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ix

This text is intended to bridge the gap between calculus and advanced courses 

in at least three ways. First, it guides students to think and to express them-

selves mathematically—to analyze a situation, extract pertinent facts, and draw 

appropriate conclusions. Second, it provides a �rm foundation in the major ideas 

needed for continued work. Finally, we present introductions to modern algebra 

and analysis in suf�cient depth to capture some of their spirit and characteristics. 

In summary, our main goals in this text are to improve the student’s ability to think 

and write in a mature mathematical fashion and to provide a solid understanding of 

the material most useful for advanced courses.

Exercises marked with a solid star (★) have complete answers at the back of the 

text. Open stars (☆) indicate that a hint or a partial answer is provided. “Proofs to 

Grade” are a special feature of most of the exercise sets. We present a list of claims 

with alleged proofs, and the student is asked to assign a letter grade to each “proof” 

and to justify the grade assigned. Spurious proofs are usually built around a single 

type of error, which may involve a mistake in logic, a common misunderstanding 

of the concepts being studied, or an incorrect symbolic argument. Correct proofs 

may be straightforward, or they may present novel or alternate approaches. We 

have found these exercises valuable because they reemphasize the theorems and 

counterexamples in the text and also provide the student with an experience similar 

to grading papers. Thus, the student becomes aware of the variety of possible errors 

and develops the ability to read proofs critically.

The eighth edition is based on the same goals as previous editions, with sev-

eral new or substantially revised sections and many new and revised expositions, 

examples, and exercises. One of the new features is a mini-section in Chapter 1 on 

mathematical writing style that describes good practices and some of the special 

characteristics that distinguish the way mathematics is communicated. In addition 

to advice on what to include in a proof and what to leave out, this short section 

offer tips on the use of symbols and other details that help in writing clear, readable 

proofs. 

P R E F A C E
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x    Preface

A listing of useful preliminary concepts of sets, the number systems, and the 

terminology of functions that students have presumably encountered in prior study 

is now found in an Appendix. This makes the prerequisite material easy to locate 

and keeps the focus of the text on mathematical reasoning and the core content.

An expanded section on strategies for constructing proofs follows the introduc-

tory sections on methods of proof and the discussion on writing style. This section 

summarizes basic proof methods and includes more than 60 exercises involving 

proofs. Proofs from elementary number theory appear in a separate section where 

the Division Algorithm is accepted without proof in order to practice basic proof 

methods on a coherent set of results about divisibility and the greatest common 

divisor. We have deliberately placed this early in the text before any discussion of 

inductive proofs or the Well-Ordering Principle. Later, in Chapter 2, students observe 

the power of inductive methods to prove the Division Algorithm and other results.

There is a new Section 3.4 on modular arithmetic and a new Section 4.7 on 

limits of functions and continuity of real functions. Other sections with the most 

substantial revisions are Section 2.6 on combinatorial counting and Section 4.6 on 

sequences.

We consider the core material (see the diagram on the inside front cover) to be 

the �rst several sections of Chapters 1 through 5. Chapter 1 introduces the proposi-

tional and predicate logic required by mathematical arguments, not as formal logic, 

but as tools of reasoning for more complete understanding of concepts (including 

some ideas of arithmetic, analytic geometry, and calculus with which the student 

is already familiar). We present methods of proof and carefully analyze examples 

of each method, giving special attention to the use of de�nitions and denials. The 

techniques in this chapter are used and referred to throughout the text. In Chapters 

2, 3, and 4 on sets, relations, and functions, we emphasize writing and understand-

ing proofs that require the student to deal precisely with the concepts of set opera-

tions, equivalence relations and partitions, and properties of injective and surjective 

functions.

Chapter 5 emphasizes a working knowledge of cardinality: �nite and in�nite 

sets, denumerable sets and the uncountability of the real numbers, and properties 

of countable sets. As shown in the diagram on the inside front cover, each of the 

�rst �ve chapters offers opportunities for further study, including basics of number 

theory, modular arithmetic, limits and continuity of real functions, and the ordering 

of cardinal numbers.

Chapters 6 and 7 make use of the skills and concepts the student has acquired 

from the core—and thus are above the earlier work in terms of level and rigor. 

In Chapter 6, we consider properties of algebras with a binary operation, groups, 

substructures, and homomorphisms, and relate these concepts to rings and �elds. 

Chapter 7 considers the completeness property of the real numbers by tracing its 

consequences: the Heine–Borel Theorem, the Bolzano–Weierstrass  Theorem, and 

the Bounded Monotone Sequence Theorem, and back to completeness.
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xii

“I understand mathematics but I just can’t do proofs.”

Many students approach the study of mathematical reasoning with some apprehen-

sion and uncertainty, perhaps expecting that the study of proofs is something they 

won’t really have to do or won’t use later. These feelings, expressed in the remark 

above, are natural as you move from courses where the goals emphasize perform-

ing computations or solving certain equations to more advanced courses where the 

goal may be to establish whether a mathematical system has certain properties. This 

textbook is written to help ease the transition between these courses. Let’s consider 

several questions students commonly have at the beginning of a “transition” course.

Why write proofs?

Mathematicians often collect information and make observations about particular 

cases or phenomena in an attempt to form a theory (a model) that describes patterns 

or relationships among quantities and structures. This approach to the develop-

ment of a theory uses inductive reasoning. However, the characteristic thinking 

of the mathematician is deductive reasoning, in which one uses logic to develop 

and extend a theory by drawing conclusions based on statements accepted as true. 

Proofs are essential in mathematical reasoning because they demonstrate that the 

conclusions are true. Generally speaking, a mathematical explanation for a conclu-

sion has no value if the explanation cannot be backed up by an acceptable proof.

The �rst goal of this text is to examine standard proof techniques, especially 

concentrating on how to get started on a proof, and how to construct correct proofs 

using those techniques. You will discover how the logical form of a statement can 

serve as a guide to the structure of a proof of the statement. As you study more 

advanced courses, it will become apparent that the material in this book is indeed 

fundamental and the knowledge gained will help you succeed in those courses. 

Moreover, many of the techniques of reasoning and proof that may seem so dif-

�cult at �rst will become completely natural with practice. In fact, the reasoning 

P R E F A C E  T O  T H E  S T U D E N T
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Preface to the Student    xiii

that you will study is the essence of advanced mathematics, and the ability to reason 

abstractly is a primary reason why applicants trained in mathematics are valuable 

to employers.

Why not just test and repeat enough examples to confirm  
a theory?

After all, as is typically done in natural and social sciences, the test for truth of a 

theory is that the results of an experiment conform to predictions and that when 

the experiment is repeated under the same circumstances, the result is always the 

same. One major difference is that in mathematics we often need to know whether 

a given statement is always true, so while the statement may be true for many (even 

in�nitely many) examples, we would never know whether another example might 

show the statement to be false. By studying examples, we might conclude that the 

statement “x2 − 3x + 43 is a prime number” is true for all positive integers x. We 

could reach this conclusion testing the �rst 10 or 20 or even the �rst 42 integers 1, 

2, 3, p  , 42. In each of these cases and others, such as 44, 45, 47, 48, 49, 50, and 

more, x2 − 3x + 43 is a prime number. But the statement is not always true because 

432 − 3(43) + 43 = 1763, which is 41 · 43. Checking examples is helpful in gain-

ing insight for understanding concepts and relationships in mathematics, but is not 

a valid proof technique unless we can  somehow check all examples. 

Why not just rely on proofs that someone else has done?

One answer follows from the statement above that deductive reasoning character-

izes the way mathematicians think. In the sciences, a new observation may force a 

complete rethinking of what was thought to be true; in mathematics what we know 

to be true (by proof) is true forever unless there was a �aw in the reasoning. By 

learning the techniques of reasoning and proof, you are learning the tools of the 

trade. A proof is the ultimate test of your understanding of the subject matter and 

of mathematical reasoning.

What should I know before beginning Chapter 1?

The usual prerequisite for a transition course is at least one semester of calculus. 

We will sometimes refer to topics that come from calculus and earlier courses (for 

example, differentiable functions or the graph of a parabola), but we won’t be solv-

ing equations or �nding derivatives.

We assume that you have encountered the basic concepts of sets and subsets; 

that you are familiar with the natural number system and the integers and rational, 

real, and complex numbers; and that you have worked with functions—especially 

with functions de�ned on sets of real numbers with real number images. See the 

Appendix for a quick review of these essential ideas and notations, which will be 

used throughout the text.
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xiv    Preface to the Student

What am I allowed to assume for a proof?

You may be given speci�c instructions for some proof-writing exercises, but gen-

erally the idea is that you may use what someone studying the topic of your proof 

would know. That is, when we prove something about intersecting lines, we might 

use facts about the slope of a line, but we probably would not use properties of 

derivatives. This really is not much of a problem, except for several of our earli-

est examples in which we prove well-known facts about even and odd integers. In 

those few examples we construct proofs using other properties of number systems, 

but not what we already know about evenness and oddness. This is done so that we 

can study the structure of proofs in a familiar setting.

Remember

We don’t expect you to become an expert at proving theorems overnight. With 

practice—studying lots of examples and exercises—the skills will come. Our goal 

is to help you write and think as mathematicians do, and to present a solid founda-

tion in material that is useful in advanced courses. We hope you enjoy it.

Douglas D. Smith

Richard St. Andre
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1

We strongly recommend that you read the entire Preface to the Student before 

beginning this �rst chapter. As described there, mathematics is concerned with 

the formation of a theory (a collection of true statements called theorems) that 

describes patterns or relationships among quantities and structures. It is charac-

terized by deductive reasoning, in which one uses logic to develop and extend 

a theory. A proof of a theorem is a justi�cation (a deduction) of the truth of the 

theorem. A proof is obtained by drawing conclusions based on statements initially 

accepted as true (the axioms) and statements previously proved. How one puts 

together a sequence of statements to build an acceptable justi�cation is at the heart 

of this text. Thus, this chapter begins with the basic logic underlying proofs. It 

introduces the essential methods used to construct correct proofs. 

Writing a proof of a theorem requires thorough understanding of the theorem’s 

mathematical concepts. So that you will be familiar with terminology and notations 

that will be used throughout this book, we recommend that you review the material 

in the Appendix before beginning this chapter.

1.1 Propositions and Connectives

Our goal in this section and the next is to examine the structure of sentences used 

in making logical conclusions. Most sentences, such as “π > 3” and “Earth is the 

closest planet to the sun,” have a truth value. That is, they are either true or false. 

We call these sentences propositions. Other sentences, such as “What time is it?” 

(an interrogatory sentence) and “Look out!” (an exclamatory sentence) express 

complete thoughts but have no truth value.

DEFINITION  A proposition is a sentence that has exactly one truth 

value. It is either true, which we denote by T, or false, which we denote by F.

C H A P T E R  1

Logic and Proofs
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2    CHAPTER 1  Logic and Proofs

Some propositions, such as “72  60,” have easily determined truth values. 

By contrast, it will take years to determine the truth value of the proposition “The 

North Paci�c right whale will be an extinct species before the year 2525.” Other 

statements, such as “Euclid was left-handed,” are propositions whose truth values 

may never be known.

Sentences like “She lives in New York City” and “x2 = 36” are not proposi-

tions because each could be true or false depending on the person to whom “she” 

refers and what numerical value is assigned to x. We will deal with sentences like 

these in Section 1.3; until then, when we say that a sentence like “x > 6” is a propo-

sition, we are assuming that the variable x has been assigned some speci�c value.

The statement “This sentence is false” is not a proposition because it is neither 

true nor false. It is an example of a paradox—a situation in which, from premises 

that look reasonable, one uses apparently acceptable reasoning to derive a conclu-

sion that seems to be contradictory. If the statement “This sentence is false” is true, 

then by its meaning it must be false. On the other hand, if the given statement is 

false, then what it claims is false, so it must be true. The study of paradoxes such 

as this has played a key role in the development of modern mathematical logic. 

A  famous example of a paradox formulated in 1901 by Bertand Russell* is dis-

cussed in Section 2.1.

By applying logical connectives to propositions, we can form new propositions.

DEFINITION  The negation of a proposition P, denoted ∼P, is the propo-

sition “not P.” The proposition ∼P is true exactly when P is false.

The truth value of the negation of a proposition is the opposite of the truth 

value of the proposition. For example, the negation of the false proposition “7 is 

divisible by 2” is the true statement “It is not the case that 7 is divisible by 2,” or 

“7 is not divisible by 2.”

DEFINITION  Given propositions P and Q, the conjunction of P and Q, 

denoted P ∧ Q, is the proposition “P and Q.” P ∧ Q is true exactly when both 

P and Q are true.

The English words but, while, and although are usually translated symbolically 

with the conjunction connective, because they have the same effect on truth value 

as and.

Examples.  Let C be the proposition “19 is composite” and M be “45 is a mul-

tiple of 3.” Then C is false and M is true. Thus the proposition C ∧ M is false. 

* Bertrand Russell (1872–1970) was a British philosopher, mathematician, and advocate for social 
reform. He was a strong voice for precision and clarity of arguments in mathematics and logic. He 
coauthored Principia Mathematica (1910–1913), a monumental effort to derive all of mathematics from 
a speci�c set of axioms and well-de�ned rules of inference.
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1.1  Propositions and Connectives    3

We read C ∧ M as “19 is composite and 45 is a multiple of 3.” On the other hand, 

if we let C be “Copenhagen is the capital of Denmark” and M be “Madrid is the 

capital of Spain,” then the statement “Copenhagen is the capital of Denmark 

while Madrid is the capital of Spain” is a true proposition with the same symbolic 

form, C ∧ M. ◽

The examples above illustrate an important distinction between a statement 

and the form of a statement. The form P ∧ Q itself has no truth value. Only when 

the components P and Q are assigned to be speci�c propositions does P ∧ Q have 

the value T or F. Those combinations of truth values for P and Q that yield true and 

those that yield false can be displayed in a truth table for P ∧ Q.

 P Q P ∧ Q

 T T T
 F T F
 T F F
 F F F

DEFINITION  Given propositions P and Q, the disjunction of P and Q, 

denoted P ∨ Q, is the proposition “P or Q.” P ∨ Q is true exactly when at 

least one of P or Q is true.

The truth table for P ∨ Q is

 P Q P ∨ Q

 T T T
 F T T
 T F T
 F F F

Example.  If R is the proposition “12 is a prime number” and S is “16 is an inte-

ger power of 2,” we know R is false and S is true. Thus, “12 is a prime number or 

16 is an integer power of 2,” which has the form R ∨ S, is true. The false proposi-

tion “Either 12 is a prime number or 16 is not an integer power of 2” has the form 

R ∨ ∼S. ◽

The statement “Either 7 is prime and 9 is even, or else 11 is not less than 3” 

may be symbolized by (P ∧ Q) ∨ ∼R, where P is “7 is prime,” Q is “9 is even,” 

and R is “11 is less than 3.” Because the propositional form (P ∧ Q) ∨∼R has three 

components (P, Q, and R), it follows that there are 23 = 8 possible combinations 

of truth values in its truth table. The two main components are P ∧ Q and ∼R. We 

make truth tables for these and combine them by using the truth table for ∨.
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4    CHAPTER 1  Logic and Proofs

P Q R P ∧ Q ∼R (P ∧ Q) ∨ ∼R

T T T T F T
F T T F F F
T F T F F F
F F T F F F
T T F T T T
F T F F T T
T F F F T T
F F F F T T

In practice, we don’t make a complete truth table to determine the truth value 

of a speci�c statement such as “Either 7 is prime and 9 is even, or else 11 is not less 

than 3.” We can conclude that this statement is true because

We know P is true, Q is false, and R is false. 

Therefore, P ∧ Q is false and ∼R is true. 

Thus (P ∧ Q) ∨ ∼R is true. 

The reasoning here follows the steps necessary to create line 7 of the table.

Some compound forms always yield the value true (or false) just because of 

the way they are formed.

DEFINITIONS  A tautology is a propositional form that is true for every 

assignment of truth values to its components.

A contradiction is a propositional form that is false for every assignment 

of truth values to its components.

The Law of Excluded Middle, P ∨ ∼P, is an example of a tautology because 

P ∨ ∼P is true when P is true and true when P is false. We know that statements like

“20341 is a prime number or 20341 is not a prime number” and 

“The absolute value function is continuous or it is not continuous”

must be true because both have the form of this tautology.

Example.   Prove that (P ∨ Q) ∨ (∼P ∧ ∼Q) is a tautology.

Proof.  The truth table for this propositional form is

P Q P ∨ Q ∼P ∼Q ∼P ∧ ∼Q (P ∨ Q) ∨ (∼P ∧ ∼Q)

T T T F F F T
F T T T F F T
T F T F T F T
F F F T T T T

Because the last column is all true, (P ∨ Q) ∨ (∼P ∧ ∼Q) is a tautology. ◾
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1.1  Propositions and Connectives    5

Both ∼(P ∨ ∼P) and Q ∧ ∼Q are examples of contradictions. The negation of 

a contradiction is, of course, a tautology.

Particularly important in writing proofs will be the ability to recognize or write 

a statement equivalent to another. Sometimes, knowledge of the mathematical con-

tent enables us to write an equivalent statement. For instance, if one step in a proof 

is the statement “The ones digit of the integer x is zero,” a later step could be the 

equivalent statement “The integer x is divisible by 10.” 

In other cases, the meaning of a statement does not come into play; it is the 

form of the statement that may be used to �nd a useful equivalent. We say two 

propositional forms are equivalent if they have the same truth tables.

Some of the most commonly used equivalences are presented in the follow-

ing theorem. You may wish to make truth tables for each pair of forms to verify 

that they are equivalent, but in each case you should understand the equivalences 

by examining their meanings. For example, in part (h), negation is applied to a 

conjunction. The form ∼(P ∧ Q) is true precisely when P ∧ Q is false. This happens 

when one of P or Q is false, or, in other words, when one of ∼P or ∼Q is true. Thus, 

∼(P ∧ Q) is equivalent to ∼P ∨ ∼Q. That is, to say “We don’t have both P and Q” 

is the same as saying “We don’t have P or we don’t have Q.”

All parts of Theorem 1.1.1 may be veri�ed by constructing truth tables for each 

pair of propositional forms. (See Exercise 5.)

Theorem 1.1.1 For propositions P, Q, and R, the following are equivalent:

(a) P  and ∼(∼P) Double Negation Law

(b) P ∨ Q  and Q ∨ P 
Commutative Laws(c) P ∧ Q  and Q ∧ P

(d) P ∨ (Q ∨ R) and (P ∨ Q) ∨ R 
Associative Laws(e) P ∧ (Q ∧ R)  and (P ∧ Q) ∧ R

(f) P ∧ (Q ∨ R)  and (P ∧ Q) ∨ (P ∧ R) 
Distributive Laws(g) P ∨ (Q ∧ R)  and (P ∨ Q) ∧ (P ∨ R)

(h) ∼(P ∧ Q)  and ∼P ∨ ∼Q 
DeMorgan’s* Laws

(i) ∼(P ∨ Q)  and ∼P ∧ ∼Q

As an example of how this theorem might be useful, suppose that for some 

integer x we have determined that the statement “x is even and x > 10” is not true. 

Then its negation,

“It is not the case that the integer x is even and x > 10,”

is true and has the form ∼(P ∧ Q), where P is “x is even” and Q is “x > 10.” By part 

(h) of Theorem 1.1.1, this is equivalent to ∼P ∨ ∼Q, which is

“It is not the case that x is even or it is not the case that x > 10.”

* Augustus DeMorgan (1806–1871) was an English logician and mathematician whose contributions 
include his notational system for symbolic logic. He also introduced the term mathematical induction 
(see Section 2.4) and developed a rigorous foundation for that proof technique.

f
f
f

f
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6    CHAPTER 1  Logic and Proofs

An easier way to say this is

“x is not even or x is not greater than 10,”

which may be restated as 

“x is odd or x ≤ 10.”

A denial of a proposition P is any proposition equivalent to ∼P. A proposition 

has only one negation, ∼P, but always has many denials, including ∼P, ∼∼∼P, 

∼∼∼∼∼P, etc. Some denials of “x is odd” are “x is not odd,” “x is even,” and “x is 

divisible by 2.” DeMorgan’s Laws provide other ways to construct useful denials.

Example.  A denial of “Either the defendant paid a �ne or the judge declared a 

mistrial” is 

“The judge did not declare a mistrial and the defendant did not pay a �ne.”

This can be veri�ed by �rst writing the two sentences symbolically as P ∨ J and 

(∼J ) ∧ (∼P ), respectively. Then we observe that P ∨ J is equivalent to J ∨ P, so 

a denial of P ∨ J is equivalent to ∼ (J ∨ B ), which we know by DeMorgan’s Laws 

is equivalent to (∼J ) ∧ (∼P ). We could also verify that the sentence is a denial 

by checking that the truth tables for P ∨ J and (∼J ) ∧ (∼P ) have exactly opposite 

values. ◽

Example.  Suppose L1 and L2 are two lines in a coordinate system. Find a denial 

of the statement

“L1 and L2 have the same slope or L1 and L2 are vertical lines.”

The mathematical concepts expressed determine the form of the statement. The 

component “L1 and L2 have the same slope” cannot mean “L1 has the same slope” 

and “L2 has the same slope.” However, “L1 and L2 are vertical lines” must mean 

“L1 is a vertical line” and “L2 is a vertical line.” The correct symbolization is 

S ∨ (P ∧ Q), where S is “L1 and L2 have the same slope,”, P is “L1 is a vertical 

line,” and Q is “L2 is a vertical line.”

The negation of the statement is ∼[S ∨ (P ∧ Q)], which is equivalent to 

∼S ∧ ∼(P ∧ Q). This form, in turn, is equivalent to ∼S ∧ (∼P ∨ ∼Q). The denial 

we seek is 

“L1 and L2 do not have the same slope, and 

either L1 is not a vertical line or L2 is not a vertical line.” ◽

Does someone who says, “Not P or Q” mean “Neither P nor Q” or “Either not 

P or else Q”? That is, should the symbolic translation be ∼(P ∨ Q) or (∼P) ∨ Q? 

The two translations are not equivalent, so the English sentence needs further 

explanation. Ambiguities like this can be tolerated in casual conversation but not 

in situations where precision matters—for example, in mathematics and in legal 

documents. To avoid ambiguities in symbolic statements, we use parentheses ( ), 

square brackets [ ], or braces { }. 
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1.1  Propositions and Connectives    7

Propositional forms are often written without all the parentheses you might 

expect. To correctly understand such a form, use these rules:

First, ∼ always is applied to the smallest proposition following it.

Then ∧ connects the smallest propositions surrounding it.

Next, ∨ connects the smallest propositions surrounding it.

Also, when the same connective is used two or more times in succession, paren-

theses are restored from the left. Thus, ∼P ∨ Q is an abbreviation for (∼P) ∨ Q, 

but ∼(P ∨ Q) is the only way to write the negation of P ∨ Q. Here are some other 

examples:

∼P ∨ ∼Q abbreviates (∼P) ∨ (∼Q)

P ∨ Q ∧ R abbreviates P ∨ (Q ∧ R)

P ∧ ∼Q ∨ ∼R abbreviates [P ∧ (∼Q)] ∨ (∼R)

R ∧ P ∧ S ∧ Q abbreviates [(R ∧ P) ∧ S] ∧ Q

There is no requirement to leave out as many parentheses as possible. For 

example, ∼P ∧ ∼R ∨ ∼P ∧ R is an abbreviation for [(∼P) ∧ (∼R)] ∨ [(∼P) ∧ R], 

but for most readers the form (∼P ∧ ∼R) ∨ (∼P ∧ R) is easier to read. 

Exercises 1.1

 1. Which of the following are propositions? Give the truth value of each propo-

sition.

  (a) What time is dinner?

  (b) It is not the case that π is not a rational number.

 ★ (c) x / 2 is a rational number.

  (d) 2x + 3y is a real number.

  (e) Either π is rational and 17 is a prime, or 7 < 13 and 81 is a perfect 

square.

 ★ (f) Either 2 is rational and π is irrational, or 2π is rational.

  (g) Either 5π is rational and 4.9 is rational, or there are exactly four primes 

less than 10.

  (h) −3.7 is rational, and either 3π < 10 or 3π > 15.

  (i) It is not the case that 39 is prime, or that 64 is a power of 2.

  (j) There are more than three false statements in this book, and this state-

ment is one of them. 

 2. For each pair of statements, determine whether the conjunction P ∧ Q and the 

disjunction P ∨ Q are true.

  (a) P is “!2 < π” and Q is “97 is a prime number.”

 ★ (b) P is “The moon is larger than Earth” and Q is “The prime divisors of 12 

are 2 and 3.”

  (c) P is “52 + 122 = 132” and Q is “!2 + !3 = !2 + 3.”

 ★ (d) P is “France is south of Italy” and Q is “New Zealand is in Europe.”
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8    CHAPTER 1  Logic and Proofs

  (e) P is “0, 5, and 10 are all natural numbers” and Q is “98 has two prime 

divisors.”

  (f) P is “Hexagons have 5 sides” and Q is “!2 ~ 3 = 2!3.”

 3. Make a truth table for each of the following propositional forms.

 ★ (a) P ∧ ∼P (b) P ∨ ∼P

 ★ (c) P ∧ ∼Q (d) P ∧ (Q ∨ ∼Q)

 ★ (e) (P ∧ Q) ∨ ∼Q (f ) ∼(P ∧ Q)

  (g) (P ∨ ∼Q) ∧ R (h) ∼P ∧ ∼Q

 ★ (i) P ∧ (Q ∨ R) (j)  (P ∧ Q) ∨ (P ∧ R)

  (k) P ∧ P (l)  (P ∧ Q) ∨ (R ∧ ∼S)

 4. If P, Q, and R are true while S and K are false, which of the following are 

true?

 ★ (a) Q ∧ (R ∧ S ) (b) Q ∨ (R ∧ S )

 ★ (c) (P ∨ Q) ∧ (R ∨ S ) (d) (∼P ∨ ∼Q) ∨ (∼R ∨ ∼S )

  (e) ∼P ∨ ∼Q ★ (f ) (∼Q ∨ S) ∧ (Q ∨ S)

 ★ (g) (P ∨ S ) ∧ (P ∨ K ) (h) K ∧ ∼(S ∨ Q)

☆  5. Use truth tables to verify each part of Theorem 1.1.1.

 6. Which of the following pairs of propositional forms are equivalent?

 ★ (a) ∼P ∧ ∼Q, ∼(P ∧ ∼Q) (b) (∼P) ∨ (∼Q), ∼(P ∨ ∼Q)

 ★ (c) (P ∧ Q) ∨ R, P ∧ (Q ∨ R) (d) ∼(P ∧ Q), ∼P ∧ ∼Q

  (e) (P ∧ Q) ∨ R, P ∨ (Q ∧ R) (f)  (P ∧ Q) ∨ P, P

 7. Determine the propositional form and truth value for each of the following:

  (a) It is not the case that gold is not a metal. 

  (b) 19 and 79 are prime, but 119 is not. 

 ★ (c) Julius Caesar was born in 1492 or 1493 and died in 1776. 

  (d) Perth or Panama City or Pisa is located in Europe.

  (e) Although 51 divides 153, it is neither prime nor a divisor of 409. 

  (f) While the number π is greater than 3, the sum 1 + 2π is less than 8. 

  (g) It is not the case that both −5 and 13 are elements of N, but 4 is in the 

set of rational numbers. 

 8. Suppose P, Q, and R are propositional forms. Explain why each is true.

 ★ (a) If P is equivalent to Q, then Q is equivalent to P.

  (b) If P is equivalent to Q, and Q is equivalent to R, then P is equivalent to R.

  (c) If P is equivalent to Q, then ∼P is equivalent to ∼Q.

  (d) If Q is equivalent to R, then P ∧ Q is equivalent to P ∧ R.

  (e) If Q is equivalent to R, then P ∨ Q is equivalent to P ∨ R.

 9. Suppose P, Q, S, and R are propositional forms, P is equivalent to Q, and S is 

equivalent to R. For each pair of forms, determine whether they are necessar-

ily equivalent. If they are equivalent, explain why.

 ★ (a) P and R (b) P and ∼ ∼Q

 ★ (c) P ∧ S and Q ∧ R (d) P ∨ S and Q ∨ R

  (e) ∼(P ∧ S) and ∼Q ∨ ∼R (f ) P ∧ Q and S ∧ R
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 10. Use a truth table to determine whether each of the following is a tautology, 

a contradiction, or neither.

  (a) (P ∧ Q) ∨ (∼P ∧ ∼Q)

  (b) ∼(P ∧ ∼P)

 ★ (c) (P ∧ Q) ∨ (∼P ∨ ∼Q)

  (d) (P ∧ Q) ∨ (P ∧ ∼Q) ∨ (∼P ∧ Q) ∨ (∼P ∧ ∼Q)

  (e) (Q ∧ ∼P) ∧ ∼(P ∧ R)

  (f) P ∨ [(∼Q ∧ P) ∧ (R ∨ Q)]

 11. Give a useful denial of each statement. Assume that each variable is some 

�xed object so that each statement is a proposition.

 ★ (a) x is a positive integer.

  (b) Cleveland will win the �rst game or the second game.

 ★ (c) 5 ≥ 3.

  (d) 641,371 is a composite integer.

 ★ (e) Roses are red and violets are blue.

  (f) K is not bounded or K is compact.

  (g) M is odd and one-to-one.

  (h) The matrix M is diagonal and invertible.

  (i) The function g has a relative maximum at x = 2 or x = 4 and a relative 

minimum at x = 3.

  (j) Neither z < s nor z ≤ t is true.

  (k) R is transitive but not symmetric.

 12. Restore parentheses to these abbreviated propositional forms.

  (a) ∼∼P ∨ ∼Q ∧ ∼S

  (b) Q ∧ ∼S ∨ ∼  (∼P ∧ Q)

  (c) P ∧ ∼Q ∨ ∼P ∧ ∼R ∨ ∼P ∧ S

  (d) ∼P ∨ Q ∧ ∼∼P ∧ Q ∨ R

 13–14. Other logical connectives between two propositions P and Q are possible.

 13. The word or is used in two different ways in English. We have presented 

the truth table for ∨, the inclusive or, whose meaning is “one or the other or 

both.” The exclusive or, meaning “one or the other but not both” and denoted 

∨ , has its uses in English, as in “She will marry Heckle or she will marry 

Jeckle.” The “inclusive or” is much more useful in mathematics and is the 

accepted meaning unless there is a statement to the contrary.

 ★ (a)  Make a truth table for the “exclusive or” connective ∨ .

  (b)  Show that A ∨ B is equivalent to (A ∨ B) ∧ ∼(A ∧ B).

 14. “NAND” and “NOR” circuits are commonly used as a basis for �ash memory 

chips. A NAND B is de�ned to be the negation of “A and B.” A NOR B is 

de�ned to be the negation of “A or B.”

  (a) Write truth tables for the NAND and NOR connectives.

  (b)  Show that (A NAND B) ∨ (A NOR B) is equivalent to (A NAND B).

  (c)  Show that (A NAND B) ∧ (A NOR B) is equivalent to (A NOR B).
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10    CHAPTER 1  Logic and Proofs

1.2 Conditionals and Biconditionals

Sentences of the form “If P, then Q” are the most important kinds of proposi-

tions in mathematics. You have seen many examples of such statements in previ-

ous study: from precalculus, “If two lines in a plane have the same slope, then 

the lines are parallel”; from trigonometry, “If sec θ =
5
3
, then sin θ =

4
5
.”; from 

calculus, “If f is differentiable at x0 and f (x0) is a relative minimum for f, then 

f (x0) = 0.”

DEFINITIONS  For propositions P and Q, the conditional sentence P ⇒ Q 

is the proposition “If P, then Q.” Proposition P is called the antecedent and 

Q is the consequent. The sentence P ⇒ Q is true if and only if P is false or 

Q is true.

The truth table for P ⇒ Q is

P Q P ⇒ Q

T T T
F T T
T F F
F F T

The only case where P ⇒ Q is a false statement occurs on line 3 of its truth table, 

when P is true and Q is false. This agrees with the way we understand promises.

Example.  Suppose someone makes this promise to a friend:

“If the weather is warm, we will go hiking.”

The antecedent is “The weather is warm” and the consequent is “We will go hiking.” 

This promise would be broken if the weather turned out to be warm and the friends 

did not go hiking (line 3 of the table.) In every other situation, the statement is 

true. When the weather was warm and the friends went hiking (line 1 of the table), 

the promise was kept. Whether the friends go hiking or not, in the event that the 

weather is not warm, we wouldn’t say the promise was broken. (These are lines 2 

and 4 of the table.) ◽

Our truth table de�nition for P ⇒ Q captures the same meaning for “If . . ., 

then . . .” that you have always used in mathematics. For example, if we think of x 

as some �xed real number, we all know that

“If x > 8, then x > 5”

is a true statement, no matter what number x we have in mind. Let’s examine why 

we say this sentence is true for some speci�c values of x, where the antecedent P is 

“x > 5” and the consequent Q is “x > 5.”
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1.2  Conditionals and Biconditionals    11

When x is a number greater than both 8 and 5 (for example, 11), both P and Q 

are true, as in line 1 of the truth table. When x is between 5 and 8 (for example, 7), 

P is false and Q is true, as in the second line of the table. When x is less than both 

8 and 5 (for example, 2), we have the situation in line 4. In all three cases, P ⇒ Q 

is true. In fact, “If x > 8, then x > 5” is always true because there can be no case 

corresponding to line 3 of the truth table. We are not claiming that either P or Q is 

true. What we do say is that no matter what number we think of, if it is larger than 

8, then it is also larger than 5.

One curious consequence of the truth table for P ⇒ Q is that a conditional 

sentence may be true even when there is no connection between the antecedent and 

the consequent. The reason for this is that the truth value of P ⇒ Q depends only on 

the truth value of components P and Q, not on their interpretation. For this reason, 

all of the following are true:

“If sin π = 1, then 6 is prime.” (line 4 of the truth table)

“13 > 7 ⇒ 2 + 3 = 5.” (line 1 of the truth table)

“π = 3 ⇒ Paris is the capital of France.” (line 2 of the truth table)

and both of these are false by line 3 of the truth table:

“If Saturn has rings, then (2 + 3)2 = 22 + 32.”

“If 4π > 10, then 1 is a prime number.”

Other consequences of the truth table for P ⇒ Q are worth noting. 

• When P is false (lines 2 and 4), it doesn’t matter what truth value Q has: P ⇒ Q 

will be true. 

• When Q is true (lines 1 and 2), it doesn’t matter what truth value P has: P ⇒ Q 

will be true. 

• When P and P ⇒ Q are both true (on line 1), Q must also be true.

Two propositions associated with P ⇒ Q are its converse and contrapositive.

DEFINITION  Let P and Q be propositions.

The converse of P ⇒ Q is Q ⇒ P.

The contrapositive of P ⇒ Q is (∼Q) ⇒ (∼P).

For the conditional sentence “If π is an integer, then 14 is even,” the converse 

of the sentence is “If 14 is even, then π is an integer” and the contrapositive is “If 

14 is not even, then π is not an integer.” The sentence and its contrapositive are 

true, but the converse is false.

For the sentence “If 1 + 1 = 2, then !10 > 3,” the converse and 

contrapositive are, respectively, “If !10 > 3, then 1 + 1 = 2” and “If !10 is 

not greater than 3, then 1 + 1 is not equal to 2.” In this example, all three sen-

tences are true.

These two examples show that a conditional sentence and its converse are 

not always equivalent. Thus, the truth value of P ⇒ Q cannot be inferred from its 
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12    CHAPTER 1  Logic and Proofs

converse Q ⇒ P. However, a statement and its contrapositive are equivalent, as the 

following theorem shows.

Theorem 1.2.1 For propositions P and Q, P ⇒ Q is equivalent to its contrapositive (∼Q) ⇒ (∼P).

Proof.  The proof is carried out by examination of the truth table.

P Q P ⇒ Q ∼P ∼Q (∼Q) ⇒ (∼P)

T T T F F T
F T T T F T
T F F F T F
F F T T T T

P ⇒ Q is equivalent to (∼Q) ⇒ (∼P) because the third column in the truth table is 

identical to the sixth column. ◾

The biconditional connective, de�ned next, is symbolized with a double arrow 

⇐⇒, which reminds one of both ⇐ and ⇒. This is no accident because P ⇐⇒ Q is 

equivalent to (P ⇒ Q) ∧ (Q ⇒ P).

DEFINITION  For propositions P and Q, the biconditional sentence 

P ⇐⇒ Q is the proposition “P if and only if Q.” The sentence P ⇐⇒ Q is true 

exactly when P and Q have the same truth values.

Mathematicians often abbreviate “P if and only if Q” as “P iff Q.” The truth table 

for P ⇐⇒ Q is

P Q P ⇐⇒ Q

T T T
F T F
T F F
F F T

Examples.  The proposition “23 = 8   iff  49 is a perfect square” is true because 

both components are true. The proposition “π = 22/7 if and only if !2  is a rational 

number” is also true. The proposition “6 + 1 = 7   iff  Argentina is north of the equa-

tor” is false because the truth values of the components differ. ◽

De�nitions are important examples of biconditional sentences because they 

describe exactly the condition(s) needed to satisfy the de�nition. Be aware that 

de�nitions in mathematics, however, are not like de�nitions in ordinary English, 

which are based on how words are typically used. For example, for a period of at 

most a few dozen years, the standard meaning of the word wireless was a broadcast 

radio receiver. De�nitions in mathematics have precise meanings that stay �xed 

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.2  Conditionals and Biconditionals    13

over time. The de�nition of an “odd” integer in the Appendix tells you exactly what 

that word always means. You may form a helpful mental image or concept, but the 

idea that an odd integer ends in 1, 3, 5, 7, or 9 is a consequence of the de�nition, 

not the de�nition. 

De�nitions may be stated with the “if and only if ” wording, but it’s also com-

mon practice to state a formal de�nition using the word “if.” For example, we could 

say that “A function f is continuous at a number a if . . . ,” leaving the “only if ” part 

understood. Either way it’s worded, biconditionality provides the test of whether a 

statement could serve as a de�nition or is just a description.

Example.  The statement “Horizontal lines have slope 0” could be used as a de�ni-

tion, because a line is horizontal if and only if its slope is 0. However, “A quadratic 

function is a polynomial” is not a de�nition, because the sentence “A function is 

quadratic if and only if it is a polynomial” is false. ◽

Because the biconditional sentence P ⇐⇒ Q is true exactly when the truth val-

ues of P and Q agree, the propositional forms P and Q are equivalent precisely 

when P ⇐⇒ Q is a tautology. This means all of the statements in Theorem 1.1.1 may 

be restated using the ⇐⇒ connective. For example, the �rst of DeMorgan’s Laws 

(Theorem 1.1.1(h)) may be written ∼ (P ∧ Q) ⇐⇒ (∼P ∨ ∼Q).

The next theorem contains several additional important pairs of equivalent prop-

ositional forms involving implication. They will be used often to construct proofs.

Theorem 1.2.2 For propositions P, Q, and R, the following are equivalent:

(a) P ⇒ Q and ∼P ∨ Q

(b) P ⇐⇒ Q and (P ⇒ Q) ∧ (Q ⇒ P)

(c) ∼(P ⇒ Q) and P ∧ ∼Q

(d) ∼(P ∧ Q) and P ⇒ ∼Q

(e) ∼(P ∧ Q) and Q ⇒ ∼P

(f) P ⇒ (Q ⇒ R) and (P ∧ Q) ⇒ R

(g) P ⇒ (Q ∧ R) and (P ⇒ Q) ∧ (P ⇒ R)

(h) (P ∨ Q) ⇒ R and (P ⇒ R) ∧ (Q ⇒ R)

Exercise 8 asks you to prove each part of Theorem 1.2.2. The natural way to 

proceed is by constructing and then comparing truth tables, but you should also think 

about the meaning of both sides of each statement of equivalence. With part (a), for 

example, we reason as follows: P ⇒ Q is false exactly when P is true and Q is false, 

which happens exactly when both ∼P and Q are false. Since this happens exactly 

when ∼P ∨ Q is false, the truth tables for P ⇒ Q and ∼P ∨ Q are identical.

Note that many of the statements in Theorems 1.1.1 and 1.2.2 are related. For 

example, once we have established Theorems 1.1.1 and 1.2.2(a), we reason that 

part (c) is correct as follows:

∼(P ⇒ Q) is equivalent, by part (a), to

∼ (∼P ∨ Q), which is equivalent, by Theorem 1.1.1(i), to

∼ (∼P) ∧ ∼Q, which is equivalent, by Theorem 1.1.1(a), to  

P ∧ ∼Q.
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14    CHAPTER 1  Logic and Proofs

Recognizing the structure of a sentence and translating the sentence into sym-

bolic form using logical connectives are aids in determining its truth value. The 

translation of sentences into propositional symbols is sometimes very complicated 

because some natural languages (such as English) are rich and powerful with many 

nuances. The ambiguities that we tolerate in English would destroy structure and 

usefulness if we allowed them in mathematics.

Even the translations of simple sentences can present special problems. 

Suppose a teacher says to a student,

“If you score 74% or higher on the next test, you will pass this course.”

This sentence clearly has the form of a conditional sentence, although almost every-

one will interpret the meaning as a biconditional.

Contrast this with the situation in mathematics where “If x = 2, then x is a 

solution to x2 = 2x ” must have only the meaning of the connective ⇒, because 

x2 = 2x does not imply that x is 2.

Here are some phrases in English that are ordinarily translated using the con-

nectives ⇒ or ⇐⇒.

Use P ⇒ Q to interpret: Use P ⇐⇒ Q to interpret:

If P, then Q. P if and only if Q.
P is suf�cient for Q. P if, but only if, Q.
P only if Q. P is equivalent to Q.
Q, if P. P is necessary and suf�cient for Q.
Q whenever P. P implies Q, and conversely,
Q is necessary for P. 
Q, when P. 

The word unless is one of those connective words in English that poses special 

problems because it has so many different interpretations. See Exercise 11.

Examples.  Translate each of these statements into symbols. Think of a as a �xed 

real number. 

Statement:  In symbols:

a > 5 is suf�cient for a > 3. a > 5 ⇒ a > 3

a > 3 is necessary for a > 5. a > 5 ⇒ a > 3

a > 5 only if a > 3. a > 5 ⇒ a > 3

|a| = −a whenever a < 0. a < 0 ⇒ |a| = −a

|a| = 2 is necessary and suf�cient for a2 = 4. |a| = 2 ⇐⇒ a2 = 4 ◽

It is not always necessary to know the meaning of all the words in a statement 

to determine a correct translation. When you see “S is compact is suf�cient for 

S to be bounded,” you understand that the interpretation is “S is compact ⇒ S is 

bounded,” even if you don’t know what compact and bounded mean.

There will be more than one way to translate a sentence symbolically. For 

example, if we let C denote the proposition “S is compact” and B denote the 
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proposition “S is bounded,” the statement “If S is compact, then S is bounded” may 

be translated as C ⇒ B or as ∼B ⇒ ∼C or as ∼C ∨ B, because all these forms are 

equivalent. 

On the other hand, the sentence “17 and 35 have no common divisors” shows 

that the meaning of words must be considered. The translation “17 has no common 

divisors ∧ 35 has no common divisors” makes no mathematical sense. Compare 

this to the proposition “17 and 35 have digits totaling 8,” which can be written as 

a conjunction.

Example.  Suppose b is a �xed real number. The form of the sentence “If b is an 

integer, then b is either even or odd” is P ⇒ (Q ∨ R), where P is “b is an integer,” 

Q is “b is even,” and R is “b is odd.” ◽

Example.  Suppose a, b, and p are �xed integers. “If p is a prime number that 

divides ab, then p divides a or b” has the form (P ∧ Q) ⇒ (R ∨ S ), where P is “p 

is a prime,” Q is “p divides ab,” R is “p divides a,” and S is “p divides b.” ◽

The rules presented at the end of the previous section that allow us to some-

times reduce the number of, or restore omitted parentheses to, a propositional form 

can be extended to the connectives ⇒ and ⇐⇒:

The connectives ∼, ∧, ∨, ⇒, and ⇐⇒ are always applied in the order listed.

Thus, ∼ applies to the smallest possible proposition, then ∧ is applied with the 

next smallest scope, and so forth. For example,

P ⇒ ∼Q ∨ R ⇐⇒ S  is an abbreviation for (P ⇒ [(∼Q) ∨ R]) ⇐⇒ S,

P ∨ ∼Q ⇐⇒ R ⇒ S  is an abbreviation for [P ∨ (∼Q)] ⇐⇒ (R ⇒ S ),

and

P ⇒ Q ⇒ R  is an abbreviation for (P ⇒ Q) ⇒ R.

Whenever you abbreviate a form by eliminating some parentheses, be sure to leave 

enough to make the form easy to read.

Exercises 1.2

 1. Identify the antecedent and the consequent for each of the following con-

ditional sentences. Assume that a, b, and f represent some �xed sequence, 

 integer, or function, respectively.

 ★ (a) If squares have three sides, then triangles have four sides.

  (b) If the moon is made of cheese, then 8 is an irrational number.

  (c) b divides 3 only if b divides 9.

 ★ (d) The differentiability of f is suf�cient for f to be continuous.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16    CHAPTER 1  Logic and Proofs

  (e) A sequence a is bounded whenever a is convergent.

 ★ (f) A function f is bounded if f is integrable.

  (g) 1 + 2 = 3 is necessary for 1 + 1 = 2.

  (h) The �sh bite only when the moon is full.

 ★ (i) A time of 3 minutes, 48 seconds or less is necessary to qualify for the 

Olympic team.

☆ 2. Write the converse and contrapositive of each conditional sentence in 

Exercise 1.

 3. What can be said about the truth value of Q when

  (a) P is false and P ⇒ Q is true?  (b) P is true and P ⇒ Q is true?

  (c) P is true and P ⇒ Q is false?  (d) P is false and P ⇐⇒ Q is true?

  (e) P is true and P ⇐⇒ Q is false?

 4. Identify the antecedent and the consequent for each conditional sentence in 

the following statements from this book.

  (a) Exercise 3 of Section 1.6  (b) Theorem 2.1.1(c)

  (c) The PMI, Section 2.4  (d) Theorem 3.3.1

  (e) Theorem 4.7.2  (f)  Corollary 5.3.6

 5. Which of the following conditional sentences are true?

 ★ (a) If triangles have three sides, then squares have four sides.

  (b) If hexagons have six sides, then the moon is made of cheese.

 ★ (c) If 7 + 6 = 14, then 5 + 5 = 10.

  (d) The Nile River �ows east only if 64 is a perfect square.

  (e) Earth has one moon only if the Amazon River �ows into the  

North Sea.

  (f) If Euclid’s birthday was April 2, then rectangles have four sides.

  (g) 5 is prime if !2 is not irrational.

  (h) 1 + 1 = 2 is suf�cient for 3 > 6.

 6. Which of the following are true? Assume that x and y are �xed real numbers.

 ★ (a) Triangles have three sides iff squares have four sides.

  (b) 7 + 5 = 12 if and only if 1 + 1 = 2.

  (c) 5 + 6 = 6 + 5 iff 7 + 1 = 10.

  (d) A parallelogram has three sides iff 27 is prime.

  (e) The Eiffel Tower is in Paris if and only if the chemical symbol for 

helium is H.

  (f) !10 + !13 < !11 + !12 iff !13 − !12 < !11 − !10.

  (g) x2 ≥ 0 if and only if x ≥ 0.

  (h) x2 − y2 = 0 iff (x − y)(x + y) = 0.

  (i) x2 + y2 = 50 if and only if (x + y)2 = 50.

 7. Make truth tables for these propositional forms.

  (a) P ⇒ (Q ∧ P). ★ (b) (∼P ⇒ Q) ∨ (Q ⇐⇒ P).

 ★ (c) ∼Q ⇒ (Q ⇐⇒ P).  (d) (P ∨ Q) ⇒ (P ∧ Q).

  (e) (P ∧ Q) ∨ (Q ∧ R) ⇒ P ∨ R.

  (f) [(Q ⇒ S ) ∧ (Q ⇒ R)] ⇒ [(P ∨ Q) ⇒ (S ∨ R)].
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1.2  Conditionals and Biconditionals    17

 8. Prove Theorem 1.2.2 by constructing truth tables for each equivalence.

 9. Determine whether each statement quali�es as a de�nition.

  (a) y = f (x) is a linear function if its graph is a straight line.

  (b) y = f (x) is a quadratic function when it contains an x2 term.

  (c) A quadrilateral is a square when all its sides have equal length.

  (d) A triangle is a right triangle if the sum of two of its interior angles is 908.

  (e) Two lines are parallel when their slopes are the same number.

  (f) A quadrilateral is a rectangle if all its interior angles are equal.

 10. Rewrite each of the following sentences using logical connectives. Assume 

that each symbol f, x0, n, x, B represents some �xed object.

 ★ (a) If f has a relative minimum at x0 and if f is differentiable at x0, then 

f (x0) = 0.

  (b) If n is prime, then n = 2 or n is odd.

 ★ (c) R is symmetric and transitive whenever R is irre�exive.

  (d) B is square and not invertible whenever det B = 0.

 ★ (e) f has a critical point at x0   iff  f (x0) = 0 or f (x0) does not exist.

  (f) 2 < n − 6 is a necessary condition for 2n < 4 or n > 4. 

  (g) 6 ≥ n − 3 only if n > 4 or n > 10.

  (h) x is Cauchy implies x is convergent.

  ( i) f is continuous at x0 whenever lim
x→x0

 f (x) = f (x0).

  (j) If f is differentiable at x0 and f is increasing at x0, then f r(x0) > 0.

 11. Dictionaries indicate that the conditional meaning of unless is preferred, but 

there are other interpretations as a converse or a biconditional. Discuss the 

translation of each sentence.

  (a) I will go to the store unless it is raining.

 ★ (b) The Dolphins will not make the playoffs unless the Bears lose all the rest 

of their games.

  (c) You cannot go to the game unless you do your homework �rst.

  (d) You won’t win the lottery unless you buy a ticket.

 12. Show that the following pairs of statements are equivalent.

  (a) (P ∨ Q) ⇒ R and ∼R ⇒ (∼P ∧ ∼Q).

 ★ (b) (P ∧ Q) ⇒ R and (P ∧ ∼R) ⇒ ∼Q.

  (c) P ⇒ (Q ∧ R) and (∼Q ∨ ∼R) ⇒ ∼P.

  (d) P ⇒ (Q ∨ R) and (P ∧ ∼R) ⇒ Q.

  (e) (P ⇒ Q) ⇒ R and (P ∧ ∼Q) ∨ R.

  (f) P ⇐⇒ Q and (∼P ∨ Q) ∧ (∼Q ∨ P).

 13. Give, if possible, an example of a true conditional sentence for which

 ★ (a) the converse is true.  (b) the converse is false.

 ★ (c) the contrapositive is false.  (d) the contrapositive is true.

 14. Give, if possible, an example of a false conditional sentence for which

  (a) the converse is true.  (b) the converse is false.

  (c) the contrapositive is false.  (d) the contrapositive is true.
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18    CHAPTER 1  Logic and Proofs

 15. Give the converse and contrapositive of each sentence of Exercises 10(a), (b), 

(f) and (g). Decide whether each converse and contrapositive is true or false.

 16. Determine whether each of the following is a tautology, a contradiction, or neither.

 ★ (a) [(P ⇒ Q) ⇒ P] ⇒ P.

  (b) P ⇐⇒ P ∧ (P ∨ Q).

  (c) P ⇒ Q ⇐⇒ P ∧ ∼Q.

 ★ (d) P ⇒ [P ⇒ (P ⇒ Q)].

  (e) P ∧ (Q ∨ ∼Q) ⇐⇒ P.

  (f) [Q ∧ (P ⇒ Q)] ⇒ P.

  (g) (P ⇐⇒ Q) ⇐⇒ ∼(∼P ∨ Q) ∨ (∼P ∧ Q).

  (h) [P ⇒ (Q ∨ R)] ⇒ [(Q ⇒ R) ∨ (R ⇒ P)].

  (i) P ∧ (P ⇐⇒ Q) ∧ ∼Q.

  (j) (P ∨ Q) ⇒ Q ⇒ P.

  (k) [P ⇒ (Q ∧ R)] ⇒ [R ⇒ (P ⇒ Q)].

  (l) [P ⇒ (Q ∧ R)] ⇒ R ⇒ (P ⇒ Q).

 17. The inverse, or opposite, of the conditional sentence P ⇒ Q is ∼P ⇒ ∼Q.

  (a) Show that P ⇒ Q and its inverse are not equivalent forms.

  (b) For what values of the propositions P and Q are P ⇒ Q and its inverse 

both true?

  (c) Which is equivalent to the converse of a conditional sentence, the con-

trapositive of its inverse, or the inverse of its contrapositive?

1.3 Quantified Statements

Unless there has been prior agreement about the value of x, the statement “x ≥ 3” is 

not a proposition because it is neither true nor false. A sentence that contains variables 

is called an open sentence or predicate and becomes a proposition only when its vari-

ables are assigned speci�c values. For example, “x ≥ 3” is true when x is given the 

value 7 and false when x is 2.

When P is an open sentence with a variable x, the sentence is symbolized by 

P(x). If P has n variables x1, x2, p  , xn, we write P(x1, x2, p  , xn). For example, 

if P(x, y, z) represents the open sentence “x + y = z2,” then P(4, 5, 3) is the true 

proposition 4 + 5 = 32, while P(1, 2, 4) is the false proposition 1 + 2 = 42.

The collection of objects that may be substituted to make an open sentence a 

true proposition is called the truth set of the sentence. Before a truth set can be 

determined, we must be given or must decide what objects are available for consid-

eration; that is, we must have speci�ed a universe of discourse. In many cases the 

universe will be understood from the context. For the sentence “x likes chocolate,” 

the universe is presumably the set of all people. We will often use the number sys-

tems N, Z, Q, R, and C as our universes. (See the Appendix.)

Example.  The truth set of the open sentence “x2
< 5” depends on the collection of 

objects we choose for the universe of discourse. With the universe speci�ed as the 
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set N, the truth set is {1, 2}. For the universe Z, the truth set is {−2, −1, 0, 1, 2}. 

When the universe is R, the truth set is the open interval (−!5,!5). ◽

DEFINITION  With a universe speci�ed, two open sentences P(x) and 

Q(x) are equivalent if they have the same truth set.

Examples.  The sentences “3x + 2 = 20” and “x = 6” are equivalent open sen-

tences in any of the number systems named above. On the other hand, “x2 = 4” and 

“x = 2” are not equivalent when the universe is R. They are equivalent when the 

universe is N. ◽

Although words such as truth set, universe, and equivalent open sentence may 

be unfamiliar to you, the concepts are not new. The equation (x2 + 1)(x − 3) = 0 

is an open sentence. Solving the equation is a matter of �nding its truth set. For the 

universe R, the only solution is x = 3 and thus the truth set is {3}. But if we choose 

the universe to be C, the equation may be replaced by the equivalent open sentence 

(x + i)(x − i)(x − 3) = 0, which has truth set (solutions) {3, i, −i}.

To determine whether the sentence

“There is a prime number between 5060 and 5090”

is true in the universe N, we might try to individually examine every natural num-

ber, checking whether it is a prime and between 5060 and 5090, until we eventually 

�nd any one of the primes 5077, 5081, and 5087 and conclude that the sentence 

is true. (A quicker way is to search through a complete list of the �rst thousand 

primes.) The key idea here is that although the open sentence “x is a prime number 

between 5060 and 5090” is not a proposition, the sentence

“There is a number x such that x is a prime number between 5060 and 5090”

does have a truth value. This sentence is formed from the original open sentence by 

applying a quanti�er.

DEFINITION  The symbol E  is called the existential quanti�er. For an 

open sentence P (x), the sentence (E x) P (x) is read “There exists x such that 

P(x)” or “For some x, P(x).” The sentence (E x) P (x) is true if the truth set 

of P(x) is nonempty. 

An open sentence P (x) does not have a truth value, but the quanti�ed sentence 

(E x) P (x) does. One way to show that (E x) P (x) is true for a particular universe is to 

identify an object a in the universe such that the proposition P (a) is true. To show 

that (E x) P (x) is false, we must show that the truth set of P (x) is empty.
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Examples.  Let’s examine the truth values of these statements for the universe R:

(a) (Ex)(x ≥ 3) (b) (Ex)(x2 = 0)

(c) (Ex)(x ≥ 3 ∧ x2 = −1) (d) (Ex)(x ≥ 3 ∨ x2 = −1)

Statements (a) and (d) are true because 3, 7.02, and many other real numbers are in 

the truth set of x ≥ 3, and therefore in the truth set of x ≥ 3 ∨ x2 = −1. Statement (b) 

is true because the truth set of x2 = 0 is precisely {0} and therefore is nonempty. 

Because the open sentence x2 = −1 is never true for real numbers, the truth set of 

x ≥ 3 ∧ x2 = −1 is empty. Statement (c) is false in the universe R.

All four statements are false in the universe {1, 2}, and in the universe {−3, 0} 

only statement (b) is true. ◽

Sometimes we can say (Ex) P (x) is true even when we do not know a speci�c 

object in the universe in the truth set of P(x), only that there (at least) is one.

Example.  Show that (Ex)(x7 − 12x3 + 16x − 3 = 0) is true in the universe of 

real numbers.

For the polynomial f (x) = x7 − 12x3 + 16x − 3, we see that f (0) = −3 and 

f (1) = 2. From calculus, we know that f is continuous on [0, 1]. The Intermedi-

ate Value Theorem tells us there is a zero for f between 0 and 1. Even if we don’t 

know the exact value of the zero, we know it exists. Therefore, the truth set of 

x7 − 12x3 + 16x − 3 = 0 is nonempty. Hence (Ex)(x7 − 12x3 + 16x − 3 = 0) 

is true. ◽

The sentence “Every number x is greater than 0” needs a different quanti�er 

because it is not enough to �nd at least one value for x for which “x > 0” is true. 

The open sentence “x > 0” must always be true—that is, true for every object in 

the universe. The sentence “Every x is greater than 0” is true when the universe is 

N but is false when the universe is the integers.

DEFINITION  The symbol ∀ is called the universal quanti�er. For an 

open sentence P(x), the sentence (∀x) P(x) is read “For all x, P(x)” or “For 

every x, P(x).” The sentence (∀x) P(x) is true if the truth set of P(x) is the 

entire universe.

Examples.  In the universe of natural numbers, the sentences (∀x)(x + 2 > 1) and 

(∀x)(2x is an integer) are true. However, the sentence (∀x)(x + 2 > 1) is false in 

the universe of real numbers because −5 + 2 > 1 is false, and (∀x)(2x is an integer) 

is false in R because 0.6 is not in the truth set.

The sentence (∀x)(2x + 1 < 6) is false in N because 3 is not in the truth set, 

and (∀x)(2x − 1 > x) is false in N because 1 is not in the truth set. The two sen-

tences are false in the universe of real numbers for the same reasons. 
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Some universally quanti�ed sentences that are true in R are 

(∀x)(x < 0 or x = 0 or x > 0), (∀x)(2x
> 0),   and   (∀x)(x + 2 > x). ◽

There are many ways to express a quanti�ed sentence in English. Look for key 

words such as for all, for every, for each, and similar words that require universal 

quanti�ers. Look for phrases such as some, at least one, there exist(s), there is 

(are), and others that indicate existential quanti�ers.

You should also be alert for hidden quanti�ers because natural languages allow for 

imprecise quanti�ed statements where the words for all and there exists are not present. 

Someone who says “Polynomial functions are continuous” means that “All polynomial 

functions are continuous,” but someone who says “Rational functions have vertical 

asymptotes” must mean “Some rational functions have vertical asymptotes.”

How should the sentence “All apples have spots” be written in symbolic 

form? If we limit the universe to just apples, a correct symbolization would be 

(∀x)(x has spots). But if the universe is all fruits, we need to be more careful. Let 

A(x) be “x is an apple” and S(x) be “x has spots.” Should we write the sentence as 

(∀x)[A(x) ∧ S(x)]  or (∀x)[A(x) ⇒ S(x)]?

The �rst quanti�ed form, ( ∀x)[A(x) ∧ S(x)], says “For all objects x in the uni-

verse, x is an apple and x has spots.” Since we don’t really intend to say that all fruits are 

spotted apples, this is not the meaning we want. Our other choice, ( ∀x)[A(x) ⇒ S(x)], 

is the correct one because it says “For all objects x in the universe, if x is an apple, 

then x has spots.” In other words, “If a fruit is an apple, then it has spots.”

Should the symbolic translation of “Some apples have spots” be 

(Ex)[A(x) ∧ S(x)] or (Ex)[A(x) ⇒ S(x)]? The �rst form says “There is an object 

x such that it is an apple and it has spots,” which is correct. On the other hand, 

(Ex)[A(x) ⇒ S(x)] reads “There is an object x such that, if it is an apple, then it 

has spots,” which does not ensure the existence of apples with spots. The sentence 

(Ex)[A(x) ⇒ S(x)] is true in every universe for which there is an object x such that 

either x is not an apple or x has spots, which is not the meaning we want.

In general,

“All P(x) are Q(x)” should be symbolized ( ∀x)(P(x) ⇒ Q(x)),

and

“Some P(x) are Q(x)” should be symbolized (Ex)(P(x) ∧ Q(x)).

Here are several examples.

Examples.  Translate each of these sentences using quanti�ers.

(a) “For every odd prime x less than 10, x2 + 4 is prime.” 

The sentence means that if x is prime, and odd, and less than 10, then x2 + 4 

is prime. It is written symbolically as

(∀x)(x is prime ∧  x is odd ∧ x < 10 ⇒ x2 + 4  is prime).

(b) “Some functions de�ned at 0 are not continuous at 0.”
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This is translated as

(E  f  )(  f  is de�ned at 0 ∧ f  is not continuous at 0).

(c) “Some real numbers have a multiplicative inverse.”

This statement could be symbolized

(Ex)(x is a real number ∧ x has a real multiplicative inverse).

However, “x has an inverse” means there is some number that is an inverse for x 

(hidden quanti�er), so a more complete symbolic translation is

   (Ex)[x is a real number ∧ (Ey)( y is a real number ∧ xy = 1)]. ◽

One correct translation of “Some integers are even and some integers are odd” is

(Ex)(x is even) ∧ (Ex)(x is odd)

because the �rst quanti�er (Ex) extends only as far as “even.” After that, any vari-

able (even x again) may be used to express “Some integers are odd.” It would be 

equally correct and sometimes preferable to write

(Ex)(x is even) ∧ (Ey)(y is odd),

but it would be incorrect to write

(Ex)(x is even ∧ x is odd),

because there is no integer that is both even and odd.

De�nitions in their symbolic forms often use multiple quanti�ers. For example, 

the de�nition of a rational number may be symbolized as follows:

r is a rational number if (Ep)(Eq) A  p [ Z ∧ q [ Z ∧ q Z 0 ∧ r =
p
qB.

Statements of the form “Every element of the set A has the property P” and 

“Some element of the set A has property P” occur so frequently that abbreviated 

symbolic forms are used:

“Every element of the set A has the property P” may be restated as “If x [ A, 

then . . .” and symbolized by

( ∀x [ A) P (x).

“Some element of the set A has property P” is abbreviated by

(Ex [ A) P (x).

Thus the de�nition of a rational number given above may be written as

r is a rational number  if (Ep [ Z)(Eq [ Z) Aq Z 0 ∧ r =
p
qB.
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Example.  The statement “For every rational number there is a larger integer” may 

be symbolized by

(∀x)[x [ Q ⇒ (Ez)(z [ Z and z > x)]

or

    (∀x [ Q)(Ez [ Z)(z > x). ◽

As was noted with propositional forms, it is necessary to make a distinction 

between a quanti�ed sentence and its logical form. With the universe all integers, 

the sentence “All integers are odd” is an instance of the logical form (∀x) P(x), 

where P(x) is “x is odd.” The form itself, (∀x) P(x), is neither true nor false, but 

becomes false when “x is odd” is substituted for P(x) and the universe is all integers.

DEFINITION  Two quanti�ed sentences are equivalent in a given 

universe if they have the same truth value in that universe. Two quanti�ed 

sentences are equivalent if they are equivalent in every  universe.

Example.  (∀x)(x > 3) and (∀x)(x ≥ 4) are equivalent in the universe of integers 

(because both are false), in the universe of natural numbers greater than 10 (because 

both are true), and in many other universes. However, if we choose the universe 

U to be the interval [3.7, ∞), then (∀x)(x > 3) is true and (∀x)(x ≥ 4) is false 

in U. The sentences are not equivalent in this universe, so they are not equivalent 

sentences. ◽

We can construct equivalent quanti�ed statements using the theorems in 

Sections 1.1 and 1.2. For example, the statement (∀x)(P(x) ⇒ Q(x)) is equivalent 

to (∀x)(∼Q(x) ⇒ ∼P(x)) by Theorem 1.2.1(a). The two equivalences in the next 

theorem are essential for building proofs that involve quanti�ers.

Theorem 1.3.1 If A(x) is an open sentence with variable x, then

(a) ∼ (∀x) A (x) is equivalent to (Ex) ∼A(x).

(b) ∼(Ex) A (x) is equivalent to (∀x) ∼A(x).

Proof.
(a) Let U be any universe.

 The sentence ∼(∀x) A (x) is true in U

 iff  (∀x) A (x) is false in U

 iff  the truth set of A(x) is not the universe

 iff  the truth set of ∼ A(x) is nonempty

 iff  (Ex) ∼A(x) is true in U.

(b) The proof of this part is Exercise 7. ◾
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Theorem 1.3.1 is helpful for �nding a useful denial (that is, a simpli�ed form 

of the negation) of a quanti�ed sentence. In the universe of natural numbers, the 

sentence “All primes are odd” is symbolized (∀x) (x is prime ⇒ x is odd). The 

negation is ∼(∀x)(x is prime ⇒ x is odd). When we apply Theorem 1.3.1(a), this 

becomes (Ex)[∼(x is prime ⇒ x is odd)]. By Theorem 1.2.2(c) this is equivalent 

to (Ex)[x is prime ∧ ∼(x is odd)]. We read this last statement as “There exists a 

number that is prime and is not odd” or “Some prime number is even.”

Example.  For the universe of all real numbers, �nd a denial of “Every positive 

real number has a multiplicative inverse.”

The sentence is symbolized (∀x)[x > 0 ⇒ (Ey)(xy = 1)]. The negation and 

successively rewritten equivalents are

 ∼ (∀x)[x > 0 ⇒ (Ey)(xy = 1)]

 (Ex) ∼  [x > 0 ⇒ (Ey)(xy = 1)]

 (Ex)[x > 0 ∧ ∼ (Ey)(xy = 1)]

 (Ex)[x > 0 ∧ (∀y) ∼(xy = 1)]

 (Ex)[x > 0 ∧ (∀y)(xy Z 1)]

This last sentence may be translated as “There is a positive real number that has no 

multiplicative inverse.” ◽

Example.  For the universe of living things, �nd a denial of “Some children do not 

like clowns.”

The sentence is (Ex) [x is a child ∧ ( ∀y)( y is a clown ⇒ x does not like y)]. Its 

negation and several equivalents are

 ∼ (Ex)  [x is a child ∧ ( ∀y)( y is a clown ⇒ x does not like y)]

 ( ∀x) ∼  [x is a child ∧ ( ∀y)( y is a clown ⇒ x does not like y)]

 ( ∀x) [x is a child ⇒ ∼( ∀y)( y is a clown ⇒ x does not like y)]

 ( ∀x) [x is a child ⇒ (Ey) ∼( y is a clown ⇒ x does not like y)]

 ( ∀x) [x is a child ⇒ (Ey)( y is a clown ∧ ∼ x does not like y)]

 ( ∀x) [x is a child ⇒ (Ey)( y is a clown ∧ x likes y)]

The denial we seek is “Every child has some clown that he/she likes.” ◽

Example.  To �nd a simpli�ed denial of (∀x)(∃y)(∃z)(∀u)(∃z)(x + y + z > 2u + v), 

we begin with its negation and apply Theorem 1.3.1 �ve times in succession, work-

ing inward from the outermost quanti�er (∀x). Each use of the theorem moves the 

negation symbol across a quanti�er and changes that quanti�er to another, and the 
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last use also negates the open sentence with �ve variables. The result is the simpli-

�ed form

   (Ex)(∀y)(∀z)(Eu)(∀v)(x + y + z ≤ 2u + v). ◽

Example.  The symbolic form of “All Australians play soccer” is (∀x [ A)P(x), 

where A is the set of all Australians and P(x) is “x plays soccer.” Determine whether 

(Ex)(x Ó A ∧ ∼P(x))

is a symbolic form of a denial of the sentence.

Begin by listing several denials of (∀x [ A)P(x). Start with its negation and its 

equivalent obtained by using Theorem 1.3.1(a). Then add to the list the unabbrevi-

ated form of the denial and some of its equivalents derived from Theorem 1.1.2. 

Thus we �nd these denials:

 ∼ (∀x [ A)P(x)  (Ex [ A) ∼P(x)

 ∼ (∀x)(x [ A ⇒ P(x))  (Ex) ∼  (x [ A ⇒ P(x))

 ∼ (∀x)(x Ó A ∨ P(x))  (Ex)(x [ A ∧ ∼P(x))

To determine whether (Ex)(x Ó A ∧ ∼P(x)) is a denial, make a second list 

consisting of this sentence and some of its equivalents:

(Ex) ∼  (x [ A ∨ P(x))

∼ (∀x)(x [ A ∨ P(x))

We suspect that (Ex)   (x Ó A ∧ ∼P(x)) is not a denial because we haven’t found 

any logically equivalent form from one list in the other list. We can be sure it’s not 

a denial by examining the two forms in blue. The form (Ex)   (x [ A ∧ ∼P(x)) says 

“Some Australian does not play soccer.” However, the form (Ex)   (x Ó A ∧ ∼P(x)) 

says “Some non-Australian does not play soccer.” These certainly have different 

meanings. ◽

We sometimes hear statements like the complaint one fan had after a great  Little 

League baseball game. “The game was �ne,” he said, “but everybody didn’t get to 

play.” We easily understand that the fan did not mean this literally, because otherwise 

there would have been no game. The meaning we understand is “Not everyone got to 

play” or “Some team members did not play.” Such misuse of quanti�ers, while toler-

ated in casual conversations, is always to be avoided in mathematics.

A special case of the existential quanti�er is de�ned next.

DEFINITION  The symbol E! is called the unique existential quanti-

�er. For an open sentence P(x), the sentence (E!x) P(x) is read “There is a 

unique x such that P(x).” The sentence (E!x) P(x) is true if the truth set of 

P(x) has exactly one element.
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Recall that for (Ex) P (x) to be true it is unimportant how many elements are 

in the truth set of P(x), as long as there is at least one. For (E!x) P (x) to be true, the 

number of elements in the truth set of P(x) is crucial—there must be exactly one.

In the universe N, (E!x) (x is even and x is prime) is true because the truth set of 

“x is even and x is prime” contains only the number 2. The sentence (E!x)(x2 = 4) 

is true in the universe N, but false in Z.

Theorem 1.3.2 If A(x) is an open sentence with variable x, then

(a) (E!x) A(x) ⇒ (Ex) A(x).

(b) (E!x) A(x) is equivalent to (Ex) A(x) ∧ (∀y)(∀z)[A(  y) ∧ A(z) ⇒ y = z].

Part (a) of Theorem 1.3.2 says that E! is indeed a special case of the quanti�er 

E . Part (b) says that “There exists a unique x such that A(x)” is equivalent to “There 

is an x such that A(x) and if both A(  y) and A(z), then y = z.” The proofs are left to 

Exercise 11.

Exercises 1.3

 1. Translate the following English sentences into symbolic sentences with quan-

ti�ers. The universe for each is given in parentheses.

 ★ (a) Not all precious stones are beautiful. (All stones)

 ☆ (b) All precious stones are not beautiful. (All stones)

  (c) Some isosceles triangle is a right triangle. (All triangles)

  (d) No right triangle is isosceles. (All triangles)

  (e) Every triangle that is not isosceles is a right triangle.

  (f ) All people are honest or no one is honest. (All people)

  (g) Some people are honest and some people are not honest. (All people)

  (h) Every nonzero real number is positive or negative. (Real numbers)

 ★ (i) Every integer is greater than −4 or less than 6. (Real numbers)

  (j) Every integer is greater than some integer. (Integers)

 ★ (k) No integer is greater than every other integer. (Integers)

  (l) Between any integer and any larger integer, there is a real number. (Real 

numbers)

 ★ (m) There is a smallest positive integer. (Real numbers)

 ★ (n) No one loves everybody. (All people)

  (o) Everybody loves someone. (All people)

  (p) For every positive real number x, there is a unique real number y such 

that 2y = x. (Real numbers)

☆ 2. For each of the propositions in Exercise 1, write a useful denial, and give a 

translation into ordinary English.

 3. Translate these de�nitions from the Appendix into quanti�ed sentences.

  (a) The natural number a divides the natural number b.

  (b) The natural number n is prime.

  (c) The natural number n is composite.
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 ★ (d) The sets A and B are equal.

  (e) The set A is a subset of B.

  (f) The set A is not a subset of B.

 4. Write symbolic translations using quanti�ers for each of the �ve important 

properties of Z listed in the Appendix under the heading The Integers.

☆ 5. The sentence “People dislike taxes” might be interpreted to mean “All people 

dislike all taxes,” “All people dislike some taxes,” “Some people dislike all 

taxes,” or “Some people dislike some taxes.” Give a symbolic translation for 

each of these interpretations.

 6. Let T = {17}, U = {6}, V = {24}, and W = {2, 3, 7, 26}. In which of 

these four different universes is the statement true?

 ★ (a) (Ex) (x is odd ⇒ x > 8).

  (b) (Ex) (x is odd ∧ x > 8).

  (c) ( ∀x) (x is odd ⇒ x > 8).

  (d) ( ∀x) (x is odd ∧ x > 8).

 7. (a) Complete the following proof of Theorem 1.3.1(b).

   Proof:  Let U be any universe.

   The sentence ∼ (Ex) A(x) is true in U

   iff  . . .

   iff  (∀x) ∼  A(x) is true in U.

 ☆ (b)  Give a proof of part (b) of Theorem 1.3.1 that uses part (a) of that theorem.

 8. Which of the following are true? The universe for each statement is given in 

parentheses.

  (a) ( ∀x)(x + x ≥ x). (R)

 ★ (b) ( ∀x)(x + x ≥ x). (N)

  (c) (Ex)(2x + 3 = 6x + 7). (N)

  (d) (Ex)(3x = x2). (R)

 ★ (e) (Ex)(3x = x). (R)

  (f ) (Ex)(3(2 − x) = 5 + 8(1 − x)). (R)

  (g) ( ∀x)(x2 + 6x + 5 ≥ 0). (R)

 ★ (h) ( ∀x)(x2 + 4x + 5 ≥ 0). (R)

  (i) (Ex)(x2 − x + 41 is prime). (N)

  (j) ( ∀x)(x2 − x + 41 is prime). (N)

  (k) ( ∀x)(x3 + 17x2 + 6x + 100 ≥ 0). (R)

  (l) ( ∀x)(∀y)[x < y ⇒ (Ew)(x < w < y)]. (R)

 9. Give an English translation for each. The universe is given in parentheses.

  (a) (∀x)(x ≥ 1). (N)

 ★ (b) (E!x)(x ≥ 0 ∧ x ≤ 0). (R)

  (c) (∀x)(x is prime ∧ x Z 2 ⇒ x is odd). (N)

 ★ (d) (E!x)( loge x = 1). (R)

  (e) ∼ (Ex)(x2
< 0). (R)

  (f ) (E!x)(x2 = 0). (R)

  (g) (∀x)(x is odd ⇒ x2 is odd). (N)
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 10. Which of the following are true in the universe of all real numbers?

 ★ (a) ( ∀x)(Ey) (x + y = 0).

  (b) (Ex)(∀y)(x + y = 0).

  (c) (Ex)(Ey)(x2 + y2 = −1).

 ★ (d) ( ∀x)[x > 0 ⇒ (Ey)(y < 0 ∧ xy > 0)].

  (e) ( ∀y)(Ex) (∀z)(xy = xz).

 ★ (f) (Ex) (∀y) (x ≤ y).

  (g) (∀y)(Ex)(x ≤ y).

  (h) (E!y)(y < 0 ∧ y + 3 > 0).

 ★ (i) (E!x)(∀y)(x = y2).

  ( j) ( ∀y)(E!x)(x = y2).

  (k) (E!x)(E!y) (∀w)(w2
> x − y).

 11. Let A(x) be an open sentence with variable x.

 ☆ (a) Prove Theorem 1.3.2 (a).

 ☆ (b) Show that the converse of Theorem 1.3.2 (a) is false.

  (c) Prove Theorem 1.3.2 (b).

  (d) Prove that (E!x) A (x) is equivalent to (Ex)[A(x) ∧ (∀y)(A(y) ⇒ x = y)].

 ★ (e) Find a useful denial for (E!x) A (x).

 12. Suppose the polynomials anx
n + an−1x

n−1 + . . . + a0 and bnx
n + bn−1x

n−1 + . . . + 

b0 are not equal. Which of the following must be true?

 ★ (a) an Z bn.

  (b)  ai Z bi whenever 0 ≤ i ≤ n.

  (c) ai Z bi for every i such that 0 ≤ i ≤ n.

  (d) ai Z bi for some i such that 0 ≤ i ≤ n. 

  (e) It is not the case that ai = bi for all i such that 0 ≤ i ≤ n.

  (f ) It is not the case that ai = bi for some i such that 0 ≤ i ≤ n.

  (g) There is an i such that 0 ≤ i ≤ n and ai Z bi.

  (h) If ai = bi for all i such that 0 ≤ i ≤ n − 1, then an Z bn. 

 13. Which of the following are denials of (E!x) P (x)?

  (a) (∀x)P(x) ∨ (∀x) ∼ P(x).

  (b) (∀x) ∼P(x) ∨ (Ey)(Ez)(y Z z ∧ P(y) ∧ P(z)).

  (c) (∀x)[P(x) ⇒ (Ey)(P(y) ∧ x Z y)].

 ★ (d) ∼ ( ∀x) (∀y)[(P(x) ∧ P(y)) ⇒ x = y].   

★ 14. Riddle: What is the English translation of the symbolic statement ∀E E∀?

1.4 Basic Proof Methods I

A theorem in mathematics is a statement that describes a pattern or relationship 

among quantities or structures. A proof of a theorem is a justi�cation of the truth 

of the theorem that follows the principles of logic.

We cannot de�ne all terms or prove all statements from previous ones. We 

begin with an initial set of statements, called axioms (or postulates), that are 

assumed to be true. We then derive theorems that are true in any situation where 
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the axioms are true. The Pythagorean* Theorem, for example, is a theorem whose 

proof is ultimately based on the �ve axioms of Euclidean† geometry. In a situation 

where the Euclidean axioms are not all true (which can happen), the Pythagorean 

Theorem may not be true.

There must also be an initial set of unde�ned terms—concepts fundamental 

to the context of study. In geometry, the concept of a point is an unde�ned term. In 

this text the real numbers are not formally de�ned. Instead, they are described in 

Appendix as the decimal numbers along the number line. While a precise de�nition 

of a real number could be given,‡ doing so would take us far from our intended 

goals.

From the axioms and unde�ned terms, new concepts (new de�nitions) can be 

introduced. And �nally, new theorems can be proved. The structure of a proof for 

a particular theorem depends greatly on the logical form of the theorem. Proofs 

may require some ingenuity or insightfulness to put together the right statements to 

build the justi�cation. Nevertheless, much can be gained in the beginning by study-

ing the fundamental components found in proofs and examples that exhibit them.

The rules that follow provide guidance about what statements are allowed in 

a proof, and when. The �rst four rules enable us to replace a statement with an 

equivalent or to state something that is always true or is assumed to be true.

In any proof at any time you may:

State an axiom, an assumption, or a previously proved result.

The statement of an axiom is usually easily identi�ed as such by the reader 

because it is a statement about a very fundamental fact assumed about the theory. 

Sometimes the axiom is so well known that its statement is omitted from proofs, but 

there are cases (such as the Axiom of Choice in Chapter 5) for which it is prudent 

to mention the axiom in every proof employing it.

The statement of an assumption generally takes the form “Assume P” to alert 

the reader that the statement is not derived from a previous step or steps. We must 

be careful about making assumptions, because it is only when all the assumptions 

are true that we can be certain that what we proved will be true. The most common 

assumptions are hypotheses given as components in the statement of the theorem to 

be proved. We will discuss assumptions in more detail later in this section.

Proof steps that use previously proven results help build a rich theory from the 

basic assumptions. In calculus, for example, before one proves that the derivative 

of sin x is cos x, one usually proves that lim
∆x→0

 
sin ∆x

∆x
= 1. It is easier to prove this 

* Pythagoras, latter half of the 6th century b.c.e., was a Greek mathematician and philosopher who 
founded a secretive religious society based on mathematical and metaphysical thought. Although 
Pythagoras is regularly given credit for the theorem named for him, the result was known to Babylonian 
and Indian mathematicians centuries earlier.

† Euclid of Alexandria, circa 300 b.c.e., made his immortal contribution to mathematics with his famous 
text on geometry and number theory. His Elements sets forth a small number of axioms from which  
additional de�nitions and many familiar geometric results were developed in a rigorous way. Other 
geometries, based on different sets of axioms, did not begin to appear until the 1800s.

‡ See the references cited in Section 7.5.
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result �rst, and then cite the result in the proof of the fact that the derivative of 

sin x is cos x. A result that serves as a preliminary step is often called a lemma.

In any proof at any time you may use the tautology rule:

State a sentence whose symbolic translation is a tautology.

Example.  Suppose a proof involves a real number x. You may at any time state 

“Either x ≥ 0 or x < 0” because this statement is an instance of the tautology 

∼P ∨ P. ◽

An important skill for writing proofs is the ability to rewrite a statement in an 

equivalent form that is more useful or helps clarify its meaning.

In any proof at any time you may use the replacement rule:

State a sentence equivalent to any statement earlier in the proof.

For example, if a proof contains the statement “It is not the case that x is even 

and prime,” we may deduce that “x is not even or x is not prime.” This step is valid 

because the �rst statement has the form ∼(P ∧ Q) and the second has the form 

∼P ∨ ∼Q. We have applied the replacement rule, using one of DeMorgan’s Laws.

A thorough knowledge of the logical equivalences of Theorems 1.1.1 and 1.2.2 

is essential when one uses the replacement rule because these replacements are 

done routinely, without mentioning the relevant rules of logic.

It is impossible to read or write proofs in advanced mathematics without using 

de�nitions. Because understanding and using de�nitions is so crucial, we restate 

the replacement rule speci�cally for de�nitions.

In any proof at any time you may:

Use a de�nition to state an equivalent to a statement earlier in the proof.

The precise de�nition of “divides” given in the Appendix makes it possible to 

build proofs involving divisibility properties of N that are among the �rst examples 

we do. An explanation of why a divides b that uses an inexact de�nition of divis-

ibility, such as “a divides b because it goes in evenly,” is practically useless in writ-

ing a proof. The key idea is that divisibility is de�ned as it is, so that in a proof we 

can replace the statement “a divides b” with the equivalent statement “b = a ∙ k for 

some integer k.” Conversely, if we want to deduce that a divides b, the de�nition 

tells us that we need a step that says there is an integer k such that b = a ∙ k. 

The most fundamental rule of reasoning is modus ponens, which is based on 

the tautology P ∧ [P ⇒ Q)] ⇒ Q. In Section 1.2 we showed that this tautology 

means that whenever P and P ⇒ Q are both true, we may deduce that Q is also 

true. This rule allows us to make a connection so that we can get from statement P 

to a different statement Q.

In any proof at any time you may use the modus ponens rule:

After statements P and P ⇒ Q appear in a proof, state Q.
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When we use modus ponens to deduce Q from statements P and P ⇒ Q, the 

statement P could be an assumption, a compound proposition whose components 

are hypotheses or previously proved results, or any other statement known to be 

true at this point. The conditional sentence P ⇒ Q could also be a previous theorem 

or tautology or any other statement that appears earlier in the proof. 

You have used these proof rules, at least informally, possibly to answer ques-

tions like the one in the next example, which comes from a calculus exam. Notice 

how the solution (1) states the assumption, (2) replaces the assumption using the 

de�nition of differentiability, (3) uses a known result, (4) applies modus ponens to 

two previous statements, and (5) uses the de�nition of continuity to deduce the last 

statement. 

Example.  Suppose f is a function de�ned on an interval containing 2, and we 

know that the derivative of f at 2 exists. Find lim
x→0

 f(x) = f(2). Explain your answer. 

We are given that f9(2) exists. Thus f is differentiable at x = 2. A theorem from 

calculus says that if f is differentiable at x, then f is continuous at x. Therefore, f is 

continuous at x = 2. We conclude that lim
x→0

 f(x) = f(2). ◽

The next example comes from outside mathematics and shows that it may be 

the form of propositions, and not the meaning, that enables us to make a deduction.

Example.  You are at a crime scene and have established the following facts:

(1) If the crime did not take place in the billiard room, then Colonel Mustard is guilty.

(2) The lead pipe is not the weapon.

(3) Either Colonel Mustard is not guilty or the weapon used was a lead pipe.

From these facts and modus ponens, you may construct a proof that shows the 

crime took place in the billiard room:

Proof.
Statement (1) ∼B ⇒ M

Statement (2) ∼L

Statement (3) ∼M ∨ L

Statements (1) and (2) and (3) (∼B ⇒ M ) ∧ ∼L ∧ (∼M ∨ L)

Statements (1), (2), and (3)  [(∼B ⇒ M ) ∧ ∼L ∧ (∼M ∨ L)] ⇒ B

  imply the crime took place    is a tautology (see Exercise 2).

  in the billiard room.

Therefore, the crime took place  B

  in the billiard room. ◾

The last three statements above are an application of the modus ponens rule:  

We deduced Q from the statements P and P ⇒ Q, where Q is B and P is 

(∼B ⇒ M) ∧   ∼L ∧ (∼M ∨ L).

Because our proofs are always about mathematical phenomena, we also need 

to understand the subject matter of the proof—the concepts involved and how they 
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are related. Therefore, when you develop a strategy to construct a proof, keep in 

mind both the logical form of the theorem’s statement and the mathematical con-

cepts involved.

You won’t �nd truth tables displayed or referred to in proofs that you encoun-

ter in mathematics: It is expected that readers are familiar with the rules of logic and 

correct forms of proof. As a general rule, when you write a step in a proof, ask your-

self whether deducing that step is valid in the sense that it uses one of the �ve rules 

above. If the step follows as a result of the use of a tautology, it is not necessary to 

cite the tautology in your proof. In fact, with practice you should eventually come 

to write proofs without purposefully thinking about tautologies. What is necessary 

is that every step be justi�able.

The �rst—and most important—proof method is the direct proof of statement 

of the form P ⇒ Q, which proceeds in a step-by-step fashion from the antecedent 

P to the consequent Q. Since P ⇒ Q is false only when P is true and Q is false, it 

suf�ces to show that this situation cannot happen. The direct way to proceed is to 

assume that P is true and show (deduce) that Q is also true. A direct proof of P ⇒ Q 

will have the following form:

DIRECT PROOF OF P ⇒ Q

Proof.
Assume P.

(

Therefore, Q.

Thus, P ⇒ Q. ◾

Some of the examples and exercises in this and the next section involve open 

statements with variables. The proof techniques to handle open sentences and 

quanti�ed statements are discussed in detail in Section 1.6. For now, whenever 

we encounter a sentence with a variable, imagine that the variable represents some 

�xed object.

You don’t need to see a proof to be convinced that the next number after an odd 

number is an even number, but we’ll examine proofs of this and several other obvi-

ous results in our �rst examples. These examples are chosen so that you don’t have 

to deal with new concepts at the same time as you are learning how to write proofs. 

The important thing to learn from these examples is that a direct proof proceeds 

step by step from the antecedent to the consequent.

Example.  Let x be an integer. Prove 

that if x is odd, then x + 1 is even.

The theorem has the form P ⇒ Q, 

where P is “x is odd” and Q is “x + 1 

is even.”

Proof.

Let x be an integer. Given. We may assume this hypothe-

sis because it is given in the statement 

of the theorem.
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Suppose x is odd. Assume the antecedent P is true. The 

goal is to derive the consequent Q.

Then x = 2k + 1 for some integer k. We have replaced P with an equiva-

lent statement—the de�nition of 

“odd.” We now have a statement we 

can work with.

Then x + 1 = (2k + 1) + 1. We add 1 to each side of the equation 

to get an equivalent statement. 

Then x + 1 = 2k + 2 = 2(k + 1),  

so x + 1 is the product of 2 and the 

integer k + 1.

We use algebra and the fundamental 

fact that if k is an integer, then k + 1 

is an integer.

Thus x + 1 is even. We have deduced Q.

Therefore, if x is an odd integer, then 

x + 1 is even. ◾

We conclude that P ⇒ Q.

The right-hand column was included to describe how the steps are connected. 

Proofs are not usually written this way because, in practice, such a column is 

unnecessary. Writing a proof in two-column form can be a good way to begin to 

understand its structure, but the sequence of statements on the left is the complete 

proof and should be written in shorter form, as follows:

Proof.  Let x be an integer. Suppose x is odd. Then x = 2k + 1 for some integer 

k. Then x + 1 = (2k + 1) + 1. Because (2k + 1) + 1 = 2k + 2 = 2(k + 1), we see 

that x + 1 is the product of 2 and the integer k + 1. Thus x + 1 is even. Therefore, 

if x is an odd integer, then x + 1 is even. ◾

This form of the proof assumes that the person reading it knows the relevant 

de�nitions and the basics of logic. Good proofs include enough detail so that read-

ers with the appropriate background can follow the logical steps and �ll in compu-

tations as necessary. This can be challenging for someone �rst learning to read and 

write proofs, but these skills come with practice. After you’ve written more proofs 

using a variety of methods, you’ll �nd useful advice about mathematical writing  

following Section 1.6.

Writing proofs will come much easier to you when you understand the vital 

importance of de�nitions, beginning with this very �rst example, where the fact 

that an odd number x is such that “x = 2k + 1 for some integer k” gave us some-

thing speci�c to work with: an equation that we could manipulate. That’s the �rst 

way a de�nition was used in the example. The second use of a de�nition came 

when we concluded that x + 1 is even: we determined that x + 1 was even because 

it satis�ed the condition given in the de�nition of even.

You’ll �nd that using the de�nitions often provides a hint about how to begin 

a proof. Notice how the next theorem uses the de�nition of divides. The proof is 
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again given in two-column style. Try covering the right-hand column the �rst time 

you read the proof. 

Let a, b, and c be integers. If a divides b 

and b divides c, then a divides c.

The theorem has the form P ∧ Q ⇒ R, 

where P is “a divides b,” Q is “b 

divides c,” and R is “a divides c.”

Proof.

Let a, b, and c be integers. Given. That is, we assume this 

hypothesis is true.

Suppose a divides b and b divides c. Assume the antecedent P ∧ Q is true. 

The antecedent is a conjunction, so 

both components are true.

Then b = ak for some integer k, and 

c = bm for some integer m.

Replace each assumption by an 

equivalent using the de�nition of 

“divides.” Note that we do not assume 

that k and m are the same integer.

Then c = bm = (ak)m = a(km). To show “a divides c,” we must show 

c is a multiple of a. We use algebra to 

obtain an expression for c in terms of a.

Since k and m are integers, km is an 

integer.

We use a fundamental property of 

the integers.

Thus a divides c. We have deduced R.

Therefore, if a divides b and b divides 

c, then a divides c. ◾

We state the conclusion that 

P ∧ Q ⇒ R.

No other proofs in this text will be presented in this two-column format. 

However, we will sometimes include stylized parenthetical comments offset by 

  to help explain how and why a proof is proceeding as it is. These comments 

would not be included in a proof written for experienced readers. 

Example.  Suppose a, b, and c are integers. Prove that if a divides b and a divides 

c, then a divides b − c.

Proof.  Suppose a, b, and c are integers and a divides b and a divides c. Now 

use the de�nition of divides. Then b = an for some integer n and c = am for 

some integer m. Thus, b − c = an − am = a(n − m). We next use the fact that 

the difference of two integers is an integer. Since n − m is an integer, we have that 

a divides b − c. ◾

Our next example of a direct proof comes from an exercise in precalculus 

mathematics about distances between points in the Cartesian plane and uses alge-

braic properties available to students in such a class.

Example.  Prove that if x and y are real numbers such that x < −4 and y > 2, then 

the distance from (x, y) to (1, −2) is greater than 6.

Theorem 1.4.1 
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Proof.  Assume that x and y are real numbers such that x < −4 and y > 2. 

Then (x, y ) is a point in the shaded area in Figure 1.4.1. Then x − 1 < −5, so 

(x − 1)2
> 25. Also y + 2 > 4, so (y + 2)2

> 16. Therefore,

"(x − 1)2 + (y + 2)2
> "25 + 16 > "36,

so the distance from (x, y) to (1, −2) is greater than 6. ◾

Figure 1.4.1

x

y

(1, –2)

y 5 2

x = –4

(x, y)

The proofs above exhibit the strategy for developing a direct proof of a condi-

tional sentence:

1. Determine precisely the hypotheses (if any) and the antecedent and consequent.

2. Replace (if necessary) the antecedent with a more usable equivalent.

3. Replace (if necessary) the consequent by something equivalent and more read-

ily shown.

4. Beginning with the assumption of the antecedent, develop a chain of state-

ments that leads to the consequent. Each statement in the chain must be deduc-

ible from its predecessors or other known results.

To discover a chain of statements from the antecedent to the consequent, it 

is sometimes useful to work backward from what is to be proved: To show that 

a consequent is true, decide what statement could be used to prove it, another 

statement that could be used to prove that one, and so forth. Continue until you 

reach a hypothesis, the antecedent, or a fact known to be true. After doing such 

preliminary work, construct a proof that progresses forward until it ends with the 

consequent.

Example.  Let a and b be positive real numbers. Prove that if a < b, then 

b2 − a2
> 0.

Before we write the proof, we work backward from the consequent. First 

rewrite b2 − a2
> 0 as (b − a)(b + a) > 0. This inequality will be true when both 

factors are positive. The term b − a is positive because we assumed that b > a. 

Also, b + a > 0 because of our hypothesis that both a and b are positive. We now 

know how to write the proof.
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Proof.  Assume that a and b are positive real numbers and that a < b. Since both a 

and b are positive, b + a > 0. Because a < b, we see that b − a > 0. Because the 

product of two positive real numbers is positive, (b − a)(b + a) > 0. Therefore, 

b2 − a2
> 0. ◾

Sometimes, working both ways—backward from what is to be proved and for-

ward from the hypothesis—until you reach a common statement from each direc-

tion will help reveal the structure of a proof.

Example.  Prove that if x2 ≤ 1, then x2 − 7x > − 10. 

Working backward from x2 − 7x > −10, we note that this can be deduced 

from x2 − 7x + 10 > 0. This can be deduced from (x − 5)(x − 2) > 0, which 

could be concluded if we knew that x − 5 and x − 2 were both positive or both 

negative.

Working forward from x2 ≤ 1, we have −1 ≤ x ≤ 1, so x ≤ 1. Therefore, 

x < 5 and x < 2, from which we can conclude that x − 5 < 0 and x − 2 < 0, 

which is exactly what we need.

Proof.  Assume that x2 ≤ 1. Then −1 ≤ x ≤ 1. Therefore, x ≤ 1. Thus x < 5 and 

x < 2, and so we have x − 5 < 0 and x − 2 < 0. Therefore, (x − 5)(x − 2) > 0. 

Thus x2 − 7x + 10 > 0. Hence x2 − 7x > −10. ◾

When either P or Q is a compound proposition, the steps in proving statements 

of the form P ⇒ Q depend on the forms of P and Q. We have already constructed 

proofs of statements of the form (P ∧ Q) ⇒ R. When we give a direct proof of a 

statement of this form, we have the advantage of assuming both P and Q at the 

beginning of the proof.

A proof of a statement symbolized by P ⇒ (Q ∧ R) would probably have two 

parts. In one part we prove P ⇒ Q and in the other part we prove P ⇒ R. We would 

use this method to prove the statement “If a circle of radius r is inscribed in a square 

that is inscribed in a circle, then the center of the outer circle is the center of the 

inner circle, and the radius of the outer circle is r!2.” 

To prove a conditional sentence whose consequent is a disjunction—that 

is, a sentence of the form P ⇒ (Q ∨ R)—one often proves either the equiva-

lent P ∧ ∼Q ⇒ R or the equivalent P ∧ ∼R ⇒ Q. For instance, to prove “If the 

 polynomial f has degree 4, then f has a real zero or f can be written as the product 

of two irreducible quadratics,” we would prove “If f has degree 4 and no real zeros, 

then f can be written as the product of two irreducible quadratics.”

A statement of the form (P ∨ Q) ⇒ R has the meaning “If either P is true or Q 

is true, then R is true.” A natural way to prove such a statement is by cases, so the 

proof outline would have the form

Case 1. Assume P. . . . Therefore R.

Case 2. Assume Q. . . . Therefore R.
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This method is valid because of the tautology

[(P ∨ Q) ⇒ R] ⇐⇒ [(P ⇒ R) ∧ (Q ⇒ R)].

The statement “If a quadrilateral has opposite sides equal or opposite angles equal, 

then it is a parallelogram” is proved by showing both “A quadrilateral with opposite 

sides equal is a parallelogram” and “A quadrilateral with opposite angles equal is 

a parallelogram.”

The two similar statement forms (P ⇒ Q) ⇒ R and P ⇒ (Q ⇒ R) have 

remarkably dissimilar direct proof outlines. For (P ⇒ Q) ⇒ R, we assume P ⇒ Q 

and deduce R. We cannot assume P; we must assume P ⇒ Q. On the other hand, 

in a direct proof of P ⇒ (Q ⇒ R), we do assume P and show Q ⇒ R. Furthermore, 

after the assumption of P, a direct proof of Q ⇒ R begins by assuming Q is true as 

well. This is not surprising, because P ⇒ (Q ⇒ R) is equivalent to (P ∧ Q) ⇒ R.

The main lesson to be learned from this discussion is that the method of proof 

you choose will depend on the form of the statement to be proved. The outlines we 

have given are the most natural, but not the only, ways to construct correct proofs.

Before we begin the proof of the next example, consider integers of the form 

n = 2m + 1 for some integer m. A little experimentation shows that when m is 

even—for example, when n is 2(−2) + 1, or 2(0) + 1, or 2(2) + 1, 2(4) + 1, etc.— 

then n has the form 4j + 1, and otherwise n has the form 4i − 1. The statement 

below has the form (P ∨ Q) ⇒ (R1 ∨ R2), where P is “m is even,” Q is “m is odd,” 

R1 is “n = 4j + 1 for some integer j,” and R2 is “n = 4i − 1 for some integer i.” The 

proof method we choose is to show that P ⇒ R1 and Q ⇒ R2.

Example.  Suppose n is an odd integer. Then n = 4j + 1 for some integer j, or 

n = 4i − 1 for some integer i.

Proof.  Suppose n is odd. Then n = 2m + 1 for some integer m.

Case 1.  If m is even, then m = 2j for some integer j, and so n = 2(2j) + 1 5

4j + 1.

Case 2.  If m is odd, then m = 2k + 1 for some integer k. In this case, n 5 

2(2k + 1) + 1 = 4k + 3 = 4(k + 1) − 1. Choosing i to be the integer 

k + 1, we have n = 4i − 1. ◾

A proof by exhaustion consists of an examination of every possible case. 

The statement to be proved may have any logical form. For example, to prove 

that every number x in the closed interval [0, 5] has a certain property, we might 

consider the cases x = 0, 0 < x < 5, and x = 5. The exhaustive method was our 

method in the previous example, and in the suggested proof of Theorem 1.1.1, 

which requires examination of all combinations of truth values for each pair of 

propositions. Naturally, the idea of proof by exhaustion is appealing only when 

the number of cases is small or when large numbers of cases can be systematically 

handled. Care must be taken to ensure that all possible cases have been considered.

Example.  Let x be a real number. Prove that −|x | ≤ x ≤ |x |.
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Proof.  Because the absolute value of x is de�ned by cases (|x | = x if x ≥ 0;

|x | = −x if x < 0), this proof will proceed by cases.

Case 1.  Suppose x ≥ 0. Then|x |  5 x. Since x ≥ 0, we have −x ≤ x. Hence, 

−x ≤ x ≤ x, which is −|x | ≤ x ≤ |x | in this case.

Case 2.  Suppose x < 0. Then|x |  5  −x. Since x < 0, x ≤ −x. Hence, we have  

x ≤ x ≤ −x, or −(−x) ≤ x ≤ −x, which is −|x | ≤ x ≤ |x |.

Thus, in all cases we have −|x | ≤ x ≤ |x |. ◾

There have been instances of truly exhausting proofs involving great numbers 

of cases. In 1976, Kenneth Appel and Wolfgang Haken of the University of Illinois 

announced a proof of the famous Four-Color Conjecture. The original version of their 

proof contains 1,879 cases and took 3 
1
2 years to develop.*

Finally, there are proofs by exhaustion with cases so similar in reasoning that 

we may simply present a single case and alert the reader with the phrase “without 

loss of generality” that this case represents the essence of arguments for the other 

cases. Here is an example:

Example.  Prove that for the integers m and n, one of which is even and the other 

odd, m2 + n2 has the form 4k + 1 for some integer k.

Proof.  Let m and n be integers. Without loss of generality, we may assume that m  

is even and n is odd. The case where m is odd and n is even is similar. Then there  

exist integers s and t such that m = 2s and n = 2t + 1. Therefore, m2 + n2 5 

(2s)2 + (2t + 1)2 = 4s2 + 4t2 + 4t + 1 = 4(s2 + t2 + t) + 1. Since s2 + t2 + t 

is an integer, m2 + n2 has the form 4k + 1 for some integer k. ◾

Exercises 1.4

 1. Analyze the logical form of each of the following statements and construct 

just the outline of a proof. Since the statements may contain terms with which 

you are not familiar, you should not (and perhaps could not) provide any 

details of the proof.

 ★ (a) Outline a direct proof that if (G, *) is a cyclic group, then (G, *) is 

abelian.

* The Four-Color Theorem involves coloring regions or countries on a map in such a way that no two 
adjacent countries have the same color. It states that four colors are suf�cient, no matter how intertwined 
the countries may be. The fact that the proof depended so heavily on the computer for checking cases 
raised questions about the nature of proof. Verifying the 1,879 cases required more than 10 billion 
calculations. Many people wondered whether there might have been at least one error in a process so 
lengthy that it could not be carried out by one human being in a lifetime. Haken and Appel’s proof has 
since been improved, and the Four-Color Theorem is accepted; but the debate about the role of comput-
ers in proof continues.
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