of 2 3 2 matrices. Determinants appear in Section 4.2, motivated by 
their use in �nding the characteristic polynomials of small matrices. �is “crash 
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course” in determinants contains all the essential material students need, including 
an optional but elementary proof of the Laplace Expansion �eorem. �e vignette 
“Lewis Carroll’s Condensation Method” presents a historically interesting, alternative 
method of calculating determinants that students may �nd appealing. �e explo-
ration “Geometric Applications of Determinants” makes a nice project that contains 
several interesting and useful results. (Alternatively, instructors who wish to give 
more detailed coverage to determinants may choose to cover some of this exploration 
in class.) �e basic theory of eigenvalues and eigenvectors is found in Section 4.3, and  
Section 4.4 deals with the important topic of diagonalization. Example 4.29 on  powers 
of matrices is worth covering in class. �e power method and its variants,  discussed 
in Section 4.5, are optional, but all students should be aware of the method, and an 
applied course should cover it in detail. Gerschgorin’s Disk �eorem can be covered 
independently of the rest of Section 4.5. Markov chains and the Leslie model of pop-
ulation growth reappear in Section 4.6. Although the proof of Perron’s  �eorem is 
optional, the theorem itself (like the stronger Perron-Frobenius  �eorem) should at 
least be mentioned because it explains why we should expect a unique positive eigen-
value with a corresponding positive eigenvector in these applications. �e applica-
tions on recurrence relations and di�erential equations connect linear algebra to dis-
crete mathematics and calculus, respectively. �e matrix exponential can be covered 
if your class has a good calculus background. �e �nal topic of discrete  linear dynam-
ical systems revisits and summarizes many of the ideas in Chapter 4, looking at them 
in a new, geometric light. Students will enjoy reading how eigenvectors can be used to 
help rank sports teams and websites. �is vignette can easily be extended to a project 
or enrichment activity.

Chapter 5: Orthogonality

�e introductory exploration, “Shadows on a Wall,” is mathematics at its best: it takes 
a known concept (projection of a vector onto another vector) and generalizes it in a 
useful way (projection of a vector onto a subspace—a plane), while  uncovering some 
previously unobserved properties. Section 5.1 contains the basic results about or-
thogonal and orthonormal sets of vectors that will be used repeatedly from here on. 
In particular, orthogonal matrices should be stressed. In Section 5.2, two concepts 
from Chapter 1 are generalized: the orthogonal complement of a subspace and the 
orthogonal projection of a vector onto a subspace. �e  Orthogonal Decomposition 
�eorem is important here and helps to set up the Gram-Schmidt Process. Also note 
the quick proof of the Rank �eorem. �e Gram-Schmidt Process is detailed in 
 Section 5.3, along with the extremely important QR factorization. �e two explo-
rations that follow outline how the QR factorization is computed in practice and how 
it can be used to approximate eigenvalues. Section 5.4 on  orthogonal diagonalization 
of (real) symmetric matrices is needed for the  applications that follow. It also contains 
the Spectral �eorem, one of the highlights of the theory of linear algebra. �e appli-
cations in Section 5.5 are quadratic forms and graphing quadratic equations. I always 
include at least the second of these in my course because it  extends what students al-
ready know about conic sections.

Chapter 6: Vector Spaces

�e Fibonacci sequence reappears in Section 6.0, although it is not important that 
 students have seen it before (Section 4.6). �e purpose of this exploration is to show 
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that familiar vector space concepts (Section 3.5) can be used fruitfully in a new 
 setting. Because all of the main ideas of vector spaces have already been introduced in 
 Chapters 1–3, students should �nd Sections 6.1 and 6.2 fairly familiar. �e emphasis 
here should be on using the vector space axioms to prove properties rather than rely-
ing on computational techniques. When discussing change of basis in Section 6.3, it 
is helpful to show students how to use the notation to remember how the construc-
tion works. Ultimately, the Gauss-Jordan method is the most e�cient here. Sec-
tions 6.4 and 6.5 on linear transformations are important. �e examples are related to 
 previous results on matrices (and matrix transformations). In particular, it is impor-
tant to stress that the kernel and range of a linear transformation generalize the null 
space and column space of a matrix. Section 6.6 puts forth the notion that (almost) all 
 linear transformations are essentially matrix transformations. �is builds on the 
 information in Section 3.6, so students should not �nd it terribly surprising.  However, 
the examples should be worked carefully. �e connection between change of basis 
and similarity of matrices is noteworthy. �e exploration “Tilings, Lattices, and the 
Crystallographic  Restriction” is an impressive application of change of basis. �e con-
nection with the artwork of M. C. Escher makes it all the more interesting. �e appli-
cations in Section 6.7 build on previous ones and can be included as time and interest 
permit.

Chapter 7: Distance and Approximation

Section 7.0 opens with the entertaining “Taxicab Geometry” exploration. Its 
 purpose is to set up the material on generalized norms and distance functions 
(metrics) that follows. Inner product spaces are discussed in Section 7.1; the em-
phasis here should be on the examples and using the axioms. �e exploration “Vec-
tors and  Matrices with Complex Entries” shows how the concepts of dot product, 
symmetric matrix, orthogonal matrix, and orthogonal diagonalization can be ex-
tended from real to complex vector spaces. �e following exploration, “Geometric 
Inequalities and  Optimization Problems,” is one that students typically enjoy. (�ey 
will have fun  seeing how many  “calculus” problems can be solved without using 
calculus at all!) Section 7.2 covers generalized vector and matrix norms and shows 
how the condition number of a matrix is related to the notion of ill-conditioned 
linear systems explored in Chapter 2. Least squares approximation (Section 7.3) is 
an important application of linear algebra in many other disciplines. �e Best Ap-
proximation �eorem and the Least Squares �eorem are important, but their 
proofs are intuitively clear. Spend time here on the examples—a few should su�ce. 
Section 7.4 presents the singular value decomposition, one of the most impressive 
applications of linear algebra. If your course gets this far, you will be amply re-
warded. Not only does the SVD tie  together many notions discussed previously; it 
also a�ords some new (and quite powerful)  applications. If a CAS is available, the 
vignette on digital image compression is worth presenting; it is a visually impres-
sive display of the power of linear algebra and a �tting culmination to the course. 
�e further applications in Section 7.5 can be chosen according to the time avail-
able and the interests of the class.

Chapter 8: Codes

This online chapter contains applications of linear algebra to the theory of codes. 
Section 8.1 begins with a discussion of how vectors can be used to design 
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 error- detecting codes such as the familiar Universal Product Code (UPC) and 
 International Standard Book Number (ISBN). This topic only requires knowl-
edge of Chapter 1. The vignette on the Codabar system used in credit and bank 
cards is an excellent classroom presentation that can even be used to introduce 
Section 8.1. Once students are familiar with matrix operations, Section 8.2 de-
scribes how codes can be designed to correct as well as detect errors. The 
 Hamming codes introduced here are perhaps the most famous examples of such 
error-correcting codes. Dual codes, discussed in Section 8.3, are an important 
way of constructing new codes from old ones. The notion of orthogonal comple-
ment, introduced in Chapter 5, is the prerequisite concept here. The most 
 important, and most widely used, class of codes is the class of linear codes that is 
 defined in Section 8.4. The notions of subspace, basis, and dimension are key 
here. The powerful Reed-Muller codes used by NASA spacecraft are important 
examples of linear codes. Our discussion of codes concludes in Section 8.5 with 
the definition of the minimum distance of a code and the role it plays in deter-
mining the error-correcting capability of the code.

How to Use the Book

Students find the book easy to read, so I usually have them read a section before I 
cover the material in class. That way, I can spend class time highlighting the most 
 important concepts, dealing with topics students find difficult, working examples, 
and discussing applications. I do not attempt to cover all of the material from the 
 assigned reading in class. This approach enables me to keep the pace of the course 
fairly brisk, slowing down for those sections that students typically find 
 challenging.
 In a two-semester course, it is possible to cover the entire book, including a rea-
sonable selection of applications. For extra �exibility, you might omit some of the 
topics (for example, give only a brief treatment of numerical linear algebra), thereby 
freeing up time for more in-depth coverage of the remaining topics, more applica-
tions, or some of the explorations. In an honors mathematics course that emphasizes 
proofs, much of the  material in Chapters 1–3 can be covered quickly. Chapter 6 can 
then be covered in conjunction with Sections 3.5 and 3.6, and Chapter 7 can be in-
tegrated into Chapter 5. I would be sure to assign the explorations in Chapters 1, 4, 
6, and 7 for such a class.
 For a one-semester course, the nature of the course and the audience will deter-
mine which topics to include. �ree possible courses are described below and on the 
following page. �e basic course, described �rst, has fewer than 36 hours suggested, 
allowing time for extra  topics, in-class review, and tests. �e other two courses build 
on the basic course but are still quite �exible. 

A Basic Course

A course designed for mathematics majors and students from other disciplines is 
outlined on the next page. �is course does not mention general vector spaces at all 
(all concepts are treated in a concrete setting) and is very light on proofs. Still, it is a 
thorough  introduction to linear algebra.

 To the Instructor       xxi

See page 626
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xxii       To the Instructor

Section Number of Lectures

1.1 1
1.2 1–1.5
1.3 1–1.5
2.1 0.5–1
2.2 1–2
2.3 1–2
3.1 1–2
3.2 1
3.3 2
3.5 2

Section Number of Lectures

3.6 1–2
4.1 1
4.2 2
4.3 1
4.4 1–2
5.1 1–1.5
5.2 1–1.5
5.3 0.5
5.4 1
7.3 2

 Because the students in a course such as this one represent a wide variety of dis-
ciplines, I would suggest using much of the remaining lecture time for applications. 
In my course, I do code vectors in Section 8.1, which students really seem to like, and 
at least one application from each of Chapters 2–5. Other applications can be as-
signed as projects, along with as many of the explorations as desired. �ere is also 
su�cient lecture time available to cover some of the theory in detail.

A Course with a Computational Emphasis

For a course with a computational emphasis, the basic course outlined on the  previous 
page can be supplemented with the sections of the text dealing with numerical linear 
 algebra. In such a course, I would cover part or all of Sections 2.5, 3.4, 4.5, 5.3, 7.2, and 
7.4, ending with the singular value decomposition. �e explorations in Chapters 2  
and 5 are particularly well suited to such a course, as are almost any of the applications.

A Course for Students Who Have Already  
Studied Some Linear Algebra

Some courses will be aimed at students who have already encountered the basic prin-
ciples of linear algebra in other courses. For example, a college algebra course will 
o�en include an introduction to systems of linear equations, matrices, and deter-
minants; a multivariable calculus course will almost certainly contain material on 
 vectors, lines, and planes. For students who have seen such topics already, much early 
material can be omitted and replaced with a quick review. Depending on the back-
ground of the class, it may be possible to skim over the material in the basic course up 
to Section 3.3 in about six lectures. If the class has a signi�cant number of mathemat-
ics majors (and especially if this is the only linear algebra course they will take), 
I would be sure to cover Sections 6.1–6.5, 7.1, and 7.4 and as many applications as time 
permits. If the course has science majors (but not mathematics majors), I would cover 
Sections 6.1 and 7.1 and a broader selection of applications, being sure to include the 
material on di�erential equations and approximation of functions. If computer sci-
ence students or engineers are prominently represented, I would try to do as much of 
the material on codes and numerical linear algebra as I could.
 �ere are many other types of courses that can successfully use this text. I hope 
that you �nd it useful for your course and that you enjoy using it.

Total: 23–30 lectures
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xxiii

“Where shall I begin, please your 

Majesty?” he asked. 

“Begin at the beginning,” the King  

said, gravely, “and go on till you come 

to the end: then stop.”

—Lewis Carroll

 Alice’s Adventures in  

Wonderland, 1865

Linear algebra is an exciting subject. It is full of interesting results, applications to 
other disciplines, and connections to other areas of mathematics. �e Student Solu-
tions Manual and Study Guide contains detailed advice on how best to use this book; 
following are some general suggestions.
 Linear algebra has several sides: �ere are computational techniques, concepts, and 
applications. One of the goals of this book is to help you master all of these facets of 
the subject and to see the interplay among them. Consequently, it is important that 
you read and understand each section of the text before you attempt the exercises in 
that section. If you read only examples that are related to exercises that have been 
 assigned as homework, you will miss much. Make sure you understand the de�ni-
tions of terms and the meaning of theorems. Don’t worry if you have to read some-
thing more than once before you understand it. Have a pencil and calculator with you 
as you read. Stop to work out examples for yourself or to �ll in missing calculations. 
�e  icon in the margin indicates a place where you should pause and think over 
what you have read so far.
 Answers to most odd-numbered computational exercises are in the back of the 
book. Resist the temptation to look up an answer before you have completed a ques-
tion. And remember that even if your answer di�ers from the one in the back, you 
may still be right; there is more than one correct way to express some of the solutions. 
For example, a value of 1y!2 can also be expressed as !2y2 and the set of all scalar 

multiples of the vector c 3

1y2
d  is the same as the set of all scalar multiples of c6

1
d .

 As you encounter new concepts, try to relate them to examples that you know. 
Write out proofs and solutions to exercises in a logical, connected way, using com-
plete sentences. Read back what you have written to see whether it makes sense. 
 Better yet, if you can, have a friend in the class read what you have written. If it doesn’t 
make sense to another person, chances are that it doesn’t make sense, period.
 You will �nd that a calculator with matrix capabilities or a computer algebra sys-
tem is useful. �ese tools can help you to check your own hand calculations and are 
indispensable for some problems involving tedious computations. Technology also 

To the 

Student
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xxiv       To the Student

enables you to explore aspects of linear algebra on your own. You can play “what if?” 
games: What if I change one of the entries in this vector? What if this matrix is of a 
di�erent size? Can I force the solution to be what I would like it to be by changing 
something? To signal places in the text or exercises where the use of technology is 
 recommended, I have placed the icon CAS  in the margin. �e companion website that 
accompanies this book contains computer code working out selected exercises from 
the book using Maple, Mathematica, and MATLAB, as well as Technology Bytes, an 
 appendix providing much additional advice about the use of technology in linear 
 algebra.
 You are about to embark on a journey through linear algebra. �ink of this book 
as your travel guide. Are you ready? Let’s go!
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Vectors1

Here they come pouring out of the blue. 

Little arrows for me and for you.

—Albert Hammond and  

Mike Hazelwood 

Little Arrows 

Dutchess Music/BMI, 1968

1.0 Introduction: The Racetrack Game

Many measurable quantities, such as length, area, volume, mass, and temperature, 
can be completely described by specifying their magnitude. Other quantities, such 
as velocity, force, and acceleration, require both a magnitude and a direction for 
their description. These quantities are vectors. For example, wind velocity is a vector 
 consisting of wind speed and direction, such as 10 km/h southwest. Geometrically, 
vectors are often represented as arrows or directed line segments.

Although the idea of a vector was introduced in the 19th century, its usefulness 
in applications, particularly those in the physical sciences, was not realized until the 
20th century. More recently, vectors have found applications in computer science, 
 statistics, economics, and the life and social sciences. We will consider some of these 
many applications throughout this book.

This chapter introduces vectors and begins to consider some of their geometric 
and algebraic properties. We begin, though, with a simple game that introduces some 
of the key ideas. [You may even wish to play it with a friend during those (very rare!) 
dull moments in linear algebra class.]

The game is played on graph paper. A track, with a starting line and a �nish line, 
is drawn on the paper. The track can be of any length and shape, so long as it is wide 
enough to accommodate all of the players. For this example, we will have two players 
(let’s call them Ann and Bert) who use different colored pens to represent their cars 
or bicycles or whatever they are going to race around the track. (Let’s think of Ann 
and Bert as cyclists.)

Ann and Bert each begin by drawing a dot on the starting line at a grid point on 
the graph paper. They take turns moving to a new grid point, subject to the following 
rules:

 1.  Each new grid point and the line segment connecting it to the previous grid point 
must lie entirely within the track.

 2.  No two players may occupy the same grid point on the same turn. (This is the 
“no collisions” rule.)

 3.  Each new move is related to the previous move as follows: If a player moves 
a units horizontally and b units vertically on one move, then on the next move 
he or she must move between a 2 1 and a 1 1 units horizontally and between  

1
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2       Chapter 1  Vectors

b 2 1 and b 1 1 units vertically. In other words, if the second move is c units 
 horizontally and d units vertically, then ua 2 cu # 1 and ub 2 du # 1. (This is the 
“acceleration/deceleration” rule.) Note that this rule forces the �rst move to be  
1 unit  vertically and/or 1 unit horizontally.

A player who collides with another player or leaves the track is eliminated. The 
winner is the �rst player to cross the �nish line. If more than one player crosses 
the �nish line on the same turn, the one who goes farthest past the �nish line is the 
winner.

In the sample game shown in Figure 1.1, Ann was the winner. Bert accelerated too 
quickly and had dif�culty negotiating the turn at the top of the track.

To understand rule 3, consider Ann’s third and fourth moves. On her third move, 
she went 1 unit horizontally and 3 units vertically. On her fourth move, her options 
were to move 0 to 2 units horizontally and 2 to 4 units vertically. (Notice that some 
of these combinations would have placed her outside the track.) She chose to move 
2 units in each direction.

Problem 1 Play a few games of racetrack.
Problem 2 Is it possible for Bert to win this race by choosing a different sequence 

of moves?
Problem 3 Use the notation [a, b] to denote a move that is a units horizontally 

and b units vertically. (Either a or b or both may be negative.) If move [3, 4] has just 
been made, draw on graph paper all the grid points that could possibly be reached 
on the next move.

Problem 4 What is the net effect of two successive moves? In other words, if you 
move [a, b] and then [c, d], how far horizontally and vertically will you have moved 
 altogether?

The Irish mathematician William 

Rowan Hamilton (1805–1865)  

used vector concepts in his study 

of complex numbers and their 

generalization, the quaternions.
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Figure 1.1

A sample game of racetrack
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Section 1.1  The Geometry and Algebra of Vectors       3

Problem 5 Write out Ann’s sequence of moves using the [a, b] notation. Suppose 
she begins at the origin (0, 0) on the coordinate axes. Explain how you can �nd the 
coordinates of the grid point corresponding to each of her moves without looking at 
the graph paper. If the axes were drawn differently, so that Ann’s starting point was 
not the origin but the point (2, 3), what would the coordinates of her �nal point be?

Although simple, this game introduces several ideas that will be useful in our 
study of vectors. The next three sections consider vectors from geometric and alge-
braic viewpoints, beginning, as in the racetrack game, in the plane.

The Geometry and Algebra of Vectors

Vectors in the Plane

We begin by considering the Cartesian plane with the familiar x- and y-axes. 
A vector is a directed line segment that corresponds to a displacement from one point 
A to  another point B; see Figure 1.2.

The vector from A to B is denoted by AB
>

; the point A is called its initial point, 

or tail, and the point B is called its terminal point, or head. Often, a vector is simply 
 denoted by a single boldface, lowercase letter such as v.

The set of all points in the plane corresponds to the set of all vectors whose tails 

are at the origin O. To each point A, there corresponds the vector a 5 OA
>

; to each 
vector a with tail at O, there corresponds its head A. (Vectors of this form are some-
times called position vectors.)

It is natural to represent such vectors using coordinates. For example, in   

Figure 1.3, A 5 (3, 2) and we write the vector a 5 OA
>

 5 [3, 2] using square brackets. 
Similarly, the other vectors in Figure 1.3 are

b 5 [21, 3]  and  c 5 [2, 21]

The individual coordinates (3 and 2 in the case of a) are called the components of the 
vector. A vector is sometimes said to be an ordered pair of real numbers. The order is 
important since, for example, [3, 2] ± [2, 3]. In general, two vectors are equal if and 
only if their corresponding components are equal. Thus, [x, y] 5 [1, 5] implies that 
x 5 1 and y 5 5.

It is frequently convenient to use column vectors instead of (or in addition to) 

row vectors. Another representation of [3, 2] is c3
2
d . (The important point is that the 

y

A

B

x

Figure 1.2

y

B

A

C

x

c
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Figure 1.3

1.1

The word vector comes from the 

Latin root meaning “to carry.” A 

vector is formed when a point is 

displaced—or “carried off”—a given 

distance in a given direction. Viewed 

another way, vectors “carry” two 

pieces of information: their length 

and their direction.

When writing vectors by hand, 

it is dif�cult to indicate boldface. 

Some people prefer to write v
>

 for 

the vector denoted in print by v, 

but in most cases it is �ne to use an 

ordinary lowercase v. It will usu-

ally be clear from the context when 

the letter denotes a vector.

The word component is derived 

from the Latin words co, meaning 

“together with,” and ponere, mean-

ing “to put.” Thus, a vector is “put 

together” out of its components.

The Cartesian plane is named  

after the French philosopher and 

mathematician René Descartes 

(1596–1650), whose introduction 

of coordinates allowed geometric 

problems to be handled using  

algebraic techniques.
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4       Chapter 1  Vectors

components are ordered.) In later chapters, you will see that column vectors are some-
what better from a computational point of view; for now, try to get used to both 
 representations.

It may occur to you that we cannot really draw the vector [0, 0] 5 OO
>

 from the 
origin to itself. Nevertheless, it is a perfectly good vector and has a special name: the 
zero vector. The zero vector is denoted by 0.

The set of all vectors with two components is denoted by R2 (where R denotes 
the  set of real numbers from which the components of vectors in R

2 are chosen). 
Thus, [21, 3.5], 3 !2, p 4, and 353, 4 4 are all in R2.

Thinking back to the racetrack game, let’s try to connect all of these ideas to vec-
tors whose tails are not at the origin. The etymological origin of the word vector in 
the verb “to carry” provides a clue. The vector [3, 2] may be interpreted as follows: 
Starting at the origin O, travel 3 units to the right, then 2 units up, �nishing at P. The 
same displacement may be applied with other initial points. Figure 1.4 shows two 
equivalent displacements, represented by the vectors AB

>

 and CD
>

.

R
2 is pronounced “r two.”

y

C

D

P

A

B

O 
x

Figure 1.4

We de�ne two vectors as equal if they have the same length and the same direc-

tion. Thus, AB
>

5 CD
>

 in Figure 1.4. (Even though they have different initial and ter-
minal points, they represent the same displacement.) Geometrically, two vectors are 
equal if one can be obtained by sliding (or translating) the other parallel to itself until 
the two vectors coincide. In terms of components, in Figure 1.4 we have A 5 (3, 1) 
and B 5 (6, 3). Notice that the vector [3, 2] that records the displacement is just the 
difference of the respective components:

 AB
>

5 [3, 2] 5 [6 2 3, 3 2 1]

Similarly,    CD
>

5 [21 2 (24), 1 2 (21)] 5 [3, 2]

and thus AB
>

5 CD
>

, as expected.
A vector such as OP

>

 with its tail at the origin is said to be in standard position. 
The foregoing discussion shows that every vector can be drawn as a vector in stan-
dard position. Conversely, a vector in standard position can be redrawn (by transla-
tion) so that its tail is at any point in the plane.

If A 5 (21, 2) and B 5 (3, 4), �nd AB
>

 and redraw it (a) in standard position and 
(b) with its tail at the point C 5 (2, 21).

Solution  We compute AB
>

 < [3 2 (21), 4 2 2] 5 [4, 2]. If AB
>

 is then translated 
to CD

>

, where C 5 (2, 21), then we must have D 5 (2 1 4, 21 1 2) 5 (6, 1). (See 
 Figure 1.5.)

Example 1.1

When vectors are referred to by 

their coordinates, they are being 

considered analytically.
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Section 1.1  The Geometry and Algebra of Vectors       5

New Vectors from Old

As in the racetrack game, we often want to “follow” one vector by another. This leads 
to the notion of vector addition, the �rst basic vector operation.

If we follow u by v, we can visualize the total displacement as a third vector, 
 denoted by u 1 v. In Figure 1.6, u 5 [1, 2] and v 5 [2, 2], so the net effect of follow-
ing u by v is

[1 1 2, 2 1 2] 5 [3, 4]

which gives u 1 v. In general, if u 5 [u1, u2] and v 5 [v1, v2], then their sum u 1 v 
is the vector

u 1 v 5 [u1 1 v1, u2 1 v2]

It is helpful to visualize u  1 v geometrically. The following rule is the geometric 
 version of the foregoing discussion.

x

y

A(�1, 2)

B(3, 4)

[4, 2]

D(6, 1)

C(2, �1)

Figure 1.5

x

y

1

2

2

2
u

v

u � v

3

4

u

v

Figure 1.6

Vector addition
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6       Chapter 1  Vectors

By translating u and v parallel to themselves, we obtain a parallelogram, as 
shown in Figure 1.8. This parallelogram is called the parallelogram determined by u 

and v. It leads to an equivalent version of the head-to-tail rule for vectors in standard 
position.

The Head-to-Tail Rule Given vectors u and v in R2, translate v so that its tail coincides with the head 
of u. �e sum u 1 v of u and v is the vector from the tail of u to the head of v. 
(See Figure 1.7.)

v

vu

u � v

Figure 1.7

�e head-to-tail rule

Figure 1.8

�e parallelogram 

determined by u and v

v

v
u

u

The Parallelogram Rule Given vectors u and v in R2 (in standard  position), their sum u 1 v is the vector 
in standard position along the diagonal of the parallelogram determined by u and 
v. (See Figure 1.9.)

v

v
u

u

u � v

x

y

Figure 1.9

�e parallelogram rule

If u 5 [3, 21] and v 5 [1, 4], compute and draw u 1 v.

Solution  We compute u 1 v 5 [3 1 1, 21 1 4] 5 [4, 3]. This vector is drawn 
using  the head-to-tail rule in Figure 1.10(a) and using the parallelogram rule in 
 Figure 1.10(b).

Example 1.2
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2v

�2v

v

v1

2

y

x

Figure 1.11

x

y

v

v

u

u � v

(a)

x

y

v

u

u � v

(b)

Figure 1.10

Example 1.3

The second basic vector operation is scalar multiplication. Given a vector v and 
a real number c, the scalar multiple c v is the vector obtained by multiplying each 
component of v by c. For example, 3[22, 4] 5 [26, 12]. In general,

 cv 5 c [v1, v2] 5 [cv1, cv2]

Geometrically, cv is a “scaled” version of v.

 If v 5 [22, 4], compute and draw 2v, 12v, and 22v.

Solution  We calculate as follows:

 2v 5 [2(22), 2(4)] 5 [24, 8]

 12v 5 [1
2 (22),  12(4)] 5 [21, 2]

 22v 5 [22(22), 22(4)] 5 [4, 28]

These vectors are shown in Figure 1.11.
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2v �2v

v

� v1

2

Figure 1.12

x

y

A

B

a

b

b � a

Figure 1.14

v

�v u

u � (�v)

v

u

u � v

Figure 1.13

Vector subtraction

The term scalar comes from the 

Latin word scala, meaning “lad-

der.” The equally spaced rungs on 

a ladder suggest a scale, and in vec-

tor arithmetic, multiplication by a 

constant changes only the scale (or 

length) of a vector. Thus, constants 

became known as scalars.

Observe that cv has the same direction as v if c . 0 and the opposite direction if 
c , 0. We also see that cv is uc u times as long as v. For this reason, in the context of 
vectors, constants (i.e., real numbers) are referred to as scalars. As Figure 1.12 shows, 
when translation of vectors is taken into account, two vectors are scalar multiples of 
each other if and only if they are parallel.

A special case of a scalar multiple is (21)v, which is written as 2v and is called 
the negative of v. We can use it to de�ne vector subtraction: The difference of u and 
v is the vector u 2 v de�ned by

u 2 v 5 u 1 (2v)

Figure 1.13 shows that u 2 v corresponds to the “other” diagonal of the parallelo-
gram determined by u and v.

If u 5 [1, 2] and v 5 [23, 1], then u 2 v 5 [1 2 (23), 2 2 1] 5 [4, 1].

The de�nition of subtraction in Example 1.4 also agrees with the way we cal-
culate a vector such as AB

>

. If the points A and B correspond to the vectors a and b 
in standard position, then AB

>

5 b 2 a, as shown in Figure 1.14. [Observe that the 
head-to-tail rule applied to this diagram gives the equation a 1 (b 2 a) 5 b. If we 
had  accidentally drawn b 2 a with its head at A instead of at B, the diagram would 
have read b 1 (b 2 a) 5 a, which is clearly wrong! More will be said about algebraic 
 expressions involving vectors later in this section.]

Vectors in R
3

Everything we have just done extends easily to three dimensions. The set of all or-
dered triples of real numbers is denoted by R3. Points and vectors are located using 
three mutually perpendicular coordinate axes that meet at the origin O. A point such 
as A 5 (1, 2, 3) can be located as follows: First travel 1 unit along the x-axis, then 
move 2 units parallel to the y-axis, and �nally move 3 units parallel to the z-axis. The 
corresponding vector a 5 [1, 2, 3] is then OA

>

, as shown in Figure 1.15.
Another way to visualize vector a in R3 is to construct a box whose six sides are de-

termined by the three coordinate planes (the xy-, xz-, and yz-planes) and by three planes 
through the point (1, 2, 3) parallel to the coordinate planes. The vector [1, 2, 3] then corre-
sponds to the diagonal from the origin to the opposite corner of the box (see Figure 1.16).

Example 1.4
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Section 1.1  The Geometry and Algebra of Vectors       9

The “componentwise” de�nitions of vector addition and scalar multiplication are 
extended to R3 in an obvious way.

Vectors in R
n

In general, we de�ne Rn as the set of all ordered n-tuples of real numbers written as 
row or column vectors. Thus, a vector v in Rn is of the form

[v1, v2, . . . , vn ]  or   £ v1

v2

(

vn

§
The individual entries of v are its components; vi is called the ith component.

We extend the de�nitions of vector addition and scalar multiplication to Rn in 
the obvious way: If u 5 [u1, u2, . . . , un] and v 5 [v1, v2, . . . , vn], the ith component of 
u 1 v is ui 1 vi and the ith component of cv is just cvi.

Since in Rn we can no longer draw pictures of vectors, it is important to be able to 
calculate with vectors. We must be careful not to assume that vector arithmetic will be 
similar to the arithmetic of real numbers. Often it is, and the algebraic calculations we 
do with vectors are similar to those we would do with scalars. But, in later sections, 
we will encounter situations where vector algebra is quite unlike our previous experi-
ence with real numbers. So it is important to verify any algebraic properties before 
 attempting to use them.

One such property is commutativity of addition: u 1 v 5 v 1 u for vectors u and 
v. This is certainly true in R2. Geometrically, the head-to-tail rule shows that both 
u 1 v and v 1 u are the main diagonals of the parallelogram determined by u and v. 
(The parallelogram rule also re�ects this symmetry; see Figure 1.17.)

Note that Figure 1.17 is simply an illustration of the property u 1 v 5 v 1 u. It 
is not a proof, since it does not cover every possible case. For example, we must also 
include the cases where u 5 v, u 5 2v, and u 5 0. (What would diagrams for these 
cases look like?) For this reason, an algebraic proof is needed. However, it is just as 
easy to give a proof that is valid in Rn as to give one that is valid in R2.

The following theorem summarizes the algebraic properties of vector addition 
and scalar multiplication in Rn. The proofs follow from the corresponding properties 
of real numbers.

z

A(1, 2, 3)

3

a

2

1

yx

Figure 1.15

z

x y

Figure 1.16

u

v

u � v

u
v

v � u

u

u

v

v

Figure 1.17

u 1 v 5 v 1 u
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10       Chapter 1  Vectors

Theorem 1.1 Algebraic Properties of Vectors in Rn

Let u, v, and w be vectors in Rn and let c and d be scalars. �en

a.  u 1 v 5 v 1 u Commutativity

b.  (u 1 v) 1 w 5 u 1 (v 1 w) Associativity

c.  u 1 0 5 u

d.  u 1 (2u) 5 0

e.  c(u 1 v) 5 cu 1 cv Distributivity

f.  (c 1 d)u 5 cu 1 du Distributivity

g. c(du) 5 (cd)u

h.  1u 5 u

Remarks

  Properties (c) and (d) together with the commutativity property (a) imply 
that 0 1 u 5 u and 2u 1 u 5 0 as well.

  If we read the distributivity properties (e) and (f) from right to left, they say 
that we can factor a common scalar or a common vector from a sum.

Proof  We prove properties (a) and (b) and leave the proofs of the remain-
ing  properties as exercises. Let u 5 [u1, u2, . . . , un], v 5 [v1, v2, . . . , vn], and w 5 
[w1, w2, . . . , wn].

(a) u 1 v 5 [u1, u2, . . . , un] 1 [v1, v2, . . . , vn]

 5 [u1 1 v1, u2 1 v2, . . . , un 1 vn]

 5 [v1 1 u1, v2 1 u2, . . . , vn 1 un]

 5 [v1, v2, . . . , vn] 1 [u1, u2, . . . , un]

 5 v 1 u

The second and fourth equalities are by the de�nition of vector addition, and the 
third equality is by the commutativity of addition of real numbers.

(b) Figure 1.18 illustrates associativity in R2. Algebraically, we have

  (u 1 v) 1 w 5  ([u1, u2, . . . , un ] 1 [v1, v2, . . . , vn ]) 1 [w1, w2, . . . , wn ]

  5  [u1 1 v1, u2 1 v2, . . . , un 1 vn ] 1 [w1, w2, . . . , wn ]

  5  [(u1 1 v1) 1 w1, (u2 1 v2) 1 w2, . . . , (un 1 vn) 1 wn ]

  5  [u1 1 (v1 1 w1), u2 1 (v2 1 w2), . . . , un 1 (vn 1 wn)]

  5  [u1, u2, . . . , un ] 1 [v1 1 w1, v2 1 w2, . . . , vn 1 wn ]

  5  [u1, u2, . . . , un ] 1 ([v1, v2, . . . , vn ] 1 [w1, w2, . . . , wn ])

  5  u 1 (v 1 w)

The fourth equality is by the associativity of addition of real numbers. Note the care-
ful use of parentheses.

The word theorem is derived from 

the Greek word theorema, which 

in turn comes from a word mean-

ing “to look at.” Thus, a theorem 

is based on the insights we have 

when we look at examples and 

 extract from them properties that 

we try to prove hold in general. 

 Similarly, when we understand 

something in mathematics—the 

proof of a theorem, for example—

we often say, “I see.”

(u � v) � w � u � (v � w)

v � w
w

v

u � v

u

Figure 1.18
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Section 1.1  The Geometry and Algebra of Vectors       11

By property (b) of Theorem 1.1, we may unambiguously write u 1 v 1 w without 
parentheses, since we may group the summands in whichever way we please. By (a), 
we may also rearrange the summands—for example, as w 1 u 1 v—if we choose. 
Likewise, sums of four or more vectors can be calculated without regard to order or 
grouping. In general, if v1, v2, . . . , vk are vectors in Rn, we will write such sums with-
out parentheses:

v1 1 v2 1 c1  vk

The next example illustrates the use of Theorem 1.1 in performing algebraic 
 calculations with vectors.

Let a, b, and x denote vectors in Rn.
(a) Simplify 3a 1 (5b 2 2a) 1 2(b 2 a).

(b) If 5x 2 a 5 2(a 1 2x), solve for x in terms of a.

Solution  We will give both solutions in detail, with reference to all of the properties 
in Theorem 1.1 that we use. It is good practice to justify all steps the �rst few times 
you do this type of calculation. Once you are comfortable with the vector properties, 
though, it is acceptable to leave out some of the intermediate steps to save time and 
space.

(a) We begin by inserting parentheses.

  3a 1 (5b 2 2a) 1 2(b 2 a) 5  (3a 1 (5b 2 2a)) 1 2(b 2 a)

  5  (3a 1 (22a 1 5b)) 1 (2b 2 2a)  (a), (e)

  5  ((3a 1 (22a)) 1 5b) 1 (2b 2 2a) (b)

  5  ((3 1 (22))a 1 5b) 1 (2b 2 2a)  (f)

  5  (1a 1 5b) 1 (2b 2 2a)

  5  ((a 1 5b) 1 2b) 2 2a  (b), (h)

  5  (a 1 (5b 1 2b)) 2 2a  (b)

  5  (a 1 (5 1 2)b) 2 2a  (f)

  5  (7b 1 a) 2 2a  (a)

  5  7b 1 (a 2 2a)  (b)

  5  7b 1 (1 2 2)a  (f), (h)

  5  7b 1 (21)a

  5  7b 2 a

You can see why we will agree to omit some of these steps! In practice, it is acceptable to 
simplify this sequence of steps as 

  3a 1 (5b 2 2a) 1 2(b 2 a) 5  3a 1 5b 2 2a 1 2b 2 2a

  5  (3a 2 2a 2 2a) 1 (5b 1 2b)

  5  2a 1 7b

or even to do most of the calculation mentally.

Example 1.5
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12       Chapter 1  Vectors

(b) In detail, we have

  5x 2 a 5  2(a 1 2x)

  5x 2 a 5  2a 1 2(2x)  (e)

  5x 2 a 5  2a 1 (2 ? 2)x  (g)

  5x 2 a 5  2a 1 4x

  (5x 2 a) 2 4x 5  (2a 1 4x) 2 4x

  (2a 1 5x) 2 4x 5  2a 1 (4x 2 4x) (a), (b)

  2a 1 (5x 2 4x) 5  2a 1 0  (b), (d)

  2a 1 (5 2 4)x 5  2a  (f), (c)

  2a 1 (1)x 5  2a

  a 1 (2a 1 x) 5  a 1 2a  (h)

  (a 1 (2a)) 1 x 5  (1 1 2)a  (b), (f)

  0 1 x 5  3a  (d)

  x 5  3a  (c)

Again, we will usually omit most of these steps.

Linear Combinations and Coordinates

A vector that is a sum of scalar multiples of other vectors is said to be a linear combi-
nation of those vectors. The formal de�nition follows.

Definition   A vector v is a linear combination of vectors v1, v2,  .  .  .  , vk if 
there are scalars c1, c2, . . . , ck such that v 5 c1v1 1 c2v2 1 ? ? ? 1 ckvk. �e scalars  
c1, c2, . . . , ck are called the coefficients of the linear combination.

The vector £ 2

22

21

§  is a linear combination of £ 1

0

21

§ , £ 2

23

1

§ , and £ 5

24

0

§ , since

3 £ 1

0

21

§ 1 2 £ 2

23

1

§ 2 £ 5

24

0

§ 5 £ 2

22

21

§
Remark  Determining whether a given vector is a linear combination of other 

vectors is a problem we will address in Chapter 2.

In R2, it is possible to depict linear combinations of two (nonparallel) vectors 
quite conveniently.

Let u 5 c3
1
d  and v 5 c1

2
d . We can use u and v to locate a new set of axes (in the same

way that e1 5 c1
0
d  and e2 5 c0

1
d  locate the standard coordinate axes). We can use

Example 1.6

Example 1.7
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Section 1.1  The Geometry and Algebra of Vectors       13

these new axes to determine a coordinate grid that will let us easily locate linear 
 combinations of u and v.

As Figure 1.19 shows, w can be located by starting at the origin and traveling  
2u followed by 2v. That is,

w 5 2u 1 2v

We say that the coordinates of w with respect to u and v are 21 and 2. (Note that 
this  is just another way of thinking of the coef�cients of the linear combination.)  
It follows that

w 5 2 c3
1
d 1 2 c1

2
d 5 c21

3
d

(Observe that 21 and 3 are the coordinates of w with respect to e1 and e2.)

Switching from the standard coordinate axes to alternative ones is a useful idea. It 
has applications in chemistry and geology, since molecular and crystalline structures 
often do not fall onto a rectangular grid. It is an idea that we will encounter repeatedly 
in this book.

Binary Vectors and Modular Arithmetic

We will also encounter a type of vector that has no geometric interpretation—at least 
not using Euclidean geometry. Computers represent data in terms of 0s and 1s (which 
can be interpreted as off/on, closed/open, false/true, or no/yes). Binary vectors are 
 vectors each of whose components is a 0 or a 1. As we will see in Chapter 8, such 
 vectors arise naturally in the study of many types of codes.

In this setting, the usual rules of arithmetic must be modified, since the result of 
each calculation involving scalars must be a 0 or a 1. The modified rules for addition 
and multiplication are given below.

1

0

1

   

0 1

0 1

1 0

      

?

0

1

   

0 1

0 0

0 1
The only curiosity here is the rule that 1 1 1 5 0. This is not as strange as it appears; 
if we replace 0 with the word “even” and 1 with the word “odd,” these tables simply 

y

x

�u

u

w

2v

v

Figure 1.19
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14       Chapter 1  Vectors

summarize the familiar parity rules for the addition and multiplication of even and 
odd integers. For example, 1 1 1 5 0 expresses the fact that the sum of two odd inte-
gers is an even integer. With these rules, our set of scalars {0, 1} is denoted by Z2 and 
is called the set of integers modulo 2.

In Z2, 1 1 1 1 0 1 1 5 1 and 1 1 1 1 1 1 1 5 0. (These calculations illustrate 
the  parity rules again: The sum of three odds and an even is odd; the sum of four 
odds is even.)

With Z2 as our set of scalars, we now extend the above rules to vectors. The set of 
all n-tuples of 0s and 1s (with all arithmetic performed modulo 2) is denoted by Zn

2 . 
The vectors in Zn

2 are called binary vectors of length n.

The vectors in Z2
2 are [0, 0], [0, 1], [1, 0], and [1, 1]. (How many vectors does Zn

2 
 contain, in general?)

Let u 5 [1, 1, 0, 1, 0] and v 5 [0, 1, 1, 1, 0] be two binary vectors of length 5. Find u 1 v.

Solution  The calculation of u 1 v takes place over Z2, so we have

  u 1 v 5 31, 1, 0, 1, 0 4 1 30, 1, 1, 1, 0 4
  5 31 1 0, 1 1 1, 0 1 1, 1 1 1, 0 1 0 4
  5 31, 0, 1, 0, 0 4
It is possible to generalize what we have just done for binary vectors to vectors whose 
components are taken from a �nite set {0, 1, 2, . . . , k} for k $ 2. To do so, we must 
�rst extend the idea of binary arithmetic.

The integers modulo 3 is the set Z3 5 {0, 1, 2} with addition and multiplication given 
by the following tables:

1

0

1

2

 

0 1 2

0 1 2

1 2 0

2 0 1

      

?

0

1

2

 

0 1 2

0 0 0

0 1 2

0 2 1

Observe that the result of each addition and multiplication belongs to the set 
{0, 1, 2}; we say that Z3 is closed with respect to the operations of addition and multi-
plication. It is perhaps easiest to think of this set in terms of a 3-hour clock with 0, 1, 
and 2 on its face, as shown in Figure 1.20.

The calculation 1  1 2  5 0 translates as follows: 2 hours after 1 o’clock, it is  
0 o’clock. Just as 24:00 and 12:00 are the same on a 12-hour clock, so 3 and 0 are 
equivalent on this 3-hour clock. Likewise, all multiples of 3—positive and negative—
are equivalent to 0 here; 1 is equivalent to any number that is 1 more than a multiple 
of 3 (such as 22, 4, and 7); and 2 is equivalent to any number that is 2 more than a 

Example 1.8

We are using the term length dif-

ferently from the way we used it in 

R
n. This should not be confusing, 

since there is no geometric notion 

of length for binary vectors.

Example 1.9

Example 1.10

Example 1.11
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Section 1.1  The Geometry and Algebra of Vectors       15

multiple of 3 (such as 21, 5, and 8). We can visualize the number line as wrapping 
around a circle, as shown in Figure 1.21.

0

12

Figure 1.20

Arithmetic modulo 3

. . . , �3, 0, 3, . . .

. . . , 1, 2, 5, . . . . . . , �2, 1, 4, . . .

Figure 1.21

To what is 3548 equivalent in Z3?

Solution  �is is the same as asking where 3548 lies on our 3-hour clock. �e key is 
to  calculate how far this number is from the nearest (smaller) multiple of 3; that is, 
we need to know the remainder when 3548 is divided by 3. By long division, we �nd that 
3548 5 3 ?1182 1 2, so the remainder is 2. �erefore, 3548 is equivalent to 2 in Z3.

In courses in abstract algebra and number theory, which explore this concept in 
greater detail, the above equivalence is often written as 3548 5 2 (mod 3) or 3548 ; 2 
(mod 3), where ; is read “is congruent to.” We will not use this notation or termi-
nology here.

In Z3, calculate 2 1 2 1 1 1 2.

Solution 1  We use the same ideas as in Example 1.12. The ordinary sum is 2 1 2 1 
1 1 2 5 7, which is 1 more than 6, so division by 3 leaves a remainder of 1. Thus, 2 1 
2 1 1 1 2 5 1 in Z3.

Solution 2  A better way to perform this calculation is to do it step by step entirely in Z3.

  2 1 2 1 1 1 2 5  (2 1 2) 1 1 1 2

  5  1 1 1 1 2

  5  (1 1 1) 1 2

  5  2 1 2

  5  1

Here we have used parentheses to group the terms we have chosen to combine. We could 
speed things up by simultaneously combining the �rst two and the last two terms:

  (2 1 2) 1 (1 1 2) 5  1 1 0

  5  1

Example 1.12

Example 1.13
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16       Chapter 1  Vectors

Repeated multiplication can be handled similarly. �e idea is to use the addition and 
multiplication tables to reduce the result of each calculation to 0, 1, or 2.

Extending these ideas to vectors is straightforward.

 In Z5
3, let u 5 [2, 2, 0, 1, 2] and v 5 [1, 2, 2, 2, 1]. Then

  u 1 v 5 [2, 2, 0, 1, 2] 1 [1, 2, 2, 2, 1]

  5 [2 1 1, 2 1 2, 0 1 2, 1 1 2, 2 1 1]

  5 [0, 1, 2, 0, 0]

Vectors in Z5
3 are referred to as ternary vectors of length 5.

In general, we have the set Zm 5 {0, 1, 2, . . . , m 2 1} of integers modulo m (cor-
responding to an m-hour clock, as shown in Figure 1.22). A vector of length n whose 
entries are in Zm is called an m-ary vector of length n. The set of all m-ary vectors of 
length n is denoted by Zm

n .

Example 1.14

0m  1

m  2

1

2

3

Figure 1.22

Arithmetic modulo m

Exercises 1.1

 1. Draw the following vectors in standard position  
in R2:

(a) a 5 c3
0
d  (b) b 5 c2

3
d

(c) c 5 c22

3
d  (d) d 5 c 3

22
d

 2. Draw the vectors in Exercise 1 with their tails at the 
point (2, 23).

 3. Draw the following vectors in standard position in R3:

(a) a 5 [0, 2, 0] (b) b 5 [3, 2, 1]
(c) c 5 [1, 22, 1] (d) d 5 [21, 21, 22]

 4. If the vectors in Exercise 3 are translated so that their 
heads are at the point (3, 2, 1), �nd the points that 
 correspond to their tails.

 5. For each of the following pairs of points, draw the 
 vector AB

>

. Then compute and redraw AB
>

 as a vector 
in standard position.

(a) A 5 (1, 21), B 5 (4, 2)

(b) A 5 (0, 22), B 5 (2, 21)

(c) A 5 (2, 32), B 5 (1
2, 3)

(d) A 5 (1
3, 13), B 5 (1

6, 12)

 6. A hiker walks 4 km north and then 5 km northeast. 
Draw displacement vectors representing the hiker’s 
trip and draw a vector that represents the hiker’s net 
displacement from the starting point.

Exercises 7–10 refer to the vectors in Exercise 1. Compute 
the indicated vectors and also show how the results can be 
obtained geometrically.

 7. a 1 b  8. b 2 c

 9. d 2 c 10. a 1 d

Exercises 11 and 12 refer to the vectors in Exercise 3. 
 Compute the indicated vectors.

 11. 2a 1 3c 12. 3b 2 2c 1 d

 13. Find the components of the vectors u, v, u 1 v, and 
u 2 v, where u and v are as shown in Figure 1.23.

 14. In Figure 1.24, A, B, C, D, E,  and F are the vertices of a 
regular hexagon centered at the origin.

    Express each of the following vectors in terms of 

a 5 OA
>

 and b 5 OB
>

:

(a) AB
>

 (b) BC
>

(c) AD
>

 (d) CF
>

(e) AC
>

 (f) BC
>

1 DE
>

1 FA
>
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In Exercises 15 and 16, simplify the given vector expression. 
Indicate which properties in �eorem 1.1 you use.

 15. 2(a 2 3b) 1 3(2b 1 a)

 16. 23(a 2 c) 1 2(a 1 2b) 1 3(c 2 b)

In Exercises 17 and 18, solve for the vector x in terms of the 
vectors a and b.

 17. x 2 a 5 2(x 2 2a)

 18. x 1 2a 2 b 5 3(x 1 a) 2 2(2a 2 b)

In Exercises 19 and 20, draw the coordinate axes relative to 
u and v and locate w.

 19. u 5 c 1

21
d , v 5 c1

1
d , w 5 2u 1 3v

 20. u 5 c22

1
d , v 5 c 2

22
d , w 5 2u 2 2v

In Exercises 21 and 22, draw the standard coordinate axes 
on the same diagram as the axes relative to u and v. Use 
these to �nd w as a linear combination of u and v.

 21. u 5 c 1

21
d , v 5 c1

1
d , w 5 c2

6
d

 22. u 5 c22

3
d , v 5 c2

1
d , w 5 c2

9
d

 23. Draw diagrams to illustrate properties (d) and (e) of 
Theorem 1.1.

 24. Give algebraic proofs of properties (d) through (g) of 
Theorem 1.1.

In Exercises 25–28, u and v are binary vectors. Find u 1 v 
in each case.

 25. u 5 c0
1
d , v 5 c1

1
d  26. u 5 £ 1

1

0

§ , v 5 £ 1

1

1

§
 27. u 5 [1, 0, 1, 1], v 5 [1, 1, 1, 1]

 28. u 5 [1, 1, 0, 1, 0], v 5 [0, 1, 1, 1, 0]

 29. Write out the addition and multiplication tables for Z4.

 30. Write out the addition and multiplication tables for Z5.

In Exercises 31–43, perform the indicated calculations.

 31. 2 1 2 1 2 in Z3  32. 2 ? 2 ? 2 in Z3

 33. 2(2 1 1 1 2) in Z3 34. 3 1 1 1 2 1 3 in Z4

 35. 2 ? 3 ? 2 in Z4 36. 3(3 1 3 1 2) in Z4

 37. 2 1 1 1 2 1 2 1 1 in Z3, Z4, and Z5

 38. (3 1 4)(3 1 2 1 4 1 2) in Z5

 39. 8(6 1 4 1 3) in Z9 40. 2100 in Z11

 41. [2, 1, 2] 1 [2, 0, 1] in Z3
3 42. 2[2, 2, 1] in Z3

3

43. 2([3, 1, 1, 2] 1 [3, 3, 2, 1]) in Z4
4 and Z4

5

In Exercises 44–55, solve the given equation or indicate that 
there is no solution.

 44. x 1 3 5 2 in Z5 45. x 1 5 5 1 in Z6

 46. 2x 5 1 in Z3 47. 2x 5 1 in Z4

 48. 2x 5 1 in Z5 49. 3x 5 4 in Z5

 50. 3x 5 4 in Z6 51. 6x 5 5 in Z8

 52. 8x 5 9 in Z11 53. 2x 1 3 5 2 in Z5

 54. 4x 1 5 5 2 in Z6 55. 6x 1 3 5 1 in Z8

 56. (a)  For which values of a does x 1 a 5 0 have a solu-
tion in Z5?

(b) For which values of a and b does x 1 a 5 b have a 
solution in Z6?

(c) For which values of a, b, and m does x 1 a 5 b 
have a solution in Zm?

 57. (a)  For which values of a does ax 5 1 have a solution 
in Z5?

(b)  For which values of a does ax 5 1 have a solution 
in Z6?

(c) For which values of a and m does ax 5 1 have a 
solution in Zm?

x

y

60�

30� 1�1

�1

1

u

v

Figure 1.23
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18       Chapter 1  Vectors

Length and Angle: The Dot Product

It is quite easy to reformulate the familiar geometric concepts of length, distance, 
and angle in terms of vectors. Doing so will allow us to use these important and 
powerful ideas in settings more general than R2 and R3. In subsequent chapters, 
these simple geometric tools will be used to solve a wide variety of problems arising 
in applications—even when there is no geometry apparent at all!

The Dot Product

The vector versions of length, distance, and angle can all be described using the 
 notion of the dot product of two vectors.

Definition   If

u 5 £ u1

u2

(

un

§   and  v 5 £ v1

v2

(

vn

§
then the dot product u ? v of u and v is de�ned by

u ? v 5 u1v1 1 u2v2 1 c1 unvn

In words, u ? v is the sum of the products of the corresponding components of u 
and v. It is important to note a couple of things about this “product” that we have just 
 de �ned: First, u and v must have the same number of components. Second, the dot 
product u ? v is a number, not another vector. (This is why u ? v is sometimes called 
the scalar product of u and v.) The dot product of vectors in Rn is a special and im-
portant case of the more general notion of inner product, which we will explore in 
Chapter 7.

Compute u ? v when u 5 £ 1

2

23

§  and v 5 £23

5

2

§ .

Solution  u ? v 5 1 ? (23) 1 2 ? 5 1 (23) ? 2 5 1

Notice that if we had calculated v ?u in Example 1.15, we would have computed

v ?u 5 (23) ? 1 1 5 ? 2 1 2 ? (23) 5 1

That u ? v 5 v ?u in general is clear, since the individual products of the components 
commute. This commutativity property is one of the properties of the dot product 
that we will use repeatedly. The main properties of the dot product are summarized 
in Theorem 1.2.

1.2

Example 1.15
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Section 1.2  Length and Angle: The Dot Product       19

Theorem 1.2 Let u, v, and w be vectors in Rn and let c be a scalar. �en

a.  u ? v 5 v ?u Commutativity

b.  u ? (v 1 w) 5 u ? v 1 u ?w Distributivity

c.  (cu) ? v 5 c (u ? v)

d.  u ?u $ 0  and  u ?u 5 0 if and only if u 5 0

Proof  We prove (a) and (c) and leave proof of the remaining properties for the 
 exercises.

(a) Applying the de�nition of dot product to u ? v and v ?u, we obtain

  u ? v 5  u1v1 1 u2v2 1c1 unvn

  5  v1u1 1 v2u2 1c1 vnun

  5  v ?u

where the middle equality follows from the fact that multiplication of real numbers 
is commutative.

(c) Using the de�nitions of scalar multiplication and dot product, we have

  (cu) ? v 5  [cu1, cu2, . . . , cun ] ? [v1, v2, . . . , vn ]

  5  cu1v1 1 cu2v2 1 c1  cunvn

  5  c(u1v1 1 u2v2 1 c1  unvn)

  5  c(u ? v)

Remarks

  Property (b) can be read from right to left, in which case it says that we can 
factor out a common vector u from a sum of dot products. This property also has 
a  “right-handed” analogue that follows from properties (b) and (a) together: 
(v 1 w) ?u 5  v ?  u 1 w ?  u.

  Property (c) can be extended to give u ? (cv) 5 c(u ?  v) (Exercise 58). This 
 extended version of (c) essentially says that in taking a scalar multiple of a dot  product 
of vectors, the scalar can �rst be combined with whichever vector is more convenient. 
For example,

(1
2 [21, 23, 2]) ? [6, 24, 0] 5 [21, 23, 2] ?(1

2 [6, 24, 0]) 5 [21, 23, 2] ? [3, 22, 0] 5 3

With this approach we avoid introducing fractions into the vectors, as the original 
grouping would have.

  The second part of (d) uses the logical connective if and only if. Appendix A dis-
cusses this phrase in more detail, but for the moment let us just note that the wording 
signals a double implication—namely,

if u 5 0, then u ?u 5 0

and if u ?u 5 0, then u 5 0

Theorem 1.2 shows that aspects of the algebra of vectors resemble the algebra of 
numbers. The next example shows that we can sometimes �nd vector analogues of 
familiar identities.
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20       Chapter 1  Vectors

Theorem 1.3

 Prove that (u 1 v) ? (u 1 v) 5 u ?u 1 2(u ? v) 1 v ? v for all vectors u and v in Rn.

Solution  (u 1 v) ? (u 1 v) 5  (u 1 v) ?u 1 (u 1 v) ? v

  5  u ?u 1 v ?u 1 u ? v 1 v ? v

  5  u ?u 1 u ? v 1 u ? v 1 v ? v

  5  u ?u 1 2(u ? v) 1 v ? v

(Identify the parts of Theorem 1.2 that were used at each step.)

Length

To see how the dot product plays a role in the calculation of lengths, recall how lengths 
are computed in the plane. The Theorem of Pythagoras is all we need.

In R2, the length of the vector v 5 ca
b
d  is the distance from the origin to the point

(a, b), which, by Pythagoras’ Theorem, is given by "a2
1 b2, as in Figure  1.25. 

 Observe that a2 1 b2 5 v ? v. This leads to the following de�nition.

Definition   �e length (or norm) of a vector v 5 £ v1

v2

(

vn

§  in Rn is the nonnega-

tive scalar iv i  de�ned by

iv i 5 !v ? v 5 "v2
1 1 v2

2 1 c1  v2
n

In words, the length of a vector is the square root of the sum of the squares of its 
components. Note that the square root of v ? v is always de�ned, since v ? v $ 0 by 

Theorem 1.2(d). Note also that the de�nition can be rewritten to give iv i 2
5 v ? v, 

which will be useful in proving further properties of the dot product and lengths of 
vectors.

i 32, 3 4 i 5 "22
1 32

5 !13

Theorem 1.3 lists some of the main properties of vector length.

Let v be a vector in Rn and let c be a scalar. �en

a.  iv i 5 0 if and only if v 5 0

b.  icv i 5 0 c 0 iv i
Proof  Property (a) follows immediately from �eorem 1.2(d). To show (b), we have

icv i 2
5 (cv) ? (cv) 5 c2(v ? v) 5 c2 iv i 2

using Theorem 1.2(c). Taking square roots of both sides, using the fact that "c 2
5 0 c 0  

for any real number c, gives the result.

Example 1.16

x

y

b

a

��v�� � Ùa2 � b2

v � [  ] 
a
b

Figure 1.25

Example 1.17

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 1.2  Length and Angle: The Dot Product       21

A vector of length 1 is called a unit vector. In R2, the set of all unit vectors can 
be identi�ed with the unit circle, the circle of radius 1 centered at the origin (see  
Figure  1.26). Given any nonzero vector v, we can always �nd a unit vector in the 
same direction as v by dividing v by its own length (or, equivalently, multiplying by 
1y iv i). We can show this algebraically by using property (b) of Theorem 1.3 above:  
If u 5 (1y iv i)v, then

iu i 5 i(1y iv i)v i 5 0 1y iv i 0  iv i 5 (1y iv i) iv i 5 1

and u is in the same direction as v, since 1y iv i  is a positive scalar. Finding a unit vec-
tor in the same direction is often referred to as normalizing a vector (see Figure 1.27).

1�1

�1

1

x

y

Figure 1.26

Unit vectors in R2

v
1

��v��

v

1

Figure 1.27

Normalizing a vector

In R2, let e1 5 c1
0
d  and e2 5 c0

1
d . Then e1 and e2 are unit vectors, since the sum of the

squares of their components is 1 in each case. Similarly, in R3, we can construct unit 
vectors

e1 5 £ 1

0

0

§ , e2 5 £ 0

1

0

§ ,  and   e3 5 £ 0

0

1

§
Observe in Figure 1.28 that these vectors serve to locate the positive coordinate axes 
in R2 and R3.

Example 1.18

Figure 1.28

Standard unit vectors in R2 and R3

x

y

e2

e1

z

x y

e3

e2
e1
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22       Chapter 1  Vectors

Theorem 1.5

v
u

u � v

Figure 1.29

The Triangle Inequality

Theorem 1.4

In general, in Rn, we de�ne unit vectors e1, e2, . . . , en, where ei has 1 in its ith 
component and zeros elsewhere. These vectors arise repeatedly in linear algebra and 
are called the standard unit vectors.

Normalize the vector v 5 £ 2

21

3

§ .

Solution  iv i 5 "22
1 (21) 2

1 32
5 !14, so a unit vector in the same direc-

tion as v is given by

u 5 (1y iv i)v 5 (1y!14) £ 2

21

3

§ 5 £ 2y!14

21y!14

3y!14

§

Since property (b) of Theorem 1.3 describes how length behaves with respect to 
scalar multiplication, natural curiosity suggests that we ask whether length and vec-
tor addition are compatible. It would be nice if we had an identity such as iu 1 v i  5 

iu i 1 iv i , but for almost any choice of vectors u and v this turns out to be false. [See 
Exercise 52(a).] However, all is not lost, for it turns out that if we replace the 5 sign by 
#, the resulting inequality is true. The proof of this famous and important  result—the 
Triangle Inequality—relies on another important inequality—the  Cauchy-Schwarz 
Inequality—which we will prove and discuss in more detail in Chapter 7.

The Cauchy-Schwarz Inequality

For all vectors u and v in Rn, 0 u ? v 0 # iu i   iv i

See Exercises 71 and 72 for algebraic and geometric approaches to the proof of this 
inequality.

In R
2 or R

3, where we can use geometry, it is clear from a diagram such as   
Figure 1.29 that iu 1 v i # iu i 1 iv i  for all vectors u and v. We now show that 
this is true more generally.

The Triangle Inequality

For all vectors u and v in Rn,

iu 1 v i # iu i 1 iv i

Example 1.19
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Section 1.2  Length and Angle: The Dot Product       23

Proof  Since both sides of the inequality are nonnegative, showing that the square  of 
the le�-hand side is less than or equal to the square of the right-hand side is equiva-
lent to proving the theorem. (Why?) We compute

  iu 1 v i 2
5 (u 1 v) ? (u 1 v)

  5 u ?u 1 2(u ? v) 1 v ? v  By Example 1.9

  # iu i 2
1 2 0 u ? v 0 1 iv i 2

  # iu i 2
1 2 iu i   iv i 1 iv i 2 By Cauchy-Schwarz

  5 ( iu i 1 iv i)2

as required.

Distance

The distance between two vectors is the direct analogue of the distance between two 
points on the real number line or two points in the Cartesian plane. On the number 
line (Figure 1.30), the distance between the numbers a and b is given by Za 2 bZ. (Tak-
ing the absolute value ensures that we do not need to know which of a or b is larger.) 
This distance is also equal to "(a 2 b) 2, and its two-dimensional generalization is 
the familiar formula for the distance d between points (a1, a2) and (b1, b2)—namely,

d 5 "(a1 2 b1 ) 2
1 (a2 2 b2 ) 2.

Figure 1.30

d 5 0 a 2 b 0 5 022 2 3 0 5 5

0 3�2

a b

In terms of vectors, if a 5 ca1

a2

d  and b 5 cb1

b2

d , then d is just the length of a 2 b,

as shown in Figure 1.31. This is the basis for the next de�nition.

Figure 1.31

d 5 "(a1 2 b1)
2

1 (a2 2 b2)
2

5 ia 2 b i

a2
 � b2

(b1, b2)

(a1, a2)

a1
 � b1

d

x

y
(a1, a2)

a

a � b

b

(b1, b2)

Definition   �e distance d(u, v) between vectors u and v in Rn is de�ned by

d(u, v) 5 iu 2 v i
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24       Chapter 1  Vectors

Find the distance between u 5 £ !2

1

21

§  and v 5 £ 0

2

22

§ .

Solution  We compute u 2 v 5 £ !2

21

1

§ , so

d(u, v) 5 iu 2 v i 5 "(!2)2
1 (21)2

1 12
5 !4 5 2

Angles

The dot product can also be used to calculate the angle between a pair of vectors. 
In R2 or R3, the angle between the nonzero vectors u and v will refer to the angle u 
 determined by these vectors that satis�es 0 # u # 180° (see Figure 1.32).

Example 1.20

v

u
u

v

uv

u

v

Figure 1.32

The angle between u and v

In Figure 1.33, consider the triangle with sides u, v, and u 2 v, where u is the angle 
between u and v. Applying the law of cosines to this triangle yields

iu 2 v i 2
5 iu i 2

1 iv i 2
2 2 iu i  iv i  cos u

Expanding the left-hand side and using iv i 2
5 v ? v several times, we obtain

iu i 2
2 2(u ? v) 1 iv i 2

5 iu i 2
1 iv i 2

2 2 iu i  iv i  cos u

which, after simpli�cation, leaves us with u ? v 5 iu i  iv i  cos u. From this we obtain 
the following formula for the cosine of the angle u between nonzero vectors u and v. 
We state it as a definition.

Definition   For nonzero vectors u and v in Rn,

cos u 5
u ? v

iu i  iv i

Compute the angle between the vectors u 5 [2, 1, 22] and v 5 [1, 1, 1].

u � v

u

v

Figure 1.33

Example 1.21
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Section 1.2  Length and Angle: The Dot Product       25

Solution  We calculate u?v 5 2?111?1 1(22)? 1 5 1, iui 5"22
1 12

1(22)2 5  !9 5 3, and iv i 5 "12
1 12

1 12 5 !3.  Therefore, cos u 5 1/3!3, so  

u 5 cos21(1y3!3) ø 1.377 radians, or 78.9°.

Compute the angle between the diagonals on two adjacent faces of a cube.

Solution  The dimensions of the cube do not matter, so we will work with a cube 
with sides of length 1. Orient the cube relative to the coordinate axes in R3, as shown 
in Figure 1.34, and take the two side diagonals to be the vectors [1, 0, 1] and [0, 1, 1]. 
Then angle u between these vectors satis�es

cos u 5
1 ? 0 1 0 ? 1 1 1 ? 1!2 !2

5
1

2

from which it follows that the required angle is py3 radians, or 608.

Example 1.22

y
x

[1, 0, 1][0, 1, 1]

z

Figure 1.34

(Actually, we don’t need to do any calculations at all to get this answer. If we draw 
a third side diagonal joining the vertices at (1, 0, 1) and (0, 1, 1), we get an equilateral 
triangle, since all of the side diagonals are of equal length. The angle we want is one of 
the angles of this triangle and therefore measures 608. Sometimes, a little insight can 
save a lot of calculation; in this case, it gives a nice check on our work!)

Remarks

  As this discussion shows, we usually will have to settle for an approximation 
to the angle between two vectors. However, when the angle is one of the so-called 
special angles (08, 308, 458, 608, 908, or an integer multiple of these), we should be able 
to recognize its cosine (Table 1.1) and thus give the corresponding angle exactly. In 
all other cases, we will use a calculator or computer to approximate the desired angle 
by means of the inverse cosine function.

 Table 1.1 Cosines of Special Angles

u 08 308 458 608 908

cos u 
!4

2
5 1 

!3

2
 

!2

2
5

1!2
 

!1

2
5

1

2
 

!0

2
5 0
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26       Chapter 1  Vectors

Theorem 1.6

  The derivation of the formula for the cosine of the angle between two vectors 
is valid only in R2 or R3, since it depends on a geometric fact: the law of cosines. In 
R 

n, for n . 3, the formula can be taken as a de�nition instead. This makes sense, since

the Cauchy-Schwarz Inequality implies that ` u ? v

iu i  iv i
` # 1, so 

u ? v

iu i  iv i
 ranges from 

21 to 1, just as the cosine function does.

Orthogonal Vectors

The concept of perpendicularity is fundamental to geometry. Anyone study ing 
 geometry quickly realizes the importance and usefulness of right angles. We now gen-
eralize the idea of perpendicularity to vectors in Rn, where it is called  orthogonality.

In R2 or R3, two nonzero vectors u and v are perpendicular if the angle u between

them is a right angle—that is, if u 5 py2 radians, or 90°. Thus, 
u ? v

iu i iv i
 5 cos 90° 5 0,

and it follows that u ? v 5 0. This motivates the following de�nition.

Definition   Two vectors u and v in Rn are orthogonal to each other if u ?v 5 0.

Since 0 ? v 5 0 for every vector v in Rn, the zero vector is orthogonal to every 
 vector.

In R3, u 5 [1, 1, 22] and v 5 [3, 1, 2] are orthogonal, since u ? v 5  3 1 1 2 4 5 0. 

Using the notion of orthogonality, we get an easy proof of Pythagoras’ Theorem, 
valid in Rn.

Pythagoras’ �eorem

For all vectors u and v in Rn, iu 1 v i 2
5 iu i 2

1 iv i 2 if and only if u and v are 
 orthogonal.

Proof  From Example 1.16, we have iu 1 v i 2
5 iu i 2

1 2(u ? v) 1 iv i 2 for all 

vectors u and v in Rn. It follows immediately that iu 1 v i 2
5 iu i 2

1 iv i 2 if and 
only if u ? v 5 0. See Figure 1.35.

The concept of orthogonality is one of the most important and useful in linear 
 algebra, and it often arises in surprising ways. Chapter 5 contains a detailed treatment 
of the topic, but we will encounter it many times before then. One problem in which 
it clearly plays a role is �nding the distance from a point to a line, where “dropping a 
perpendicular” is a familiar step.

The word orthogonal is derived 

from the Greek words orthos, mean-

ing “upright,” and gonia, meaning 

“angle.” Hence, orthogonal literally 

means “right-angled.” The Latin 

equivalent is rectangular.

Example 1.23

v

v

u

u � v

Figure 1.35
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