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xi

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried 

to write a book that assists students in discovering calculus—both for its practical power 

and its surprising beauty. In this edition, as in the first seven editions, I aim to convey 

to the student a sense of the utility of calculus and develop technical competence, but I 

also strive to give some appreciation for the intrinsic beauty of the subject. Newton 

undoubtedly experienced a sense of triumph when he made his great discoveries. I want 

students to share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that 

this should be the primary goal of calculus instruction. In fact, the impetus for the cur-

rent calculus reform movement came from the Tulane Conference in 1986, which for-

mulated as their first recommendation: 

Focus on conceptual understanding.

I have tried to implement this goal through the Rule of Three: “Topics should be pre-

sented geometrically, numerically, and algebraically.” Visualization, numerical and 

graphical experimentation, and other approaches have changed how we teach concep-

tual reasoning in fundamental ways. More recently, the Rule of Three has been expanded 

to become the Rule of Four by emphasizing the verbal, or descriptive, point of view as 

well.

In writing the eighth edition my premise has been that it is possible to achieve con-

ceptual understanding and still retain the best traditions of traditional calculus. The book 

contains elements of reform, but within the context of a traditional curriculum.

I have written several other calculus textbooks that might be preferable for some instruc-

tors. Most of them also come in single variable and multivariable versions.

● Calculus: Early Transcendentals, Eighth Edition, is similar to the present textbook 

except that the exponential, logarithmic, and inverse trigonometric functions are 

covered in the first semester.

● Essential Calculus, Second Edition, is a much briefer book (840 pages), though it 

contains almost all of the topics in Calculus, Eighth Edition. The relative brevity is 

achieved through briefer exposition of some topics and putting some features on the 

website.

● Essential Calculus: Early Transcendentals, Second Edition, resembles Essential 

Calculus, but the exponential, logarithmic, and inverse trigonometric functions are 

covered in Chapter 3.

A great discovery solves a great problem but there is a grain of discovery in the 

solution of any problem. Your problem may be modest; but if it challenges your 

curiosity and brings into play your inventive faculties, and if you solve it by your 

own means, you may experience the tension and enjoy the triumph of discovery.

G E O R G E  P O LYA

Preface
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xii Preface

● Calculus: Concepts and Contexts, Fourth Edition, emphasizes conceptual under-

standing even more strongly than this book. The coverage of topics is not encyclo-

pedic and the material on transcendental functions and on parametric equations is 

woven throughout the book instead of being treated in separate chapters.

● Calculus: Early Vectors introduces vectors and vector functions in the first semester 

and integrates them throughout the book. It is suitable for students taking engineer-

ing and physics courses concurrently with calculus.

● Brief Applied Calculus is intended for students in business, the social sciences, and 

the life sciences.

● Biocalculus: Calculus for the Life Sciences is intended to show students in the life 

sciences how calculus relates to biology. 

● Biocalculus: Calculus, Probability, and Statistics for the Life Sciences contains all 

the content of Biocalculus: Calculus for the Life Sciences as well as three addi-

tional chapters covering probability and statistics.

The changes have resulted from talking with my colleagues and students at the Univer-

sity of Toronto and from reading journals, as well as suggestions from users and review-

ers. Here are some of the many improvements that I’ve incorporated into this edition:

● The data in examples and exercises have been updated to be more timely.

● New examples have been added (see Examples 11.2.5 and 14.3.3, for instance). 

And the solutions to some of the existing examples have been amplified. 

● One new project has been added: In the project The Speedo LZR Racer (page 976) 

it is explained that this suit reduces drag in the water and, as a result, many swim-

ming records were broken. Students are asked why a small decrease in drag can 

have a big effect on performance.

● I have streamlined Chapter 15 (Multiple Integrals) by combining the first two sec-

tions so that iterated integrals are treated earlier.

● More than 20% of the exercises in each chapter are new. Here are some of my 

favorites: 12.5.81, 12.6.29–30, 14.6.65–66. In addition, there are some good new 

Problems Plus. (See Problem 8 on page 1026.)

Conceptual Exercises

The most important way to foster conceptual understanding is through the problems 

that we assign. To that end I have devised various types of problems. Some exercise sets 

begin with requests to explain the meanings of the basic concepts of the section. (See, 

for instance, the �rst few exercises in Sections 11.2, 14.2, and 14.3.) Similarly, all the 

review sections begin with a Concept Check and a True-False Quiz. Other exercises test 

conceptual understanding through graphs or tables (see Exercises 10.1.24–27, 11.10.2, 

13.2.1–2, 13.3.33–39, 14.1.1–2, 14.1.32–38, 14.1.41–44, 14.3.3–10, 14.6.1–2, 14.7.3–4, 

15.1.6–8, 16.1.11–18, 16.2.17–18, and 16.3.1–2).
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 Preface xiii

Another type of exercise uses verbal description to test conceptual understanding. I 

particularly value problems that combine and compare graphical, numerical, and alge-

braic approaches.

Graded Exercise Sets

Each exercise set is carefully graded, progressing from basic conceptual exercises and 

skill-development problems to more challenging problems involving applications and 

proofs.

Real-World Data

My assistants and I spent a great deal of time looking in libraries, contacting companies 

and government agencies, and searching the Internet for interesting real-world data to 

introduce, motivate, and illustrate the concepts of calculus. As a result, many of the 

examples and exercises deal with functions de�ned by such numerical data or graphs. 

Functions of two variables are illustrated by a table of values of the wind-chill index 

as a function of air temperature and wind speed (Example 14.1.2). Partial derivatives 

are introduced in Section 14.3 by examining a column in a table of values of the heat 

index (perceived air temperature) as a function of the actual temperature and the rela-

tive humidity. This example is pursued further in connection with linear approximations 

(Example 14.4.3). Directional derivatives are introduced in Section 14.6 by using a tem-

perature contour map to estimate the rate of change of temperature at Reno in the direc-

tion of Las Vegas. Double integrals are used to estimate the average snowfall in Colorado 

on December 20–21, 2006 (Example 15.1.9). Vector �elds are introduced in Section 16.1 

by depictions of actual velocity vector �elds showing San Francisco Bay wind patterns.

Projects

One way of involving students and making them active learners is to have them work 

(perhaps in groups) on extended projects that give a feeling of substantial accomplish-

ment when completed. I have included four kinds of projects: Applied Projects involve 

applications that are designed to appeal to the imagination of students. The project after 

Section 14.8 uses Lagrange multipliers to determine the masses of the three stages of a 

rocket so as to minimize the total mass while enabling the rocket to reach a desired veloc-

ity. Laboratory Projects involve technology; the one following Section 10.2 shows how 

to use Bézier curves to design shapes that represent letters for a laser printer. Discovery 

Projects explore aspects of geometry: tetrahedra (after Section 12.4), hyperspheres (after 

Section 15.6), and intersections of three cylinders (after Section 15.7). The Writing Project 

after Section 17.8 explores the historical and physical origins of Green’s Theorem and 

Stokes’ Theorem and the interactions of the three men involved. Many additional projects 

can be found in the Instructor’s Guide.

Tools for Enriching Calculus

TEC is a companion to the text and is intended to enrich and complement its contents. 

(It is now accessible in the eBook via CourseMate and Enhanced WebAssign. Selected 

Visuals and Modules are available at www.stewartcalculus.com.) Developed by Harvey 

Keynes, Dan Clegg, Hubert Hohn, and myself, TEC uses a discovery and exploratory 

approach. In sections of the book where technology is particularly appropriate, marginal 

icons direct students to TEC Modules that provide a laboratory environment in which 

they can explore the topic in different ways and at different levels. Visuals are anima-

tions of �gures in text; Modules are more elaborate activities and include exercises. 

Instructors can choose to become involved at several different levels, ranging from sim-
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xiv Preface

ply encouraging students to use the Visuals and Modules for independent exploration, 

to assigning speci�c exercises from those included with each Module, or to creating 

additional exercises, labs, and projects that make use of the Visuals and Modules.

TEC also includes Homework Hints for representative exercises (usually odd-num-

bered) in every section of the text, indicated by printing the exercise number in red. 

These hints are usually presented in the form of questions and try to imitate an effective 

teaching assistant by functioning as a silent tutor. They are constructed so as not to reveal 

any more of the actual solution than is minimally necessary to make further progress.

Enhanced WebAssign

Technology is having an impact on the way homework is assigned to students, particu-

larly in large classes. The use of online homework is growing and its appeal depends 

on ease of use, grading precision, and reliability. With the Eighth Edition we have been 

working with the calculus community and WebAssign to develop an online homework 

system. Up to 70% of the exercises in each section are assignable as online homework, 

including free response, multiple choice, and multi-part formats. 

The system also includes Active Examples, in which students are guided in step-by-

step tutorials through text examples, with links to the textbook and to video solutions.

Website

Visit CengageBrain.com or stewartcalculus.com for these additional materials:

● Homework Hints

● Algebra Review

● Lies My Calculator and Computer Told Me

● History of Mathematics, with links to the better historical websites

● Additional Topics (complete with exercise sets): Fourier Series, Formulas for the 

Remainder Term in Taylor Series, Rotation of Axes

● Archived Problems (drill exercises that appeared in previous editions, together with 

their solutions)

● Challenge Problems (some from the Problems Plus sections from prior editions)

● Links, for particular topics, to outside Web resources

● Selected Visuals and Modules from Tools for Enriching Calculus (TEC)

This chapter introduces parametric and polar curves and applies the methods of calculus 

to them. Parametric curves are well suited to laboratory projects; the two presented here 

involve families of curves and Bézier curves. A brief treatment of conic sections in polar 

coordinates prepares the way for Kepler’s Laws in Chapter 13.

The convergence tests have intuitive justifications (see page 759) as well as formal 

proofs. Numerical estimates of sums of series are based on which test was used to prove 

convergence. The emphasis is on Taylor series and polynomials and their applications 

to physics. Error estimates include those from graphing devices.

10 Parametric Equations 

and Polar Coordinates

11 In�nite Sequences and Series
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 Preface xv

The material on three-dimensional analytic geometry and vectors is divided into two 

chapters. Chapter 12 deals with vectors, the dot and cross products, lines, planes, and 

surfaces.

This chapter covers vector-valued functions, their derivatives and integrals, the length 

and curvature of space curves, and velocity and acceleration along space curves, culmi-

nating in Kepler’s laws.

Functions of two or more variables are studied from verbal, numerical, visual, and alge-

braic points of view. In particular, I introduce partial derivatives by looking at a specific 

column in a table of values of the heat index (perceived air temperature) as a function 

of the actual temperature and the relative humidity.

Contour maps and the Midpoint Rule are used to estimate the average snowfall and 

average temperature in given regions. Double and triple integrals are used to compute 

probabilities, surface areas, and (in projects) volumes of hyperspheres and volumes of 

intersections of three cylinders. Cylindrical and spherical coordinates are introduced in 

the context of evaluating triple integrals.

Vector fields are introduced through pictures of velocity fields showing San Francisco 

Bay wind patterns. The similarities among the Fundamental Theorem for line integrals, 

Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem are emphasized.

Since first-order differential equations are covered in Chapter 9, this final chapter deals 

with second-order linear differential equations, their application to vibrating springs and 

electric circuits, and series solutions.

Multivariable Calculus, Eighth Edition, is supported by a complete set of ancillaries 

developed under my direction. Each piece has been designed to enhance student under-

standing and to facilitate creative instruction. The tables on pages xx–xxi describe each 

of these ancillaries.

The preparation of this and previous editions has involved much time spent reading the 

reasoned (but sometimes contradictory) advice from a large number of astute reviewers. 

I greatly appreciate the time they spent to understand my motivation for the approach 

taken. I have learned something from each of them.

Eighth Edition Reviewers

Jay Abramson, Arizona State University

Adam Bowers, University of California San Diego

Neena Chopra, The Pennsylvania State University

Edward Dobson, Mississippi State University

Isaac Goldbring, University of Illinois at Chicago

Lea Jenkins, Clemson University

Rebecca Wahl, Butler University

12 Vectors and the  

Geometry of Space

13 Vector Functions

14 Partial Derivatives

15 Multiple Integrals

16 Vector Calculus

17 Second-Order 

Di�erential Equations
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Instructor’s Guide

by Douglas Shaw

ISBN 978-1-305-27178-4

Each section of the text is discussed from several viewpoints. 
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Includes worked-out solutions to all exercises in the text.
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ISBN 978-1-305-27180-7

Contains text-speci�c multiple-choice and free response test 
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Cengage Learning Testing Powered by Cognero
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This �exible online system allows you to author, edit, and 

manage test bank content from multiple Cengage Learning 

solutions; create multiple test versions in an instant; and 

deliver tests from your LMS, your classroom, or wherever you 
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TEC  TOOLS FOR ENRICHING™ CALCULUS
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Tools for Enriching Calculus (TEC) functions as both a 

powerful tool for instructors and as a tutorial environment  

in which students can explore and review selected topics. The 

Flash simulation modules in TEC include instructions, written 

and audio explanations of the concepts, and exercises. TEC  

is accessible in the eBook via CourseMate and Enhanced 

WebAssign. Selected Visuals and Modules are available at 

www.stewartcalculus.com.

 Enhanced WebAssign®

www.webassign.net

Printed Access Code: ISBN 978-1-285-85826-5

Instant Access Code ISBN: 978-1-285-85825-8

Exclusively from Cengage Learning, Enhanced WebAssign 

offers an extensive online program for Stewart’s Calculus  

to encourage the practice that is so critical for concept 

mastery. The meticulously crafted pedagogy and exercises 

in our proven texts become even more effective in Enhanced 

WebAssign, supplemented by multimedia tutorial support and 

immediate feedback as students complete their assignments. 

Key features include: 

n   Thousands of homework problems that match your text-

book’s end-of-section exercises

n  Opportunities for students to review prerequisite skills and 

content both at the start of the course and at the beginning 

of each section

n  Read It eBook pages, Watch It videos, Master It tutorials, 

and Chat About It links

n  A customizable Cengage YouBook with highlighting, note-

taking, and search features, as well as links to multimedia 

resources

n  Personal Study Plans (based on diagnostic quizzing) that 

identify chapter topics that students will need to master

n  A WebAssign Answer Evaluator that recognizes and accepts 

equivalent mathematical responses in the same way an 

instructor grades

n  A Show My Work feature that gives instructors the option 

of seeing students’ detailed solutions

n  Visualizing Calculus Animations, Lecture Videos, and more

n Electronic items n Printed items 
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Cengage Customizable YouBook
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able. Containing all the content from Stewart’s Calculus,  

YouBook features a text edit tool that allows instructors to 

modify the textbook narrative as needed. With YouBook, 

instructors can quickly reorder entire sections and chapters 

or hide any content they don’t teach to create an eBook that 
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video links. Additional media assets include animated �gures, 
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CourseMate
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engagement.

CengageBrain.com

To access additional course materials, please visit  

www.cengagebrain.com. At the CengageBrain.com home 

page, search for the ISBN of your title (from the back cover of 

your book) using the search box at the top of the page. This 

will take you to the product page where these resources can 

be found.

Student Solutions Manual

Multivariable

By Dan Clegg and Barbara Frank

ISBN 978-1-305-27182-1

Provides completely worked-out solutions to all odd- 

numbered exercises in the text, giving students a chance to 

check their answer and ensure they took the correct steps  

to arrive at the answer. The Student Solutions Manual  

can be ordered or accessed online as an eBook at  

www.cengagebrain.com by searching the ISBN.

Study Guide

Multivariable

By Richard St. Andre

ISBN 978-1-305-27184-5

For each section of the text, the Study Guide provides students 

with a brief introduction, a short list of concepts to master, 

and summary and focus questions with explained answers. 

The Study Guide also contains “Technology Plus” questions 

and multiple-choice “On Your Own” exam-style questions. 

The Study Guide can be ordered or accessed online as an 

eBook at www.cengagebrain.com by searching the ISBN.

A Companion to Calculus

By Dennis Ebersole, Doris Schattschneider, Alicia Sevilla,  

and Kay Somers

ISBN 978-0-495-01124-8

Written to improve algebra and problem-solving skills of 

students taking a calculus course, every chapter in this 

companion is keyed to a calculus topic, providing concep-

tual background and speci�c algebra techniques needed to 

understand and solve calculus problems related to that topic. 

It is designed for calculus courses that integrate the review of 

precalculus concepts or for individual use. Order a copy of 

the text or access the eBook online at www.cengagebrain.com 

by searching the ISBN.

Linear Algebra for Calculus

by Konrad J. Heuvers, William P. Francis, John H. Kuisti, 

Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner

ISBN 978-0-534-25248-9

This comprehensive book, designed to supplement the calcu-

lus course, provides an introduction to and review of the basic 

ideas of linear algebra. Order a copy of the text or access 

the eBook online at www.cengagebrain.com by searching the 

ISBN.
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To the Student

Reading a calculus textbook is different from reading a newspaper or a novel, or even a 

physics book. Don’t be discouraged if you have to read a passage more than once in 

order to understand it. You should have pencil and paper and calculator at hand to sketch 

a diagram or make a calculation.

Some students start by trying their homework problems and read the text only if they 

get stuck on an exercise. I suggest that a far better plan is to read and understand a sec-

tion of the text before attempting the exercises. In particular, you should look at the defi-

nitions to see the exact meanings of the terms. And before you read each example, I sug-

gest that you cover up the solution and try solving the problem yourself. You’ll get a lot 

more from looking at the solution if you do so.

Part of the aim of this course is to train you to think logically. Learn to write the solu-

tions of the exercises in a connected, step-by-step fashion with explanatory sentences—

not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the back of the book, in Appen-

dix H. Some exercises ask for a verbal explanation or interpretation or description. In 

such cases there is no single correct way of expressing the answer, so don’t worry that 

you haven’t found the definitive answer. In addition, there are often several different 

forms in which to express a numerical or algebraic answer, so if your answer differs 

from mine, don’t immediately assume you’re wrong. For example, if the answer given  

in the back of the book is s2 
2 1 and you obtain 1y(1 1 s2 ), then you’re right and  

rationalizing the denominator will show that the answers are equivalent.

The icon ; indicates an exercise that definitely requires the use of either a graphing 

calculator or a computer with graphing software. But that doesn’t mean that graphing 

devices can’t be used to check your work on the other exercises as well. The symbol CAS  

is reserved for problems in which the full resources of a computer algebra system (like 

Maple, Mathematica, or the TI-89) are required.

xxii
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You will also encounter the symbol |, which warns you against committing an error. 

I have placed this symbol in the margin in situations where I have observed that a large 

proportion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to this text, is referred to by 

means of the symbol TEC  and can be accessed in the eBook via Enhanced WebAssign 

and CourseMate (selected Visuals and Modules are available at stewartcalculus.com).  

It directs you to modules in which you can explore aspects of calculus for which the 

computer is particularly useful. 

You will notice that some exercise numbers are printed in red: 5. This indicates that 

Homework Hints are available for the exercise. These hints can be found on stewart- 

calculus.com as well as Enhanced WebAssign and CourseMate. The homework hints ask 

you questions that allow you to make progress toward a solution without actually giving 

you the answer. You need to pursue each hint in an active manner with pencil and paper 

to work out the details. If a particular hint doesn’t enable you to solve the problem, you 

can click to reveal the next hint. 

I recommend that you keep this book for reference purposes after you finish the 

course. Because you will likely forget some of the specific details of calculus, the book 

will serve as a useful reminder when you need to use calculus in subsequent courses. 

And, because this book contains more material than can be covered in any one course, it 

can also serve as a valuable resource for a working scientist or engineer.

Calculus is an exciting subject, justly considered to be one of the greatest achieve-

ments of the human intellect. I hope you will discover that it is not only useful but also 

intrinsically beautiful.

JAMES STEWART
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679

The photo shows Halley’s 

comet as it passed Earth in 

1986. Due to return in 2061, 

it was named after Edmond 

Halley (1656–1742), the 

English scientist who �rst 

recognized its periodicity. In 

Section 10.6 you will see how 

polar coordinates provide a 

convenient equation for the 

elliptical path of its orbit.

Parametric Equations and 
Polar Coordinates

SO FAR WE HAVE DESCRIBED plane curves by giving y as a function of x fy − f sxdg or x as a 

function of y fx − tsydg or by giving a relation between x and y that de�nes y implicitly as a func-

tion of x f f sx, yd − 0g. In this chapter we discuss two new methods for describing curves.

 Some curves, such as the cycloid, are best handled when both x and y are given in terms of a 

third variable t called a parameter fx − f std, y − tstdg. Other curves, such as the cardioid, have 

their most convenient description when we use a new coordinate system, called the polar coordi-

nate system.

10

Stocktrek / Stockbyte / Getty Images
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680 CHAPTER 10  Parametric Equations and Polar Coordinates

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to 

describe C by an equation of the form y − f sxd because C fails the Vertical Line Test. 

But the x- and y-coordinates of the particle are functions of time and so we can write 

x − f std and y − tstd. Such a pair of equations is often a convenient way of describing a 

curve and gives rise to the following de�nition.

Suppose that x and y are both given as functions of a third variable t (called a param-

eter) by the equations

x − f std    y − tstd

(called parametric equations). Each value of t determines a point sx, yd, which we can 

plot in a coordinate plane. As t varies, the point sx, yd − s f std, tstdd varies and traces out 

a curve C, which we call a parametric curve. The parameter t does not necessarily rep-

resent time and, in fact, we could use a letter other than t for the parameter. But in many 

applications of parametric curves, t does denote time and therefore we can interpret 

sx, yd − s f std, tstdd as the position of a particle at time t.

EXAMPLE 1  Sketch and identify the curve de�ned by the parametric equations

x − t 2
2 2t    y − t 1 1

SOLUTION Each value of t gives a point on the curve, as shown in the table. For 

instance, if t − 0, then x − 0, y − 1 and so the corresponding point is s0, 1d. In Fig- 

ure 2 we plot the points sx, yd determined by several values of the parameter and we 

join them to produce a curve.

t x y

22 8 21

21 3 0

0 0 1

1 21 2

2 0 3

3 3 4

4 8 5
     

0

t=0

t=1

t=2

t=3

t=4

t=_1

t=_2

(0, 1)

y

x

8

FIGURE 2

A particle whose position is given by the parametric equations moves along the 

curve in the direction of the arrows as t increases. Notice that the consecutive points 

marked on the curve appear at equal time intervals but not at equal distances. That is 

because the particle slows down and then speeds up as t increases.

It appears from Figure 2 that the curve traced out by the particle may be a parab ola. 

This can be con�rmed by eliminating the parameter t as follows. We obtain t − y 2 1 

from the second equation and substitute into the �rst equation. This gives

x − t 2
2 2t − sy 2 1d2

2 2sy 2 1d − y 2
2 4y 1 3

and so the curve represented by the given parametric equations is the parabola 

x − y 2
2 4y 1 3. n

FIGURE 1 

C

0

(x, y)={f(t), g(t)}

y

x

This equation in x and y describes 

where the particle has been, but it 

doesn’t tell us when the particle was 

at a particular point. The parametric 

equations have an advantage––they 

tell us when the particle was at a point. 

They also indicate the direction of the 

motion.
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 SECTION 10.1  Curves De�ned by Parametric Equations 681

No restriction was placed on the parameter t in Example 1, so we assumed that t could 

be any real number. But sometimes we restrict t to lie in a �nite interval. For instance, 

the parametric curve

x − t 2
2 2t    y − t 1 1    0 < t < 4

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point s0, 1d 
and ends at the point s8, 5d. The arrowhead indicates the direction in which the curve is 

traced as t increases from 0 to 4.

In general, the curve with parametric equations

x − f std    y − tstd    a < t < b

has initial point s f sad, tsadd and terminal point s f sbd, tsbdd.

EXAMPLE 2  What curve is represented by the following parametric equations?

x − cos t    y − sin t    0 < t < 2�

SOLUTION If we plot points, it appears that the curve is a circle. We can con�rm this 

impression by eliminating t. Observe that

x 2
1 y 2

− cos2t 1 sin2t − 1

Thus the point sx, yd moves on the unit circle x 2
1 y 2

− 1. Notice that in this example 

the parameter t can be interpreted as the angle (in radians) shown in Figure 4. As t 

increases from 0 to 2�, the point sx, yd − scos t, sin td moves once around the circle in 

the counterclockwise direction starting from the point s1, 0d. n

EXAMPLE 3  What curve is represented by the given parametric equations?

x − sin 2t    y − cos 2t    0 < t < 2�

SOLUTION Again we have

x 2
1 y 2

− sin2 2t 1 cos2 2t − 1

so the parametric equations again represent the unit circle x 2
1 y 2

− 1. But as t 

increases from 0 to 2�, the point sx, yd − ssin 2t, cos 2td starts at s0, 1d and moves 

twice around the circle in the clockwise direction as indicated in Figure 5. n

Examples 2 and 3 show that different sets of parametric equations can represent the 

same curve. Thus we distinguish between a curve, which is a set of points, and a para-

metric curve, in which the points are traced in a particular way.

EXAMPLE 4  Find parametric equations for the circle with center sh, kd and radius r.

SOLUTION If we take the equations of the unit circle in Example 2 and multiply the 

expressions for x and y by r, we get x − r cos t, y − r sin t. You can verify that these 

equations represent a circle with radius r and center the origin traced counterclockwise. 

We now shift h units in the x-direction and k units in the y-direction and obtain para-

0

(8, 5)

(0, 1)

y

x

FIGURE 3 

3π

2
t=

π

2
t=

0

t
t=0

(1, 0)

(cos t, sin t)

t=2π

t=π

x

y

FIGURE 4 

0

t=0, π, 2π

x

y

(0, 1)

FIGURE 5 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



682 CHAPTER 10  Parametric Equations and Polar Coordinates

metric equations of the circle (Figure 6) with center sh, kd and radius r:

 x − h 1 r cos t    y − k 1 r sin t    0 < t < 2�

 0

(h, k)

r

x

y

 n

EXAMPLE 5  Sketch the curve with parametric equations x − sin t, y − sin2t.

SOLUTION Observe that y − ssin td2
− x 2 and so the point sx, yd moves on the parabola 

y − x 2. But note also that, since 21 < sin t < 1, we have 21 < x < 1, so the para-

metric equations represent only the part of the parabola for which 21 < x < 1. Since 

sin t is periodic, the point sx, yd − ssin t, sin2td moves back and forth in�nitely often 

along the parabola from s21, 1d to s1, 1d. (See Figure 7.) n

y=sin 2tx=cos t     y=sin 2t

x
=

co
s t

t

x

y

t

y

x

Graphing Devices

Most graphing calculators and other graphing devices can be used to graph curves  

de�ned by parametric equations. In fact, it’s instructive to watch a parametric curve 

being drawn by a graphing calculator because the points are plotted in order as the cor-

responding parameter values increase.

FIGURE 6  

x − h 1 r cos t, y − k 1 r sin t

0

(1, 1)(_1, 1)

x

y

FIGURE 7 

TEC Module 10.1A gives an ani -

ma tion of the relationship between 

motion along a parametric curve 

x − f std, y − tstd and motion along 

the graphs of f  and t as functions  

of t. Clicking on TRIG gives you the 

family of parametric curves

x − a cos bt   y − c sin dt

 If you choose a − b − c − d − 1 

and click on animate, you will see 

how the graphs of x − cos t and 

y − sin t relate to the circle in Exam-

ple 2. If you choose a − b − c − 1, 

d − 2, you will see graphs as in 

Figure 8. By clicking on animate or 

moving the t-slider to the right, you 

can see from the color coding how 

motion along the graphs of x − cos t 

and y − sin 2t corresponds to motion 

along the parametric curve, which is 

called a Lissajous �gure.
FIGURE 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 10.1  Curves De�ned by Parametric Equations 683

EXAMPLE 6  Use a graphing device to graph the curve x − y 4
2 3y 2.

SOLUTION If we let the parameter be t − y, then we have the equations

x − t 4
2 3t 2    y − t

Using these parametric equations to graph the curve, we obtain Figure 9. It would be 

possible to solve the given equation sx − y 4
2 3y 2 d for y as four functions of x and 

graph them individually, but the parametric equations provide a much easier method. n

In general, if we need to graph an equation of the form x − tsyd, we can use the 

parametric equations

x − tstd    y − t

Notice also that curves with equations y − f sxd (the ones we are most familiar with—

graphs of functions) can also be regarded as curves with parametric equations

x − t    y − f std

Graphing devices are particularly useful for sketching complicated parametric curves. 

For instance, the curves shown in Figures 10, 11, and 12 would be virtually impossible to  

produce by hand.

13

0

1

_1

_1 1

3.5

_3.5

_3.5 3.5

13

FIGURE 10  

x − t 1 sin 5t 

y − t 1 sin 6t 

  FIGURE 11  

  x − sin 9t 

  y − sin 10 t 

FIGURE 12  

x − 2.3 cos  10t 1 cos 23t 

y − 2.3 sin 10t 2 sin 23t 

One of the most important uses of parametric curves is in computer-aided design 

(CAD). In the Laboratory Project after Section 10.2 we will investigate special paramet-

ric curves, called Bézier curves, that are used extensively in manufacturing, especially 

in the auto motive industry. These curves are also employed in specifying the shapes of 

letters and other symbols in laser printers and in documents viewed electronically.

The Cycloid

EXAMPLE 7  The curve traced out by a point P on the circumference of a circle as 

the circle rolls along a straight line is called a cycloid (see Figure 13). If the circle has 

radius r and rolls along the x-axis and if one position of P is the origin, �nd parametric 

equations for the cycloid.

P

P

P

TEC An animation in Module 10.1B 

shows how the cycloid is formed as 

the circle moves.

FIGURE 13 

FIGURE 9 

3

_3

_3 3
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684 CHAPTER 10  Parametric Equations and Polar Coordinates

SOLUTION We choose as parameter the angle of rotation � of the circle s� − 0 when 

P is at the origin). Suppose the circle has rotated through � radians. Because the circle 

has been in contact with the line, we see from Figure 14 that the distance it has rolled 

from the origin is

| OT | − arc PT − r�

Therefore the center of the circle is Csr�, rd. Let the coordinates of P be sx, yd. Then 

from Figure 14 we see that

 x − | OT | 2 | PQ | − r� 2 r sin � − rs� 2 sin �d

 y − | TC | 2 | QC | − r 2 r cos � − r s1 2 cos �d

Therefore parametric equations of the cycloid are

x − r s� 2 sin �d    y − r s1 2 cos �d    � [ R

One arch of the cycloid comes from one rotation of the circle and so is described by 

0 < � < 2�. Although Equations 1 were derived from Figure 14, which illustrates the 

case where 0 , � , �y2, it can be seen that these equations are still valid for other 

values of � (see Exercise 39).

Although it is possible to eliminate the parameter � from Equations 1, the resulting 

Cartesian equation in x and y is very complicated and not as convenient to work with as 

the parametric equations. n

One of the �rst people to study the cycloid was Galileo, who proposed that bridges be 

built in the shape of cycloids and who tried to �nd the area under one arch of a cycloid. 

Later this curve arose in connection with the brachistochrone problem: Find the curve 

along which a particle will slide in the shortest time (under the in�uence of gravity) 

from a point A to a lower point B not directly beneath A. The Swiss mathematician John 

Bernoulli, who posed this problem in 1696, showed that among all possible curves that 

join A to B, as in Figure 15, the particle will take the least time sliding from A to B if the 

curve is part of an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solution 

to the tautochrone problem; that is, no matter where a particle P is placed on an inverted 

cycloid, it takes the same time to slide to the bottom (see Figure 16). Huygens proposed 

that pendulum clocks (which he invented) should swing in cycloidal arcs because then 

the pendulum would take the same time to make a complete oscillation whether it swings 

through a wide or a small arc.

Families of Parametric Curves

EXAMPLE 8  Investigate the family of curves with parametric equations

x − a 1 cos t      y − a tan t 1 sin t

What do these curves have in common? How does the shape change as a increases?

SOLUTION We use a graphing device to produce the graphs for the cases a − 22, 21, 

20.5, 20.2, 0, 0.5, 1, and 2 shown in Figure 17. Notice that all of these curves (except 

the case a − 0) have two branches, and both branches approach the vertical asymptote 

x − a as x approaches a from the left or right.

xO

y

T

C (r¨, r )
r ¨

x
y

r¨

P Q

FIGURE 14 

1

A

B

cycloid

FIGURE 15 

P

P

P

P

P 

FIGURE 16 
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 SECTION 10.1  Curves De�ned by Parametric Equations 685

a=_2 a=_1 a=_0.5 a=_0.2

a=2a=1a=0.5a=0

When a , 21, both branches are smooth; but when a reaches 21, the right branch 

acquires a sharp point, called a cusp. For a between 21 and 0 the cusp turns into a 

loop, which becomes larger as a approaches 0. When a − 0, both branches come 

together and form a circle (see Example 2). For a between 0 and 1, the left branch has 

a loop, which shrinks to become a cusp when a − 1. For a . 1, the branches become 

smooth again, and as a increases further, they become less curved. Notice that the 

curves with a positive are re�ections about the y-axis of the corresponding curves with 

a negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar 

Nicomedes. He called them conchoids because the shape of their outer branches 

resembles that of a conch shell or mussel shell. n

FIGURE 17  

Members of the family x − a 1 cos t,

y − a tan t 1 sin t, all graphed in the 

viewing rectangle f24, 4g by f24, 4g

 9.  x − st  ,  y − 1 2 t

 10.  x − t 2,  y − t 3

11–18

(a)  Eliminate the parameter to �nd a Cartesian equation of the 

curve.

(b)  Sketch the curve and indicate with an arrow the direction in 

which the curve is traced as the parameter increases.

 11.  x − sin 12 �,  y − cos 12 �,  2� < � < �

 12.  x −
1
2 cos �,  y − 2 sin �,  0 < � < �

 13.  x − sin t,  y − csc t,  0 , t , �y2

 14.  x − e t,  y − e22 t

 15.  x − t 2,  y − ln t

 16.  x − st 1 1,  y − st 2 1

 17.  x − sinh t,  y − cosh t

 18.  x − tan2�,  y − sec �,  2�y2 , � , �y2

1–4 Sketch the curve by using the parametric equations to plot 

points. Indicate with an arrow the direction in which the curve is 

traced as t increases.

 1.  x − 1 2 t 2,  y − 2t 2 t 2,  21 < t < 2

 2.  x − t 3
1 t,  y − t 2

1 2,  22 < t < 2

 3.  x − t 1 sin t,  y − cos t,  2� < t < �

 4.  x − e2t 
1 t,  y − e t

2 t,  22 < t < 2

5–10

(a)  Sketch the curve by using the parametric equations to plot 

points. Indicate with an arrow the direction in which the 

curve is traced as t increases.

(b)  Eliminate the parameter to �nd a Cartesian equation of the 

curve.

 5.  x − 2t 2 1,  y −
1
2 t 1 1

 6.  x − 3t 1 2,  y − 2t 1 3

 7.  x − t 2
2 3,  y − t 1 2,  23 < t < 3

 8.  x − sin t,  y − 1 2 cos t,  0 < t < 2�
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686 CHAPTER 10  Parametric Equations and Polar Coordinates

25–27 Use the graphs of x − f std and y − tstd to sketch the 

parametric curve x − f std, y − tstd. Indicate with arrows the 

direction in which the curve is traced as t increases.

 

25.

 

t

x

1

1 t

y

1

1

 26.

 

t

x

1

1_1 t

y

1

1

 

27.

 

t

x

1

0 1 t

y

1

1

 28.   Match the parametric equations with the graphs labeled I–VI. 

Give reasons for your choices. (Do not use a graphing device.)

 (a) x − t 4
2 t 1 1,  y − t 2

 (b) x − t 2
2 2t,  y − st  

 (c) x − sin 2t,  y − sinst 1 sin 2td

 (d) x − cos 5t,  y − sin 2t

 (e) x − t 1 sin 4t,  y − t 2
1 cos 3t

 (f ) x −
sin 2t

4 1 t 2
,  y −  

cos 2t

4 1 t 2

x

y

x

y

x

y

x

y

x

y

x

y

I II III

IV V VI

 19–22 Describe the motion of a particle with position sx, yd as t 

varies in the given interval.

 19.  x − 5 1 2 cos �t,  y − 3 1 2 sin �t,  1 < t < 2

 20.  x − 2 1 sin t,  y − 1 1 3 cos t,  �y2 < t < 2�

 21.  x − 5 sin t,  y − 2 cos t,  2� < t < 5�

 22.  x − sin t,  y − cos2t,  22� < t < 2�

 23.   Suppose a curve is given by the parametric equations 

x − f std, y − tstd, where the range of f  is f1, 4g and the 

range of t is f2, 3g. What can you say about the curve?

 24.   Match the graphs of the parametric equations x − f std and 

y − tstd in (a)–(d) with the parametric curves labeled I–IV. 

Give reasons for your choices.

t

x

2

1

1

t

y

1

1

y

x

2

2

(a) I

(b) II

x

t

2

1 t

2

1

y y

x

2

2

(c) III

t

2

2

yx

t

2

2

(d) IV

t

2

2

yx

t

2

2

y

x

2

2

1

y

x

1

2
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 SECTION 10.1  Curves De�ned by Parametric Equations 687

that parametric equations of the trochoid are

 x − r� 2 d sin �     y − r 2 d cos �

 Sketch the trochoid for the cases d , r and d . r.

 41.   If a and b are �xed numbers, �nd parametric equations for the 

curve that consists of all possible positions of the point P in 

the �gure, using the angle � as the parameter. Then eliminate 

the param eter and identify the curve.

O

y

x

¨

a
b P

 42.   If a and b are �xed numbers, �nd parametric equations for 

the curve that consists of all possible positions of the point P 

in the �gure, using the angle � as the parameter. The line seg-

ment AB is tangent to the larger circle.

O x

y

¨

a
b

A

B

P

 43.   A curve, called a witch of Maria Agnesi, consists of all 

possible positions of the point P in the �gure. Show that para-

metric equations for this curve can be written as 

x − 2a cot �    y − 2a sin2�

 Sketch the curve.

O x

a

A P

y=2a

¨

y
C

 29.  Graph the curve x − y 2 2 sin �y.

 30.  Graph the curves y − x 3
2 4x and x − y 3

2 4y and �nd 

their points of intersection correct to one decimal place.

 31.  (a) Show that the parametric equations

x − x1 1 sx 2 2 x1dt    y − y1 1 sy2 2 y1dt

     where 0 < t < 1, describe the line segment that joins 

the points P1sx1, y1d and P2sx 2, y2 d.
 (b)  Find parametric equations to represent the line segment 

from s22, 7d to s3, 21d.

 32.  Use a graphing device and the result of Exercise 31(a) to 

draw the triangle with vertices As1, 1d, Bs4, 2d, and Cs1, 5d.

 33.   Find parametric equations for the path of a particle that 

moves along the circle x 2
1 sy 2 1d2

− 4 in the manner 

described.

 (a) Once around clockwise, starting at s2, 1d
 (b) Three times around counterclockwise, starting at s2, 1d
 (c) Halfway around counterclockwise, starting at s0, 3d

 34. (a)  Find parametric equations for the ellipse 

x 2ya 2
1 y 2yb 2

− 1. [Hint: Modify the equations of the 

circle in Example 2.]

 (b)  Use these parametric equations to graph the ellipse 

when a − 3 and b − 1, 2, 4, and 8.

 (c) How does the shape of the ellipse change as b varies?

 35–36 Use a graphing calculator or computer to reproduce the 

picture.

 35.  36.  

0

y

x

2

3 8

4

0

2

y

x2

37–38 Compare the curves represented by the parametric 

equations. How do they differ?

 37.  (a) x − t 3,  y − t 2 (b) x − t 6,  y − t 4

 (c) x − e23 t,  y − e22 t

 38.  (a) x − t,  y − t 22 (b) x − cos t,  y − sec2t

 (c) x − e t,  y − e22 t

 39.  Derive Equations 1 for the case �y2 , � , �.

 40.   Let P be a point at a distance d from the center of a circle of 

radius r. The curve traced out by P as the circle rolls along 

a straight line is called a trochoid. (Think of the motion 

of a point on a spoke of a bicycle wheel.) The cycloid is 

the special case of a trochoid with d − r. Using the same 

parameter � as for the cycloid, and assuming the line is the 

x-axis and � − 0 when P is at one of its lowest points, show 

;

;

;

;

;
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688 CHAPTER 10  Parametric Equations and Polar Coordinates

t seconds is given by the parametric equations

x − sv0 cos �dt    y − sv0 sin �dt 2
1
2 tt

2

 where t is the acceleration due to gravity (9.8 mys2).

 (a)  If a gun is �red with � − 30° and v0 − 500 mys, when 

will the bullet hit the ground? How far from the gun 

will it hit the ground? What is the maximum height 

reached by the bullet?

 (b)  Use a graphing device to check your answers to part (a). 

Then graph the path of the projectile for several other 

values of the angle � to see where it hits the ground. 

Summarize your �ndings.

 (c)  Show that the path is parabolic by eliminating the 

parameter.

 47.  Investigate the family of curves de�ned by the parametric 

equations x − t 2, y − t 3
2 ct. How does the shape change 

as c increases? Illustrate by graphing several members of 

the family.

 48.  The swallowtail catastrophe curves are de�ned by the 

parametric equations x − 2ct 2 4t 3, y − 2ct 2
1 3t 4. 

Graph several of these curves. What features do the curves 

have in common? How do they change when c increases?

 49.  Graph several members of the family of curves with para-

metric equations x − t 1 a cos t, y − t 1 a sin t, where 

a . 0. How does the shape change as a increases? For what 

values of a does the curve have a loop?

 50.  Graph several members of the family of curves 

x − sin t 1 sin nt, y − cos t 1 cos nt, where n is a positive 

integer. What features do the curves have in common? What 

happens as n increases?

 51.  The curves with equations x − a sin nt, y − b cos t are 

called Lissajous �gures. Investigate how these curves vary 

when a, b, and n vary. (Take n to be a positive integer.)

 52.  Investigate the family of curves de�ned by the parametric 

equations x − cos t, y − sin t 2 sin ct, where c . 0. Start 

by letting c be a positive integer and see what happens to 

the shape as c increases. Then explore some of the possibili-

ties that occur when c is a fraction.

;

;

;

;

;

;

;

 44.  (a)  Find parametric equations for the set of all points P 

as shown in the �gure such that | OP | − | AB |. (This 

curve is called the cissoid of Diocles after the Greek 

scholar Diocles, who introduced the cissoid as a graphi-

cal method for constructing the edge of a cube whose 

volume is twice that of a given cube.)

 (b)  Use the geometric description of the curve to draw a 

rough sketch of the curve by hand. Check your work by 

using the parametric equations to graph the curve.

xO

y

A

P

x=2a

B

a

 45.  Suppose that the position of one particle at time t is given by

x1 − 3 sin t    y1 − 2 cos t    0 < t < 2�

 and the position of a second particle is given by

x 2 − 23 1 cos t    y2 − 1 1 sin t    0 < t < 2�

 (a)  Graph the paths of both particles. How many points of 

intersection are there?

 (b)  Are any of these points of intersection collision points? 

In other words, are the particles ever at the same place 

at the same time? If so, �nd the collision points.

 (c)  Describe what happens if the path of the second particle 

is given by

x 2 − 3 1 cos t y2 − 1 1 sin t 0 < t < 2�

 46.   If a projectile is �red with an initial velocity of v0 meters 

per second at an angle � above the horizontal and air resis-

tance is assumed to be negligible, then its position after  

;

LABORATORY PROJECT

In this project we investigate families of curves, called hypocycloids and epicycloids, that are  

generated by the motion of a point on a circle that rolls inside or outside another circle.

1.  A hypocycloid is a curve traced out by a �xed point P on a circle C of radius b as C rolls on 

the inside of a circle with center O and radius a. Show that if the initial position of P is sa, 0d 
and the parameter � is chosen as in the �gure, then parametric equations of the hypocycloid 

are

x − sa 2 bd cos � 1 b cosS a 2 b

b
 �D      y − sa 2 bd sin � 2 b sinS a 2 b

b
 �D

2.  Use a graphing device (or the interactive graphic in TEC Module 10.1B) to draw the graphs 

of hypocycloids with a a positive integer and b − 1. How does the value of a affect the 

xO

y

a

C

P
b

(a, 0)¨

A

RUNNING CIRCLES AROUND CIRCLES;
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 SECTION 10.2  Calculus with Parametric Curves 689

  graph? Show that if we take a − 4, then the parametric equations of the hypocycloid  

reduce to

x − 4 cos3�    y − 4 sin3�

 This curve is called a hypocycloid of four cusps, or an astroid.

3.  Now try b − 1 and a − nyd, a fraction where n and d have no common factor. First let  

n − 1 and try to determine graphically the effect of the denominator d on the shape of the 

graph. Then let n vary while keeping d constant. What happens when n − d 1 1?

4.  What happens if b − 1 and a is irrational? Experiment with an irrational number like s2   

or e 2 2. Take larger and larger values for � and speculate on what would happen if we  

were to graph the hypocycloid for all real values of �.

5.  If the circle C rolls on the outside of the �xed circle, the curve traced out by P is called an 

epicycloid. Find parametric equations for the epicycloid.

6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2–4.

Having seen how to represent curves by parametric equations, we now apply the methods 

of calculus to these parametric curves. In particular, we solve problems involving tan-

gents, areas, arc length, and surface area.

Tangents

Suppose f  and t are differentiable functions and we want to �nd the tangent line at a 

point on the parametric curve x − f std, y − tstd, where y is also a differentiable function 

of x. Then the Chain Rule gives

dy

dt
−

dy

dx
?

dx

dt

If dxydt ± 0, we can solve for dyydx:

dy

dx
−

dy

dt

dx

dt

              if    
dx

dt
± 0

Equation 1 (which you can remember by thinking of canceling the dt’s) enables us 

to �nd the slope dyydx of the tangent to a parametric curve without having to eliminate 

the parameter t. We see from (1) that the curve has a horizontal tangent when dyydt − 0 

(provided that dxydt ± 0) and it has a vertical tangent when dxydt − 0 (provided that 

dyydt ± 0). This information is useful for sketching parametric curves.

As we know from Chapter 4, it is also useful to consider d 2 yydx 2. This can be found 

by replacing y by dyydx in Equation 1:

d 2 y

dx 2
−

d

dx
 S dy

dx
D −

d

dt
 S dy

dx
D

dx

dt

If we think of the curve as being 

traced out by a moving particle, then 

dyydt and dxydt are the vertical and 

horizontal velocities of the particle and 

Formula 1 says that the slope of the 

tangent is the ratio of these velocities.

1

Note that  
d 2y

dx 2
Þ

d 2y

dt 2

d 2x

dt 2

TEC Look at Module 10.1B to see 

how hypocycloids and epicycloids 

are formed by the motion of rolling 

circles.
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690 CHAPTER 10  Parametric Equations and Polar Coordinates

EXAMPLE 1  A curve C is de�ned by the parametric equations x − t 2, y − t 3
2 3t.

(a) Show that C has two tangents at the point (3, 0) and �nd their equations.

(b) Find the points on C where the tangent is horizontal or vertical.

(c) Determine where the curve is concave upward or downward.

(d) Sketch the curve.

SOLUTION

(a) Notice that y − t 3
2 3t − tst 2

2 3d − 0 when t − 0 or t − 6s3 . Therefore the 

point s3, 0d on C arises from two values of the parameter, t − s3  and t − 2s3 . This 

indicates that C crosses itself at s3, 0d. Since

dy

dx
−

dyydt

dxydt
−

3t 2
2 3

2t
−

3

2
 St 2

1

t
D

 the slope of the tangent when t − 6s3  is dyydx − 66ys2s3 d − 6s3 , so the equa-

tions of the tangents at s3, 0d are

y − s3  sx 2 3d    and    y − 2s3  sx 2 3d

(b) C has a horizontal tangent when dyydx − 0, that is, when dyydt − 0 and 

dxydt ± 0. Since dyydt − 3t 2
2 3, this happens when t 2

− 1, that is, t − 61. The 

corresponding points on C are s1, 22d and (1, 2). C has a vertical tangent when 

dxydt − 2t − 0, that is, t − 0. (Note that dyydt ± 0 there.) The corresponding point 

on C is (0, 0).

(c) To determine concavity we calculate the second derivative:

d 2 y

dx 2
−

d

dt
 S dy

dx
D

dx

dt

−

3

2
 S1 1

1

t 2D
2t

−
3st 2

1 1d

4t 3

Thus the curve is concave upward when t . 0 and concave downward when t , 0.

(d) Using the information from parts (b) and (c), we sketch C in Figure 1. n

EXAMPLE 2  

(a) Find the tangent to the cycloid x − r s� 2 sin �d, y − r s1 2 cos �d at the point 

where � − �y3.  (See Example 10.1.7.)

(b) At what points is the tangent horizontal? When is it vertical?

SOLUTION

(a) The slope of the tangent line is

dy

dx
−

dyyd�

dxyd�
−

r sin �

r s1 2 cos �d
−

sin �

1 2 cos �

When � − �y3, we have

x − rS�

3
2 sin 

�

3
D − rS�

3
2
s3 

2
D      y − rS1 2 cos 

�

3
D −

r

2

and 
dy

dx
−

sins�y3d

1 2 coss�y3d
−
s3 y2

1 2
1
2

− s3 

0

y

x
(3, 0)

(1, _2)

(1, 2)

t=1

t=_1

y=œ„3(x-3)

y=_œ„3(x-3)

FIGURE 1 
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Therefore the slope of the tangent is s3  and its equation is

y 2
r

2
− s3  Sx 2

r�

3
1

rs3 

2
D    or    s3  x 2 y − rS �

s3 
2 2D

The tangent is sketched in Figure 2.

0

y

x2πr 4πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π

3
¨=

(b) The tangent is horizontal when dyydx − 0, which occurs when sin � − 0 and 

1 2 cos � ± 0, that is, � − s2n 2 1d�, n an integer. The corresponding point on the 

cycloid is ss2n 2 1d�r, 2rd.

When � − 2n�, both dxyd� and dyyd� are 0. It appears from the graph that there  

are vertical tangents at those points. We can verify this by using l’Hospital’s Rule as 

follows:

lim
�l

 

2n�1
 
dy

dx
− lim

�l
 

2n�1
 

sin �

1 2 cos �
−  lim

�l
 

2n�1
 
cos �

sin �
− `

A similar computation shows that dyydxl 2` as �l 2n�2, so indeed there are 

vertical tangents when � − 2n�, that is, when x − 2n�r. n

Areas

We know that the area under a curve y − Fsxd from a to b is A − yba Fsxd dx, where 

Fsxd > 0. If the curve is traced out once by the parametric equations x − f std and 

y − tstd, � < t < �, then we can calculate an area formula by using the Sub stitution 

Rule for De�nite Integrals as follows:

 A − yb

a
 y dx − y�

�
 tstd f 9std dt    For y�

�
 tstd f 9std dtG

EXAMPLE 3  Find the area under one arch of the cycloid

x − rs� 2 sin �d    y − rs1 2 cos �d

(See Figure 3.)

SOLUTION One arch of the cycloid is given by 0 < � < 2�. Using the Substitution 

Rule with y − rs1 2 cos �d and dx − rs1 2 cos �d d�, we have

 A − y2�r

0
 y dx − y2�

0
 rs1 2 cos �d rs1 2 cos �d d�

 − r 2 y2�

0
 s1 2 cos �d2 d� − r 2 y2�

0
 s1 2 2 cos � 1 cos2�d d�

 − r 2 y2�

0
 f1 2 2 cos � 1

1
2 s1 1 cos 2�dg d�

 − r 2 f 3
2 � 2 2 sin � 1

1
4 sin 2�g0

2�

  − r 2 (3
2 ? 2�) − 3�r 2 n

FIGURE 2

The limits of integration for t are found  

as usual with the Substitution Rule. 

When x − a, t is either � or �. When 

x − b, t is the remaining value.

0

y

x2πr

FIGURE 3 

The result of Example 3 says that the 

area under one arch of the cycloid 

is three times the area of the rolling 

circle that generates the cycloid (see 

Example 10.1.7). Galileo guessed this 

result but it was �rst proved by the 

French mathematician Roberval and 

the Italian mathematician Torricelli.
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692 CHAPTER 10  Parametric Equations and Polar Coordinates

Arc Length

We already know how to �nd the length L of a curve C given in the form y − Fsxd,  
a < x < b. Formula 8.1.3 says that if F9 is continuous, then

L − yb
a
Î1 1 S dy

dxD
2  

 dx

Suppose that C can also be described by the parametric equations x − f std and y − tstd,  
� < t < �, where dxydt − f 9s td . 0. This means that C is traversed once, from left to 

right, as t increases from � to � and f s�d − a, f s�d − b. Putting Formula 1 into Formula 

2 and using the Substitution Rule, we obtain

L − yb
a

 Î1 1 S dy

dx
D2  

 dx − y�
�

 Î1 1 S dyydt

dxydtD
2  

 
dx

dt
 dt

Since dxydt . 0, we have

L − y�
�
ÎS dx

dt
D2

1 S dy

dt
D2  

 dt

Even if C can’t be expressed in the form y − Fsxd, Formula 3 is still valid but we 

obtain it by polygonal approximations. We divide the parameter interval f�, �g into n 

subintervals of equal width Dt. If t0, t1, t2, . . . , tn are the endpoints of these subintervals, 

then xi − f stid and yi − tstid are the coordinates of points Pisxi, yid that lie on C and the 

polygon with vertices P0, P1, . . . , Pn approximates C. (See Figure 4.)

As in Section 8.1, we de�ne the length L of C to be the limit of the lengths of these 

approximating polygons as nl `:

L − lim
nl 

`

  o
n

i−1

 | Pi21 Pi |

The Mean Value Theorem, when applied to f  on the interval fti21, tig, gives a number ti* 

in sti21, tid such that

f stid 2 f sti21d − f 9sti*dsti 2 ti21d

If we let Dxi − xi 2 xi21 and Dyi − yi 2 yi21, this equation becomes

Dxi − f 9sti*d Dt

Similarly, when applied to t, the Mean Value Theorem gives a number ti** in sti21, tid 
such that

Dyi − t9sti**d Dt

Therefore

| Pi21Pi | − ssDxid2 1 sDyid2  − sf f 9sti*dDtg2 1 ft9sti**dDtg2 

 − sf f 9sti*dg2 1 ft9sti**dg2  Dt

and so

L − lim
n 
l

 
`

 o
n

i−1

 sf f 9sti*dg2 1 ft9sti**dg2  Dt

2

3

0

y

x

P¸

P¡

P™ Pi _1

Pi

Pn

C

FIGURE 4 

4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 10.2  Calculus with Parametric Curves 693

The sum in (4) resembles a Riemann sum for the function sf f 9stdg2 1 ft9stdg2  but it is 

not exactly a Riemann sum because ti* ± ti** in general. Nevertheless, if f 9 and t9 are 

contin uous, it can be shown that the limit in (4) is the same as if ti* and ti** were equal, 

namely,

L − y�

�
 sf f 9stdg2 1 ft9stdg2  dt

Thus, using Leibniz notation, we have the following result, which has the same form as 

Formula 3.

5   Theorem If a curve C is described by the parametric equations x − f std, 
y − tstd, � < t < �, where f 9 and t9 are continuous on f�, �g and C is traversed 

exactly once as t increases from � to �, then the length of C is

L − y
�

�
 ÎS dx

dt
D2

1 S dy

dt
D2 

 dt

Notice that the formula in Theorem 5 is consistent with the general formulas L − y ds 

and sdsd2
− sdxd2

1 sdyd2 of Section 8.1.

EXAMPLE 4  If we use the representation of the unit circle given in Example 10.1.2,

x − cos t    y − sin t    0 < t < 2�

then dxydt − 2sin t and dyydt − cos t, so Theorem 5 gives

L − y2�

0
ÎS dx

dt D
2

1 S dy

dt D
2  

 dt − y2�

0
ssin2t 1 cos2t dt − y2�

0
 dt − 2�

as expected. If, on the other hand, we use the representation given in Example 10.1.3,

x − sin 2t    y − cos 2t    0 < t < 2�

then dxydt − 2 cos 2t, dyydt − 22 sin 2t, and the integral in Theorem 5 gives

y2�

0
 ÎS dx

dt D
2

1 S dy

dt
D2  

dt − y2�

0
 s4 cos2 2t 1 4 sin2 2t  dt − y2�

0
 2 dt − 4�

Notice that the integral gives twice the arc length of the circle because as t increases 

from 0 to 2�, the point ssin 2t, cos 2td traverses the circle twice. In general, when �nd-

ing the length of a curve C from a parametric representation, we have to be careful to 

ensure that C is traversed only once as t increases from � to �. n

EXAMPLE 5  Find the length of one arch of the cycloid x − r s� 2 sin �d, 
y − rs1 2 cos �d.

SOLUTION From Example 3 we see that one arch is described by the parameter interval 

0 < � < 2�. Since

dx

d�
− rs1 2 cos �d    and    

dy

d�
− r sin �
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we have

L − y2�

0
 ÎS dx

d�D
2

1 S dy

d�D
2  

 d�

 −  y2�

0
 sr 2s1 2 cos �d2 1 r 2 sin2�   d�

 − y2�

0
 sr 2s1 2 2 cos � 1 cos2� 1 sin2�d  d� 

 − r y2�

0
 s2s1 2 cos �d  d�

To evaluate this integral we use the identity sin2x −
1
2 s1 2 cos 2xd with � − 2x, which 

gives 1 2 cos � − 2 sin2s�y2d. Since 0 < � < 2�, we have 0 < �y2 < � and so 

sins�y2d > 0. Therefore

s2s1 2 cos �d − s4 sin2s�y2d − 2 | sins�y2d | − 2 sins�y2d

and so L − 2r y2�

0
 sins�y2d d� − 2r f22 coss�y2dg 2�

0

 − 2r f2 1 2g − 8r n

Surface Area

In the same way as for arc length, we can adapt Formula 8.2.5 to obtain a formula for surface 

area. Suppose the curve c given by the parametric equations x − f std, y − tstd, � < t < �,  

where f 9, t9 are continuous, tstd > 0, is rotated about the x-axis. If C is traversed exactly 

once as t increases from � to �, then the area of the resulting surface is given by

S − y�

�
 2�yÎS dx

dt D
2

1 S dy

dt D
2 

 dt 

The general symbolic formulas S − y 2�y ds and S − y 2�x ds (Formulas 8.2.7 and 

8.2.8) are still valid, but for parametric curves we use

ds − ÎS dx

dt D
2

1 S dy

dt D
2 

 dt 

EXAMPLE 6  Show that the surface area of a sphere of radius r is 4�r 2.

SOLUTION The sphere is obtained by rotating the semicircle

x − r cos t    y − r sin t    0 < t < �

about the x-axis. Therefore, from Formula 6, we get

S − y�

0
 2�r sin t ss2r sin td2 1 sr cos td2 dt

− 2� y�

0
 r sin t sr 2ssin2t 1 cos2td dt − 2� y�

0
 r sin t ? r dt

 − 2�r 2 y�

0
 sin t dt − 2�r 2s2cos tdg 0

�

− 4�r 2 n

The result of Example 5 says that the 

length of one arch of a cycloid is eight 

times the radius of the gener ating circle 

(see Figure 5). This was �rst proved 

in 1658 by Sir Christopher Wren, who 

later became the architect of St. Paul’s 

Cathedral in London.

0

y

x2πr

r

L=8r

FIGURE 5 

6
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23–24 Graph the curve in a viewing rectangle that displays all 

the important aspects of the curve.

 23.  x − t 4
2 2t 3

2 2t 2,  y − t 3
2 t

 24.  x − t 4
1 4t 3

2 8t 2,  y − 2t 2
2 t

 25.   Show that the curve x − cos t, y − sin t cos t has two  

tangents at s0, 0d and �nd their equations. Sketch the curve.

 26.   Graph the curve x − 22 cos t, y − sin t 1 sin 2t to 

discover where it crosses itself. Then �nd equations of both 

tangents at that point.

 27.  (a)  Find the slope of the tangent line to the trochoid 

x − r� 2 d sin �, y − r 2 d cos � in terms of �. (See 

Exercise 10.1.40.)

 (b)  Show that if d , r, then the trochoid does not have a  

vertical tangent.

 28.  (a)  Find the slope of the tangent to the astroid x − a cos3
�,  

y − a sin3
� in terms of �. (Astroids are explored in the 

Laboratory Project on page 689.)

 (b) At what points is the tangent horizontal or vertical?

 (c) At what points does the tangent have slope 1 or 21?

 29.   At what point(s) on the curve x − 3t 2
1 1, y − t 3

2 1 does 

the tangent line have slope 12 ?

 30.   Find equations of the tangents to the curve x − 3t 2
1 1, 

y − 2t 3
1 1 that pass through the point s4, 3d.

 31.   Use the parametric equations of an ellipse, x − a cos �, 

y − b sin �, 0 < � < 2�, to �nd the area that it encloses.

 32.   Find the area enclosed by the curve x − t 2
2 2t, y − st   

and the y-axis.

 33.   Find the area enclosed by the x-axis and the curve  

x − t 3
1 1, y − 2t 2 t 2.

 34.   Find the area of the region enclosed by the astroid 

x − a cos3
�, y − a sin3

�. (Astroids are explored in the 

Laboratory Project on page 689.)

y

x0 a_a

_a

a

 35.   Find the area under one arch of the trochoid of Exer- 

cise 10.1.40 for the case d , r.

;

;

1–2 Find dyydx.

 1.  x −
t

1 1 t
,  y − s1 1 t  

 2.  x − te t,  y − t 1 sin t

 3–6 Find an equation of the tangent to the curve at the point 

corresponding to the given value of the parameter.

  3.  x − t 3
1 1,  y − t 4

1 t;  t − 21

  4.  x − st  ,  y − t 2
2 2t;  t − 4

 5.  x − t cos t,  y − t sin t;  t − �

  6.  x − e t sin � t,  y − e2 t;  t − 0

 7–8 Find an equation of the tangent to the curve at the given 

point by two methods: (a) without eliminating the parameter and 

(b) by �rst eliminating the parameter.

 7.  x − 1 1 ln t,  y − t 2
1 2;  s1, 3d

 8.  x − 1 1 st  ,  y − e t 2

;  s2, ed

9–10 Find an equation of the tangent to the curve at the given 

point. Then graph the curve and the tangent.

 9.  x − t 2
2 t,  y − t 2

1 t 1 1;  s0, 3d

 10.  x − sin �t,  y − t 2
1 t;  s0, 2d

 11–16 Find dyydx and d 2 yydx 2. For which values of t is the 

curve concave upward?

 11.  x − t 2
1 1,  y − t 2

1 t 12.  x − t 3
1 1,  y − t 2

2 t

 13.  x − e t,  y − te2 t 14.  x − t 2
1 1,  y − e t

2 1

 15.  x − t 2 ln t,  y − t 1 ln t

 16.  x − cos t,  y − sin 2t,  0 , t , �

 17–20 Find the points on the curve where the tangent is hori-

zontal or vertical. If you have a graphing device, graph the curve 

to check your work.

 17.  x − t 3
2 3t,  y − t 2

2 3

 18.  x − t 3
2 3t,  y − t 3

2 3t 2

 19.  x − cos �,  y − cos 3� 20.  x − e sin �,  y − e cos �

 21.   Use a graph to estimate the coordinates of the rightmost 

point on the curve x − t 2 t 6, y − e t. Then use calculus to 

�nd the exact coordinates.

 22.   Use a graph to estimate the coordinates of the lowest point 

and the leftmost point on the curve x − t 4
2 2t, y − t 1 t 4.  

Then �nd the exact coordinates.

;

;

;
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where e is the eccentricity of the ellipse se − cya, where 

c − sa 2 2 b2  ).

 54.   Find the total length of the astroid x − a cos3
�,  

y − a sin3
�, where a . 0.

 55.  (a) Graph the epitrochoid with equations

 x − 11 cos t 2 4 coss11ty2d

 y − 11 sin t 2 4 sins11ty2d

What parameter interval gives the complete curve?

 (b)  Use your CAS to �nd the approximate length of this 

curve.

 56.   A curve called Cornu’s spiral is de�ned by the parametric 

equations

 x − Cstd − y t

0
 coss�u 2y2d du

 y − Sstd − y t

0
 sins�u 2y2d du

  where C and S are the Fresnel functions that were intro-

duced in Chapter 4.

 (a)  Graph this curve. What happens as t l ` and as  

t l 2`?

 (b)  Find the length of Cornu’s spiral from the origin to the 

point with parameter value t.

 57–60 Set up an integral that represents the area of the surface 

obtained by rotating the given curve about the x-axis. Then use 

your calculator to �nd the surface area correct to four decimal 

places.

 57.  x − t sin t,  y − t cos t,  0 < t < �y2

 58.  x − sin t,  y − sin 2t,  0 < t < �y2

 59.  x − t 1 e t,  y − e2t,  0 < t < 1

 60.  x − t 2
2 t 3,  y − t 1 t 4,  0 < t < 1

 61–63 Find the exact area of the surface obtained by rotating 

the given curve about the x-axis.

 61.  x − t 3,  y − t 2,  0 < t < 1

 62.  x − 2t 2
1 1yt,  y − 8st  ,  1 < t < 3

 63.  x − a cos3
�,  y − a sin3

�,  0 < � < �y2

 64.  Graph the curve

x − 2 cos � 2 cos 2�    y − 2 sin � 2 sin 2�

If this curve is rotated about the x-axis, �nd the exact area 

of the resulting surface. (Use your graph to help �nd the 

correct parameter interval.)

 65–66 Find the surface area generated by rotating the given 

curve about the y-axis.

 65.  x − 3t 2,  y − 2t 3,  0 < t < 5

CAS

CAS

;

 36.   Let 5 be the region enclosed by the loop of the curve in 

Example 1.

 (a) Find the area of 5.

 (b)  If 5 is rotated about the x-axis, �nd the volume of the 

resulting solid.

 (c) Find the centroid of 5.

 37–40 Set up an integral that represents the length of the curve. 

Then use your calculator to �nd the length correct to four deci-

mal places.

 37.  x − t 1 e2t,  y − t 2 e2t,  0 < t < 2

 38.  x − t 2
2 t,  y − t 4,  1 < t < 4

 39.  x − t 2 2 sin t,  y − 1 2 2 cos t,  0 < t < 4�

 40.  x − t 1 st  ,  y − t 2 st  ,  0 < t < 1

41–44 Find the exact length of the curve.

 41.  x − 1 1 3t 2,  y − 4 1 2t 3,  0 < t < 1

 42.   x − et
2 t,  y − 4e ty2,  0 < t < 2

 43.  x − t sin t,  y − t cos t,  0 < t < 1

 44.  x − 3 cos t 2 cos 3t,  y − 3 sin t 2 sin 3t,  0 < t < �

45–46 Graph the curve and �nd its exact length.

 45.  x − e t cos t,  y − e t sin t,  0 < t < �

 46.  x − cos t 1 lnstan 
1
2 td,  y − sin t,  �y4 < t < 3�y4

 47.   Graph the curve x − sin t 1 sin 1.5t, y − cos t and �nd its 

length correct to four decimal places.

 48.   Find the length of the loop of the curve x − 3t 2 t 3,  

y − 3t 2.

 49.   Use Simpson’s Rule with n − 6 to estimate the length of  

the curve x − t 2 e t, y − t 1 e t, 26 < t < 6.

 50.   In Exercise 10.1.43 you were asked to derive the parametric 

equations x − 2a cot �, y − 2a sin2
� for the curve called 

the witch of Maria Agnesi. Use Simpson’s Rule with n − 4 

to estimate the length of the arc of this curve given by 

�y4 < � < �y2.

 51–52 Find the distance traveled by a particle with position 

sx, yd as t varies in the given time interval. Compare with the 

length of the curve.

 51.  x − sin2t,  y − cos2t,  0 < t < 3�

 52.  x − cos2t,  y − cos t,  0 < t < 4�

 53.   Show that the total length of the ellipse x − a sin �, 

y − b cos �, a . b . 0, is

L − 4a y�y2

0
 s1 2 e 2 sin2�

   d�

;

;
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 70.  (a)  Use the formula in Exercise 69(b) to �nd the curvature of 

the parabola y − x 2 at the point s1, 1d.
 (b)  At what point does this parabola have maximum curvature?

 71.   Use the formula in Exercise 69(a) to �nd the curvature of the 

cycloid x − � 2 sin �, y − 1 2 cos � at the top of one of its 

arches.

 72.  (a)  Show that the curvature at each point of a straight line  

is � − 0.

 (b)  Show that the curvature at each point of a circle of  

radius r is � − 1yr.

 73.   A string is wound around a circle and then unwound while 

being held taut. The curve traced by the point P at the end of 

the string is called the involute of the circle. If the circle has 

radius r and center O and the initial position of P is sr, 0d, and 

if the parameter � is chosen as in the �gure, show that para-

metric equations of the involute are

x − r scos � 1 � sin �d    y − r ssin � 2 � cos �d

xO

y

r

¨ P

T

 74.  A cow is tied to a silo with radius r by a rope just long enough 

to reach the opposite side of the silo. Find the grazing area 

available for the cow.

 66.  x − e t
2 t,  y − 4e ty2,  0 < t < 1

 67.   If f 9 is continuous and f 9std ± 0 for a < t < b, show that the 

parametric curve x − f std, y − tstd, a < t < b, can be put in 

the form y − Fsxd. [Hint: Show that f 21 exists.]

 68.   Use Formula 1 to derive Formula 6 from Formula 8.2.5 for 

the case in which the curve can be represented in the form 

y − Fsxd, a < x < b.

 69.  The curvature at a point P of a curve is de�ned as

� − Z d�

ds
Z

  where � is the angle of inclination of the tangent line at P, as 

shown in the �gure. Thus the curvature is the absolute value 

of the rate of change of � with respect to arc length. It can be 

regarded as a measure of the rate of change of direction of the 

curve at P and will be studied in greater detail in Chapter 13.

 (a)  For a parametric curve x − xstd, y − ystd, derive the  

formula

� −
|x. ÿ 2 ẍy

. |
fx
. 2

1 y
. 2 g3y2

where the dots indicate derivatives with respect to t, so 

x
.

− dxydt. [Hint: Use � − tan21sdyydxd and Formula 2 

to �nd d�ydt. Then use the Chain Rule to �nd d�yds.]

 (b)  By regarding a curve y − f sxd as the parametric curve 

x − x, y − f sxd, with parameter x, show that the formula 

in part (a) becomes

� −
| d 2 yydx 2 |

f1 1 sdyydxd2 g3y2

0 x

y

P

˙

LABORATORY PROJECT

Bézier curves are used in computer-aided design and are named after the French mathematician 

Pierre Bézier (1910–1999), who worked in the automotive industry. A cubic Bézier curve is 

determined by four control points, P0sx0, y0 d, P1sx1, y1d, P2sx2, y2 d, and P3sx3, y3 d, and is de�ned 

by the parametric equations

 x − x0s1 2 td3
1 3x1ts1 2 td2

1 3x2t 2s1 2 td 1 x3t 3

 y − y0s1 2 td3
1 3y1ts1 2 td2

1 3y2t 2s1 2 td 1 y3t 3

BÉZIER CURVES;
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698 CHAPTER 10  Parametric Equations and Polar Coordinates

A coordinate system represents a point in the plane by an ordered pair of numbers called 

coordinates. Usually we use Cartesian coordinates, which are directed distances from 

two perpendicular axes. Here we describe a coordinate system introduced by Newton, 

called the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled O. Then 

we draw a ray (half-line) starting at O called the polar axis. This axis is usually drawn 

hor izontally to the right and corresponds to the positive x-axis in Cartesian coordinates.

If P is any other point in the plane, let r be the distance from O to P and let � be the 

angle (usually measured in radians) between the polar axis and the line OP as in Fig- 

 ure 1. Then the point P is represented by the ordered pair sr, �d and r, � are called polar 

coordinates of P. We use the convention that an angle is positive if measured in the 

counterclockwise direction from the polar axis and negative in the clockwise direction. 

If P − O, then r − 0 and we agree that s0, �d represents the pole for any value of �.

We extend the meaning of polar coordinates sr, �d to the case in which r is negative by 

agreeing that, as in Figure 2, the points s2r, �d and sr, �d lie on the same line through O 

and at the same distance | r | from O, but on opposite sides of O. If r . 0, the point sr, �d 
lies in the same quadrant as �; if r , 0, it lies in the quadrant on the opposite side of the 

pole. Notice that s2r, �d represents the same point as sr, � 1 �d.

EXAMPLE 1  Plot the points whose polar coordinates are given. 

(a) s1, 5�y4d      (b) s2, 3�d      (c) s2, 22�y3d      (d) s23, 3�y4d

FIGURE 1 

x
O

¨

r

polar axis

P (r, ̈ )

FIGURE 2 

(_r, ̈ )

O

¨

(r, ̈ )

¨+π

where 0 < t < 1. Notice that when t − 0 we have sx, yd − sx0, y0 d and when t − 1 we have 

sx, yd − sx3, y3d, so the curve starts at P0 and ends at P3.

1.  Graph the Bézier curve with control points P0s4, 1d, P1s28, 48d, P2s50, 42d, and P3s40, 5d. 
Then, on the same screen, graph the line segments P0P1, P1P2, and P2P3. (Exercise 10.1.31 

shows how to do this.) Notice that the middle control points P1 and P2 don’t lie on the  

curve; the curve starts at P0, heads toward P1 and P2 without reaching them, and ends at P3.

2.  From the graph in Problem 1, it appears that the tangent at P0 passes through P1 and the  

tangent at P3 passes through P2. Prove it.

3.  Try to produce a Bézier curve with a loop by changing the second control point in  

Problem 1.

4.  Some laser printers use Bézier curves to represent letters and other symbols. Experiment with 

control points until you �nd a Bézier curve that gives a reasonable representation of the  

letter C.

5.  More complicated shapes can be represented by piecing together two or more Bézier  

curves. Suppose the �rst Bézier curve has control points P0, P1, P2, P3 and the second one  

has control points P3, P4, P5, P6. If we want these two pieces to join together smoothly, then 

the tangents at P3 should match and so the points P2, P3, and P4 all have to lie on this com- 

mon tangent line. Using this principle, �nd control points for a pair of Bézier curves that 

represent the letter S.
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 SECTION 10.3  Polar Coordinates 699

SOLUTION The points are plotted in Figure 3. In part (d) the point s23, 3�y4d is located 

three units from the pole in the fourth quadrant because the angle 3�y4 is in the second 

quadrant and r − 23 is negative.

FIGURE 3 

O

”_3,       3π4

3π
4

(2, 3π) O

3π

”1, 5π4

5π
4

O
O

”2, _      ’2π3

2π
3_

’

’
n

In the Cartesian coordinate system every point has only one representation, but in 

the polar coordinate system each point has many representations. For instance, the point 

s1, 5�y4d in Example 1(a) could be written as s1, 23�y4d or s1, 13�y4d or s21, �y4d. 
(See Figure 4.)

O
13π
4

”1,        ’ ’13π
4

O

_ 3π4
”1, _      ’3π4

O
5π
4 O

”_1,     π4

π
4

”1, 5π4 ’

FIGURE 4

In fact, since a complete counterclockwise rotation is given by an angle 2�, the point 

rep resented by polar coordinates sr, �d is also represented by

sr, � 1 2n�d    and    s2r, � 1 s2n 1 1d�d

where n is any integer.

The connection between polar and Cartesian coordinates can be seen from Figure 5, 

in which the pole corresponds to the origin and the polar axis coincides with the positive    

x-axis. If the point P has Cartesian coordinates sx, yd and polar coordinates sr, �d, then, 

from the �gure, we have

cos � −
x

r
      sin � −

y

r

and so

x − r cos �      y − r sin �

Although Equations 1 were deduced from Figure 5, which illustrates the case where 

r . 0 and 0 , � , �y2, these equations are valid for all values of r and �. (See the gen-

eral de�nition of sin � and cos � in Appendix D.)

Equations 1 allow us to �nd the Cartesian coordinates of a point when the polar coor-

dinates are known. To �nd r and � when x and y are known, we use the equations

O

y

x

¨

x

y
r

P (r, ̈ )=P(x, y)

FIGURE 5 

1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



700 CHAPTER 10  Parametric Equations and Polar Coordinates

r 2
− x 2

1 y 2      tan � −
y

x

which can be deduced from Equations 1 or simply read from Figure 5.

EXAMPLE 2  Convert the point s2, �y3d from polar to Cartesian coordinates.

SOLUTION Since r − 2 and � − �y3, Equations 1 give

  x − r cos � − 2 cos 
�

3
− 2 ?

1

2
− 1

 y − r sin � − 2 sin 
�

3
− 2 ?

s3 

2
− s3 

Therefore the point is s1, s3 d in Cartesian coordinates. n

EXAMPLE 3  Represent the point with Cartesian coordinates s1, 21d in terms of polar 

coordinates.

SOLUTION If we choose r to be positive, then Equations 2 give

 r − sx 2 1 y 2 
− s12 1 s21d2 

− s2 

 tan � −
y

x
− 21

Since the point s1, 21d lies in the fourth quadrant, we can choose � − 2�y4 or 

� − 7�y4. Thus one possible answer is ss2 , 2�y4d; another is ss2 , 7�y4d. n

NOTE Equations 2 do not uniquely determine � when x and y are given because, as � 

increases through the interval 0 < � , 2�, each value of tan � occurs twice. Therefore, 

in converting from Cartesian to polar coordinates, it’s not good enough just to �nd r and 

� that satisfy Equations 2. As in Example 3, we must choose � so that the point sr, �d lies 

in the correct quadrant.

Polar Curves

The graph of a polar equation r − f s�d, or more generally Fsr, �d − 0, consists of all 

points P that have at least one polar representation sr, �d whose coordinates satisfy the 

equation.

EXAMPLE 4  What curve is represented by the polar equation r − 2?

SOLUTION The curve consists of all points sr, �d with r − 2. Since r represents the 

distance from the point to the pole, the curve r − 2 represents the circle with center O 

and radius 2. In general, the equation r − a represents a circle with center O and radius 

| a |. (See Figure 6.) n

2

FIGURE 6

x

r=
1

2

r=1

r=2

r=4
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 SECTION 10.3  Polar Coordinates 701

EXAMPLE 5  Sketch the polar curve � − 1.

SOLUTION This curve consists of all points sr, �d such that the polar angle � is  

1 radian. It is the straight line that passes through O and makes an angle of 1 radian 

with the polar axis (see Figure 7). Notice that the points sr, 1d on the line with r . 0 

are in the �rst quadrant, whereas those with r , 0 are in the third quadrant. n

EXAMPLE 6  

(a) Sketch the curve with polar equation r − 2 cos �.

(b) Find a Cartesian equation for this curve.

SOLUTION

(a) In Figure 8 we �nd the values of r for some convenient values of � and plot the cor-

responding points sr, �d. Then we join these points to sketch the curve, which appears 

to be a circle. We have used only values of � between 0 and �, since if we let � increase 

beyond �, we obtain the same points again.

(2, 0)

2

”_1,      ’2π3

”0,     ’π2

”1,     ’π3
”œ„,     ’π4 ”œ„,     ’π63

”_ œ„,       ’5π63
”_ œ„,       ’3π42

(b) To convert the given equation to a Cartesian equation we use Equations 1 and 2. 

From x − r cos � we have cos � − xyr, so the equation r − 2 cos � becomes r − 2xyr,  

which gives

2x − r 2
− x 2

1 y 2    or    x 2
1 y 2

2 2x − 0

Completing the square, we obtain

sx 2 1d2
1 y 2

− 1

which is an equation of a circle with center s1, 0d and radius 1. n

 

O

y

x2

¨

r

P

Q

 

O
x

1

(_1, 1)

(_2, 1)

(1, 1)

(2, 1)

(3, 1)

¨=1

FIGURE 7 

FIGURE 8  
Table of values and  

graph of r − 2 cos �

� r − 2 cos �

0  2

�y6  s3 

�y4  s2 

�y3  1

�y2  0

2�y3  21

3�y4  2s2 

5�y6  2s3 

�  22

Figure 9 shows a geometrical illustra-

tion that the circle in Example 6 has the 

equation r − 2 cos �. The angle OPQ is 

a right angle (Why?) and so ry2 − cos �.

FIGURE 9 
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702 CHAPTER 10  Parametric Equations and Polar Coordinates

EXAMPLE 7  Sketch the curve r − 1 1 sin �.

SOLUTION Instead of plotting points as in Example 6, we �rst sketch the graph of 

r − 1 1 sin � in Cartesian coordinates in Figure 10 by shifting the sine curve up one 

unit. This enables us to read at a glance the values of r that correspond to increasing 

values of �. For instance, we see that as � increases from 0 to �y2, r (the distance from 

O) increases from 1 to 2, so we sketch the corresponding part of the polar curve in 

Figure 11(a). As � increases from �y2 to �, Figure 10 shows that r decreases from 2 to 

1, so we sketch the next part of the curve as in Figure 11(b). As � increases from � to 

3�y2, r decreases from 1 to 0 as shown in part (c). Finally, as � increases from 3�y2 

to 2�, r increases from 0 to 1 as shown in part (d). If we let � increase beyond 2� or 

decrease beyond 0, we would simply re trace our path. Putting together the parts of the 

curve from Figure 11(a)–(d), we sketch the complete curve in part (e). It is called a 

cardioid because it’s shaped like a heart.

(a) (b) (c) (d) (e)

O¨=π

¨=
π

2

O

¨=π

¨=
3π

2

O

¨=2π

¨=
3π

2

O

O ¨=0

¨=
π

2

1

2

FIGURE 11 Stages in sketching the cardioid r − 1 1 sin � n

EXAMPLE 8  Sketch the curve r − cos 2�.

SOLUTION As in Example 7, we �rst sketch r − cos 2�, 0 < � < 2�, in Cartesian 

coordinates in Figure 12. As � increases from 0 to �y4, Figure 12 shows that r 

decreases from 1 to 0 and so we draw the corresponding portion of the polar curve in 

Figure 13 (indicated by ). As � increases from �y4 to �y2, r goes from 0 to 21. This 

means that the distance from O increases from 0 to 1, but instead of being in the �rst 

quadrant this portion of the polar curve (indicated by ) lies on the opposite side of the 

pole in the third quadrant. The remainder of the curve is drawn in a similar fashion, 

with the arrows and numbers indicating the order in which the portions are traced out. 

The resulting curve has four loops and is called a four-leaved rose.

¨=0
¨=π

¨=
3π

4

¨=
π

2

¨=
π

4

r

1

¨2ππ 5π

4

π

2

π

4

3π

4

3π

2

7π

4

!

@ # ^ &

% *$

!

@ #

$

%

& ^

*

FIGURE 12  
r − cos 2� in Cartesian coordinates  

FIGURE 13  
Four-leaved rose r − cos 2� n

0

r

1

2

¨π 2π3π

2

π

2

FIGURE 10  

r − 1 1 sin � in Cartesian coordinates, 

0 < � < 2�

TEC Module 10.3 helps you see how  

polar curves are traced out by showing  

 animations similar to Figures 10–13.
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 SECTION 10.3  Polar Coordinates 703

Symmetry

When we sketch polar curves it is sometimes helpful to take advantage of symmetry. The 

following three rules are explained by Figure 14.

(a)  If a polar equation is unchanged when � is replaced by 2�, the curve is sym metric 

about the polar axis.

(b)  If the equation is unchanged when r is replaced by 2r, or when � is replaced by 

� 1 �, the curve is symmetric about the pole. (This means that the curve remains 

unchanged if we rotate it through 180° about the origin.)

(c)  If the equation is unchanged when � is replaced by � 2 �, the curve is sym metric 

about the vertical line � − �y2.

The curves sketched in Examples 6 and 8 are symmetric about the polar axis, since 

coss2�d − cos �. The curves in Examples 7 and 8 are symmetric about � − �y2 because 

sins� 2 �d − sin � and cos 2s� 2 �d − cos 2�. The four-leaved rose is also symmetric 

about the pole. These symmetry properties could have been used in sketching the curves. 

For instance, in Example 6 we need only have plotted points for 0 < � < �y2 and then 

re�ected about the polar axis to obtain the complete circle.

Tangents to Polar Curves

To �nd a tangent line to a polar curve r − f s�d, we regard � as a parameter and write its 

parametric equations as

x − r cos � − f s�d cos �      y − r sin � − f s�d sin �

Then, using the method for �nding slopes of parametric curves (Equation 10.2.1) and the 

Product Rule, we have

dy

dx
−

dy

d�

dx

d�

−

dr

d�
 sin � 1 r cos �

dr

d�
 cos � 2 r sin �

We locate horizontal tangents by �nding the points where dyyd� − 0 (provided that 

dxyd� ± 0). Likewise, we locate vertical tangents at the points where dxyd� − 0 (pro-

vided that dyyd� ± 0).

Notice that if we are looking for tangent lines at the pole, then r − 0 and Equation 3 

simpli�es to

dy

dx
− tan �    if 

dr

d�
± 0

O

(r, ̈ )

(_r, ̈ )
O

(r, ̈ )

(r, _¨)

_¨

¨

(a) (b) (c)

O

(r, ̈ )(r, π-¨)

π-¨

¨

FIGURE 14 

3
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704 CHAPTER 10  Parametric Equations and Polar Coordinates

For instance, in Example 8 we found that r − cos 2� − 0 when � − �y4 or 3�y4. This 

means that the lines � − �y4 and � − 3�y4 (or y − x and y − 2x) are tangent lines to 

r − cos 2� at the origin.

EXAMPLE 9 

(a) For the cardioid r − 1 1 sin � of Example 7, �nd the slope of the tangent line 

when � − �y3.

(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with r − 1 1 sin �, we have

 
dy

dx
−

dr

d�
 sin � 1 r cos �

dr

d�
 cos � 2 r sin �

−
cos � sin � 1 s1 1 sin �d cos �

cos � cos � 2 s1 1 sin �d sin �

 −
cos � s1 1 2 sin �d

1 2 2 sin2
� 2 sin �

−
cos � s1 1 2 sin �d

s1 1 sin �ds1 2 2 sin �d

(a) The slope of the tangent at the point where � − �y3 is

 
dy

dx
Z

�−�y3

−
coss�y3ds1 1 2 sins�y3dd

s1 1 sins�y3dds1 2 2 sins�y3dd
 −

1
2 (1 1 s3 )

(1 1 s3 y2)(1 2 s3 )

−
1 1 s3 

(2 1 s3 )(1 2 s3 )
−

1 1 s3 

21 2 s3 
− 21

(b) Observe that

 
dy

d�
− cos � s1 1 2 sin �d − 0   when � −

�

2
, 

3�

2
, 

7�

6
, 

11�

6

 
dx

d�
− s1 1 sin �ds1 2 2 sin �d − 0  when � −

3�

2
, 

�

6
, 

5�

6

Therefore there are horizontal tangents at the points s2, �y2d, (1
2 , 7�y6), (1

2 , 11�y6) 
and vertical tangents at ( 3

2 , �y6) and ( 3
2 , 5�y6). When � − 3�y2, both dyyd� and 

dxyd� are 0, so we must be careful. Using l’Hospital’s Rule, we have

 lim
�ls3�y2d2

dy

dx
− S lim

�l s3�y2d2

1 1 2 sin �

1 2 2 sin �
DS lim

�l s3�y2d2

cos �

1 1 sin �
D

− 2
1

3
 lim
�l s3�y2d2

cos�

1 1 sin �
− 2

1

3
 lim
�l s3�y2d2

2sin �

cos �
− `

By symmetry, lim
�

 
l

 

s3�y2d1
 
dy

dx
− 2`

Thus there is a vertical tangent line at the pole (see Figure 15). n
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”   ,   ’”   ,     ’5π6
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2
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1
2 ”   ,      ’11π

6
1
2

3
2
π
6

(0, 0)
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”1+      ,    ’π3

œ„3
2

”2,    ’π2

FIGURE 15  

Tangent lines for r − 1 1 sin �
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 SECTION 10.3  Polar Coordinates  705

NOTE Instead of having to remember Equation 3, we could employ the method used 

to derive it. For instance, in Example 9 we could have written

 x − r cos � − s1 1 sin �d cos � − cos � 1
1
2 sin 2�

 y − r sin � − s1 1 sin �d sin � − sin � 1 sin2
�

Then we have

 
dy

dx
−

dyyd�

dxyd�
−

cos � 1 2 sin � cos �

2sin � 1 cos 2�
−

cos � 1 sin 2�

2sin � 1 cos 2�

which is equivalent to our previous expression.

Graphing Polar Curves with Graphing Devices

Although it’s useful to be able to sketch simple polar curves by hand, we need to use a 

graphing calculator or computer when we are faced with a curve as complicated as the 

ones shown in Figures 16 and 17.

Some graphing devices have commands that enable us to graph polar curves directly. 

With other machines we need to convert to parametric equations �rst. In this case we take 

the polar equation r − f s�d and write its parametric equations as

x − r cos � − f s�d cos �      y − r sin � − f s�d sin �

Some machines require that the parameter be called t rather than �.

EXAMPLE 10  Graph the curve r − sins8�y5d.

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar graphing 

command. In this case we need to work with the corresponding parametric equations, 

which are

x − r cos � − sins8�y5d cos �      y − r sin � − sins8�y5d sin �

In any case we need to determine the domain for �. So we ask ourselves: How many 

complete rotations are required until the curve starts to repeat itself? If the answer is n, 

then

sin 
8s� 1 2n�d

5
− sinS 8�

5
1

16n�

5
D − sin 

8�

5

and so we require that 16n�y5 be an even multiple of �. This will �rst occur when 

n − 5. Therefore we will graph the entire curve if we specify that 0 < � < 10�. 

Switching from � to t, we have the equations

x − sins8ty5d cos t    y − sins8ty5d sin t    0 < t < 10�

and Figure 18 shows the resulting curve. Notice that this rose has 16 loops. n

EXAMPLE 11  Investigate the family of polar curves given by r − 1 1 c sin �.  

How does the shape change as c changes? (These curves are called limaçons, after a 

French word for snail, because of the shape of the curves for certain values of c.)

SOLUTION Figure 19 on page 706 shows computer-drawn graphs for various values  

of c. For c . 1 there is a loop that decreases in size as c decreases. When c − 1 the 

loop disappears and the curve becomes the cardioid that we sketched in Example 7. For 

c between 1 and 12 the cardioid’s cusp is smoothed out and becomes a “dimple.” When c 

1

_1

_1 1

FIGURE 16  

r − sin3s2.5�d 1 cos3s2.5�d

3

_3

_3 3

FIGURE 17  

r − 2 1 sin3s2.4�d

1

_1

_1 1

FIGURE 18  

r − sins8�y5d
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706 CHAPTER 10  Parametric Equations and Polar Coordinates

7–12 Sketch the region in the plane consisting of points whose 

polar coordinates satisfy the given conditions.

 7.  r > 1

 8.  0 < r , 2,  � < � < 3�y2

 9.  r > 0,  �y4 < � < 3�y4

 10.  1 < r < 3,  �y6 , � , 5�y6

 11.  2 , r , 3,  5�y3 < � < 7�y3

 12.  r > 1,  � < � < 2�

 13.   Find the distance between the points with polar coordinates 

s4, 4�y3d and s6, 5�y3d.

 14.   Find a formula for the distance between the points with polar 

coordinates sr1, �1d and sr2, �2 d.

15–20 Identify the curve by �nding a Cartesian equation for the 

curve.

 15.  r 2
− 5 16.  r − 4 sec �

 17.  r − 5 cos � 18.  � − �y3

 19.  r 2 cos 2� − 1 20.  r 2 sin 2 � − 1

1–2 Plot the point whose polar coordinates are given. Then �nd 

two other pairs of polar coordinates of this point, one with r . 0 

and one with r , 0.

 1.  (a) s1, �y4d (b) s22, 3�y2d (c) s3, 2�y3d

 2.  (a) s2, 5�y6d (b) s1, 22�y3d (c) s21, 5�y4d

3–4 Plot the point whose polar coordinates are given. Then �nd 

the Cartesian coordinates of the point.

 3.  (a) s2, 3�y2d (b) (s2 , �y4) (c) s21, 2�y6d

 4.  (a) (4, 4�y3) (b) s22, 3�y4d (c) s23, 2�y3d

5–6 The Cartesian coordinates of a point are given.

 (i)  Find polar coordinates sr, �d of the point, where r . 0   

and 0 < � , 2�.

 (ii)  Find polar coordinates sr, �d of the point, where r , 0   

and 0 < � , 2�.

 5.  (a) s24, 4d (b) (3, 3s3 )

 6.  (a) (s3 , 21) (b) s26, 0d

de creases from 12 to 0, the limaçon is shaped like an oval. This oval becomes more 

circular as cl 0, and when c − 0 the curve is just the circle r − 1.

c=2.5

c=0 c=_0.2 c=_0.5 c=_0.8 c=_1

c=_2

c=1.7 c=1 c=0.7 c=0.5 c=0.2

The remaining parts of Figure 19 show that as c becomes negative, the shapes 

change in reverse order. In fact, these curves are re�ections about the horizontal axis of 

the corresponding curves with positive c. n

Limaçons arise in the study of planetary motion. In particular, the trajectory of Mars, 

as viewed from the planet Earth, has been modeled by a limaçon with a loop, as in the 

parts of Figure 19 with | c | . 1.

In Exercise 53 you are asked to prove 

analytically what we have discovered 

from the graphs in Figure 19.

FIGURE 19  

Members of the family of 

limaçons r − 1 1 c sin �
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 SECTION 10.3  Polar Coordinates  707

 49.   Show that the polar curve r − 4 1 2 sec � (called a conchoid) 

has the line x − 2 as a vertical asymptote by showing that 

lim rl6` x − 2. Use this fact to help sketch the conchoid.

 50.   Show that the curve r − 2 2 csc � (also a conchoid) has the 

line y − 21 as a horizontal asymptote by showing that 

lim rl6` y − 21. Use this fact to help sketch the conchoid.

 51.   Show that the curve r − sin � tan � (called a cissoid of  

Diocles) has the line x − 1 as a vertical asymptote. Show also 

that the curve lies entirely within the vertical strip 0 < x , 1. 

Use these facts to help sketch the cissoid.

 52.  Sketch the curve sx 2
1 y 2 d3

− 4x 2 y 2.

 53.  (a)  In Example 11 the graphs suggest that the limaçon 

r − 1 1 c sin � has an inner loop when | c | . 1. Prove 

that this is true, and �nd the values of � that correspond to 

the inner loop.

 (b)  From Figure 19 it appears that the limaçon loses its dimple 

when c −
1
2. Prove this.

 54.   Match the polar equations with the graphs labeled I–VI. Give 

reasons for your choices. (Don’t use a graphing device.)

 (a) r − ln �,    1 < � < 6�  (b) r − �
2,   0 < � < 8�

 (c) r − cos 3� (d) r − 2 1 cos 3�

 (e) r − coss�y2d (f ) r − 2 1 coss3�y2d

I II III

IV V VI

55–60 Find the slope of the tangent line to the given polar curve at 

the point speci�ed by the value of �.

 55. r − 2 cos �,  � − �y3 56.  r − 2 1 sin 3 �,  � − �y4

 57.  r − 1y�,  � − � 58.  r − coss�y3d,  � − �

 59.  r − cos 2�,  � − �y4 60.  r − 1 1 2 cos �,  � − �y3

61–64 Find the points on the given curve where the tangent line is 

horizontal or vertical.

 61.  r − 3 cos � 62.  r − 1 2 sin �

 63.  r − 1 1 cos � 64.  r − e �

21–26 Find a polar equation for the curve represented by the given 

Cartesian equation.

 21.  y − 2 22.  y − x

 23.  y − 1 1 3x 24.  4y 2
− x

 25.  x 2
1 y 2

− 2cx 26.  x 2
2 y 2

− 4

27–28 For each of the described curves, decide if the curve would 

be more easily given by a polar equation or a Cartesian equation. 

Then write an equation for the curve.

 27.  (a)  A line through the origin that makes an angle of �y6 with 

the positive x-axis

 (b)  A vertical line through the point s3, 3d

 28.  (a)  A circle with radius 5 and center s2, 3d
 (b)  A circle centered at the origin with radius 4

29–46 Sketch the curve with the given polar equation by �rst 

sketching the graph of r as a function of � in Cartesian coordinates.

 29.  r − 22 sin � 30.  r − 1 2 cos �

 31.  r − 2s1 1 cos �d 32.  r − 1 1 2 cos �

 33.  r − �, � > 0

 34.  r − �
2, 22� < � < 2�

 35.  r − 3 cos 3� 36.  r −  2sin 5�

 37.  r − 2 cos 4� 38.  r − 2 sin 6�

 39.  r − 1 1 3 cos � 40.  r − 1 1 5 sin �

 41.  r 2
− 9 sin 2� 42.  r 2

− cos 4�

 43.  r − 2 1 sin 3� 44.  r 2
� − 1

 45.  r − sin s�y2d 46.  r − coss�y3d

47–48 The �gure shows a graph of r as a function of � in 

Cartesian coordinates. Use it to sketch the corresponding polar 

curve.
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