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xi

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried 

to write a book that assists students in discovering calculus—both for its practical power 

and its surprising beauty. In this edition, as in the first seven editions, I aim to convey 

to the student a sense of the utility of calculus and develop technical competence, but I 

also strive to give some appreciation for the intrinsic beauty of the subject. Newton 

undoubtedly experienced a sense of triumph when he made his great discoveries. I want 

students to share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that 

this should be the primary goal of calculus instruction. In fact, the impetus for the cur-

rent calculus reform movement came from the Tulane Conference in 1986, which for-

mulated as their first recommendation: 

Focus on conceptual understanding.

I have tried to implement this goal through the Rule of Three: “Topics should be pre-

sented geometrically, numerically, and algebraically.” Visualization, numerical and 

graphical experimentation, and other approaches have changed how we teach concep-

tual reasoning in fundamental ways. More recently, the Rule of Three has been expanded 

to become the Rule of Four by emphasizing the verbal, or descriptive, point of view as 

well.

In writing the eighth edition my premise has been that it is possible to achieve con-

ceptual understanding and still retain the best traditions of traditional calculus. The book 

contains elements of reform, but within the context of a traditional curriculum.

I have written several other calculus textbooks that might be preferable for some instruc-

tors. Most of them also come in single variable and multivariable versions.

● Calculus, Eighth Edition, is similar to the present textbook except that the exponen-

tial, logarithmic, and inverse trigonometric functions are covered in the second 

semester.

● Essential Calculus, Second Edition, is a much briefer book (840 pages), though it 

contains almost all of the topics in Calculus, Eighth Edition. The relative brevity is 

achieved through briefer exposition of some topics and putting some features on the 

website.

● Essential Calculus: Early Transcendentals, Second Edition, resembles Essential 

Calculus, but the exponential, logarithmic, and inverse trigonometric functions are 

covered in Chapter 3.

A great discovery solves a great problem but there is a grain of discovery in the 

solution of any problem. Your problem may be modest; but if it challenges your 

curiosity and brings into play your inventive faculties, and if you solve it by your 

own means, you may experience the tension and enjoy the triumph of discovery.

G E O R G E  P O LYA

Preface
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xii Preface

● Calculus: Concepts and Contexts, Fourth Edition, emphasizes conceptual under-

standing even more strongly than this book. The coverage of topics is not encyclo-

pedic and the material on transcendental functions and on parametric equations is 

woven throughout the book instead of being treated in separate chapters.

● Calculus: Early Vectors introduces vectors and vector functions in the first semester 

and integrates them throughout the book. It is suitable for students taking engineer-

ing and physics courses concurrently with calculus.

● Brief Applied Calculus is intended for students in business, the social sciences, and 

the life sciences.

● Biocalculus: Calculus for the Life Sciences is intended to show students in the life 

sciences how calculus relates to biology. 

● Biocalculus: Calculus, Probability, and Statistics for the Life Sciences contains all 

the content of Biocalculus: Calculus for the Life Sciences as well as three addi-

tional chapters on probability and statistics.

The changes have resulted from talking with my colleagues and students at the Univer-

sity of Toronto and from reading journals, as well as suggestions from users and review-

ers. Here are some of the many improvements that I’ve incorporated into this edition:

● The data in examples and exercises have been updated to be more timely.

● New examples have been added (see Examples 6.1.5 and 11.2.5, for instance). And 

the solutions to some of the existing examples have been amplified. 

● Two new projects have been added: The project Controlling Red Blood Cell Loss 

During Surgery (page 244) describes the ANH procedure, in which blood is 

extracted from the patient before an operation and is replaced by saline solution. 

This dilutes the patient’s blood so that fewer red blood cells are lost during bleed-

ing and the extracted blood is returned to the patient after surgery. The project 

Planes and Birds: Minimizing Energy (page 344) asks how birds can minimize 

power and energy by flapping their wings versus gliding.

● More than 20% of the exercises in each chapter are new. Here are some of my 

favorites: 2.7.61, 2.8.36–38, 3.1.79–80, 3.11.54, 4.1.69, 4.3.34, 4.3.66, 4.4.80, 

4.7.39, 4.7.67, 5.1.19–20, 5.2.67–68, 5.4.70, 6.1.51, and 8.1.39. In addition, there 

are some good new Problems Plus. (See Problems 12–14 on page 272, Problem 13 

on page 363, and Problems 16–17 on page 426.)

Conceptual Exercises

The most important way to foster conceptual understanding is through the problems 

that we assign. To that end I have devised various types of problems. Some exercise sets 

begin with requests to explain the meanings of the basic concepts of the section. (See, for 

instance, the �rst few exercises in Sections 2.2, 2.5, and 11.2.) Similarly, all the review 

sections begin with a Concept Check and a True-False Quiz. Other exercises test concep-

tual understanding through graphs or tables (see Exercises 2.7.17, 2.8.35–38, 2.8.47–52, 

9.1.11–13, 10.1.24–27, and 11.10.2).
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 Preface xiii

Another type of exercise uses verbal description to test conceptual understanding 

(see Exercises 2.5.10, 2.8.66, 4.3.69–70, and 7.8.67). I particularly value problems that 

combine and compare graphical, numerical, and algebraic approaches (see Exercises 

2.6.45–46, 3.7.27, and 9.4.4).

Graded Exercise Sets

Each exercise set is carefully graded, progressing from basic conceptual exercises and 

skill-development problems to more challenging problems involving applications and 

proofs.

Real-World Data

My assistants and I spent a great deal of time looking in libraries, contacting companies 

and government agencies, and searching the Internet for interesting real-world data to 

introduce, motivate, and illustrate the concepts of calculus. As a result, many of the 

examples and exercises deal with functions de�ned by such numerical data or graphs. 

See, for instance, Figure 1 in Section 1.1 (seismograms from the Northridge earthquake), 

Exercise 2.8.35 (unemployment rates), Exercise 5.1.16 (velocity of the space shuttle 

Endeavour), and Figure 4 in Section 5.4 (San Francisco power consumption).

Projects

One way of involving students and making them active learners is to have them work 

(perhaps in groups) on extended projects that give a feeling of substantial accomplish-

ment when completed. I have included four kinds of projects: Applied Projects involve 

applications that are designed to appeal to the imagination of students. The project after 

Section 9.3 asks whether a ball thrown upward takes longer to reach its maximum height 

or to fall back to its original height. (The answer might surprise you.) Laboratory Proj-

ects involve technology; the one following Section 10.2 shows how to use Bézier curves 

to design shapes that represent letters for a laser printer. Writing Projects ask students to 

compare present-day methods with those of the founders of calculus—Fermat’s method 

for �nding tangents, for instance. Suggested references are supplied. Discovery Projects 

anticipate results to be discussed later or encourage discovery through pattern recogni-

tion (see the one following Section 7.6). Additional projects can be found in the Instruc-

tor’s Guide (see, for instance, Group Exercise 5.1: Position from Samples).

Problem Solving

Students usually have dif�culties with problems for which there is no single well-de�ned 

procedure for obtaining the answer. I think nobody has improved very much on George 

Polya’s four-stage problem-solving strategy and, accordingly, I have included a version 

of his problem-solving principles following Chapter 1. They are applied, both explicitly 

and implicitly, throughout the book. After the other chapters I have placed sections called 

Problems Plus, which feature examples of how to tackle challenging calculus problems. 

In selecting the varied problems for these sections I kept in mind the following advice 

from David Hilbert: “A mathematical problem should be dif�cult in order to entice us, 

yet not inaccessible lest it mock our efforts.” When I put these challenging problems on 

assignments and tests I grade them in a different way. Here I reward a student signi�-

cantly for ideas toward a solution and for recognizing which problem-solving principles 

are relevant.

Technology

The availability of technology makes it not less important but more important to clearly 

understand the concepts that underlie the images on the screen. But, when properly used, 
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xiv Preface

graphing calculators and computers are powerful tools for discovering and understand-

ing those concepts. This textbook can be used either with or without technology and I 

use two special symbols to indicate clearly when a particular type of machine is required. 

The icon ; indicates an exercise that de�nitely requires the use of such technology, 

but that is not to say that it can’t be used on the other exercises as well. The symbol CAS  

is reserved for problems in which the full resources of a computer algebra system (like 

Maple, Mathematica, or the TI-89) are required. But technology doesn’t make pencil 

and paper obsolete. Hand calculation and sketches are often preferable to technology for 

illustrating and reinforcing some concepts. Both instructors and students need to develop 

the ability to decide where the hand or the machine is appropriate.

Tools for Enriching Calculus

TEC is a companion to the text and is intended to enrich and complement its contents. 

(It is now accessible in the eBook via CourseMate and Enhanced WebAssign. Selected 

Visuals and Modules are available at www.stewartcalculus.com.) Developed by Harvey 

Keynes, Dan Clegg, Hubert Hohn, and myself, TEC uses a discovery and exploratory 

approach. In sections of the book where technology is particularly appropriate, marginal 

icons direct students to TEC Modules that provide a laboratory environment in which 

they can explore the topic in different ways and at different levels. Visuals are anima-

tions of �gures in text; Modules are more elaborate activities and include exercises. 

Instructors can choose to become involved at several different levels, ranging from sim-

ply encouraging students to use the Visuals and Modules for independent exploration, 

to assigning speci�c exercises from those included with each Module, or to creating 

additional exercises, labs, and projects that make use of the Visuals and Modules.

TEC also includes Homework Hints for representative exercises (usually odd-num-

bered) in every section of the text, indicated by printing the exercise number in red. 

These hints are usually presented in the form of questions and try to imitate an effective 

teaching assistant by functioning as a silent tutor. They are constructed so as not to reveal 

any more of the actual solution than is minimally necessary to make further progress.

Enhanced WebAssign

Technology is having an impact on the way homework is assigned to students, particu-

larly in large classes. The use of online homework is growing and its appeal depends 

on ease of use, grading precision, and reliability. With the Eighth Edition we have been 

working with the calculus community and WebAssign to develop an online homework 

system. Up to 70% of the exercises in each section are assignable as online homework, 

including free response, multiple choice, and multi-part formats. 

The system also includes Active Examples, in which students are guided in step-by-

step tutorials through text examples, with links to the textbook and to video solutions.

Website

Visit CengageBrain.com or stewartcalculus.com for these additional materials:

● Homework Hints

● Algebra Review

● Lies My Calculator and Computer Told Me

● History of Mathematics, with links to the better historical websites

● Additional Topics (complete with exercise sets): Fourier Series, Formulas for the 

Remainder Term in Taylor Series, Rotation of Axes
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 Preface xv

● Archived Problems (Drill exercises that appeared in previous editions, together with 

their solutions)

● Challenge Problems (some from the Problems Plus sections from prior editions)

● Links, for particular topics, to outside Web resources

● Selected Visuals and Modules from Tools for Enriching Calculus (TEC)

The book begins with four diagnostic tests, in Basic Algebra, Analytic Geometry, Func-

tions, and Trigonometry.

This is an overview of the subject and includes a list of questions to motivate the study 

of calculus.

From the beginning, multiple representations of functions are stressed: verbal, numeri-

cal, visual, and algebraic. A discussion of mathematical models leads to a review of the 

standard functions, including exponential and logarithmic functions, from these four 

points of view.

The material on limits is motivated by a prior discussion of the tangent and velocity 

problems. Limits are treated from descriptive, graphical, numerical, and algebraic points 

of view. Section 2.4, on the precise definition of a limit, is an optional section. Sections 

2.7 and 2.8 deal with derivatives (especially with functions defined graphically and 

numerically) before the differentiation rules are covered in Chapter 3. Here the exam-

ples and exercises explore the meanings of derivatives in various contexts. Higher 

derivatives are introduced in Section 2.8.

All the basic functions, including exponential, logarithmic, and inverse trigonometric 

functions, are differentiated here. When derivatives are computed in applied situations, 

students are asked to explain their meanings. Exponential growth and decay are now 

covered in this chapter.

The basic facts concerning extreme values and shapes of curves are deduced from the 

Mean Value Theorem. Graphing with technology emphasizes the interaction between 

calculus and calculators and the analysis of families of curves. Some substantial optimi-

zation problems are provided, including an explanation of why you need to raise your 

head 42° to see the top of a rainbow.

The area problem and the distance problem serve to motivate the definite integral, with 

sigma notation introduced as needed. (Full coverage of sigma notation is provided in 

Appendix E.) Emphasis is placed on explaining the meanings of integrals in various 

contexts and on estimating their values from graphs and tables.

Here I present the applications of integration—area, volume, work, average value—that 

can reasonably be done without specialized techniques of integration. General methods 

are emphasized. The goal is for students to be able to divide a quantity into small pieces, 

estimate with Riemann sums, and recognize the limit as an integral.

Diagnostic Tests

A Preview of Calculus

1 Functions and Models

2 Limits and Derivatives

3 Di�erentiation Rules

4 Applications of Di�erentiation

5 Integrals

6 Applications of Integration
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xvi Preface

All the standard methods are covered but, of course, the real challenge is to be able to 

recognize which technique is best used in a given situation. Accordingly, in Section 7.5, 

I present a strategy for integration. The use of computer algebra systems is discussed in 

Section 7.6.

Here are the applications of integration—arc length and surface area—for which it is 

useful to have available all the techniques of integration, as well as applications to biol-

ogy, economics, and physics (hydrostatic force and centers of mass). I have also 

included a section on probability. There are more applications here than can realistically 

be covered in a given course. Instructors should select applications suitable for their 

students and for which they themselves have enthusiasm.

Modeling is the theme that unifies this introductory treatment of differential equations. 

Direction fields and Euler’s method are studied before separable and linear equations are 

solved explicitly, so that qualitative, numerical, and analytic approaches are given equal 

consideration. These methods are applied to the exponential, logistic, and other models 

for population growth. The first four or five sections of this chapter serve as a good 

introduction to first-order differential equations. An optional final section uses predator-

prey models to illustrate systems of differential equations.

This chapter introduces parametric and polar curves and applies the methods of calculus 

to them. Parametric curves are well suited to laboratory projects; the two presented here 

involve families of curves and Bézier curves. A brief treatment of conic sections in polar 

coordinates prepares the way for Kepler’s Laws in Chapter 13.

The convergence tests have intuitive justifications (see page 719) as well as formal 

proofs. Numerical estimates of sums of series are based on which test was used to prove 

convergence. The emphasis is on Taylor series and polynomials and their applications 

to physics. Error estimates include those from graphing devices.

Single Variable Calculus, Early Transcendentals, Eighth Edition, is supported by a 

complete set of ancillaries developed under my direction. Each piece has been designed 

to enhance student understanding and to facilitate creative instruction. The tables on 

pages xx–xxi describe each of these ancillaries.

The preparation of this and previous editions has involved much time spent reading the 

reasoned (but sometimes contradictory) advice from a large number of astute reviewers. 

I greatly appreciate the time they spent to understand my motivation for the approach 

taken. I have learned something from each of them.

Eighth Edition Reviewers

Jay Abramson, Arizona State University

Adam Bowers, University of California San Diego

Neena Chopra, The Pennsylvania State University

7 Techniques of Integration

8 Further Applications 

of Integration

9 Di�erential Equations

10 Parametric Equations 

and Polar Coordinates

11 In�nite Sequences and Series
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To the Student

Reading a calculus textbook is different from reading a newspaper or a novel, or even a 

physics book. Don’t be discouraged if you have to read a passage more than once in 

order to understand it. You should have pencil and paper and calculator at hand to sketch 

a diagram or make a calculation.

Some students start by trying their homework problems and read the text only if they 

get stuck on an exercise. I suggest that a far better plan is to read and understand a sec-

tion of the text before attempting the exercises. In particular, you should look at the defi-

nitions to see the exact meanings of the terms. And before you read each example, I 

suggest that you cover up the solution and try solving the problem yourself. You’ll get a 

lot more from looking at the solution if you do so.

Part of the aim of this course is to train you to think logically. Learn to write the solu-

tions of the exercises in a connected, step-by-step fashion with explanatory sentences—

not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the back of the book, in Appen-

dix I. Some exercises ask for a verbal explanation or interpretation or description. In 

such cases there is no single correct way of expressing the answer, so don’t worry that 

you haven’t found the definitive answer. In addition, there are often several different 

forms in which to express a numerical or algebraic answer, so if your answer differs 

from mine, don’t immediately assume you’re wrong. For example, if the answer given  

in the back of the book is s2 
2 1 and you obtain 1y(1 1 s2 ), then you’re right and  

rationalizing the denominator will show that the answers are equivalent.

The icon ; indicates an exercise that definitely requires the use of either a graphing 

calculator or a computer with graphing software. But that doesn’t mean that graphing 

devices can’t be used to check your work on the other exercises as well. The symbol CAS  

is reserved for problems in which the full resources of a computer algebra system (like 

Maple, Mathematica, or the TI-89) are required.

xxii
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You will also encounter the symbol |, which warns you against committing an error. 

I have placed this symbol in the margin in situations where I have observed that a large 

proportion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to this text, is referred to by 

means of the symbol TEC  and can be accessed in the eBook via Enhanced WebAssign 

and CourseMate (selected Visuals and Modules are available at www.stewartcalculus.

com). It directs you to modules in which you can explore aspects of calculus for which 

the computer is particularly useful. 

You will notice that some exercise numbers are printed in red: 5. This indicates that 

Homework Hints are available for the exercise. These hints can be found on stewart- 

calculus.com as well as Enhanced WebAssign and CourseMate. The homework hints ask 

you questions that allow you to make progress toward a solution without actually giving 

you the answer. You need to pursue each hint in an active manner with pencil and paper 

to work out the details. If a particular hint doesn’t enable you to solve the problem, you 

can click to reveal the next hint. 

I recommend that you keep this book for reference purposes after you finish the 

course. Because you will likely forget some of the specific details of calculus, the book 

will serve as a useful reminder when you need to use calculus in subsequent courses. 

And, because this book contains more material than can be covered in any one course, it 

can also serve as a valuable resource for a working scientist or engineer.

Calculus is an exciting subject, justly considered to be one of the greatest achieve-

ments of the human intellect. I hope you will discover that it is not only useful but also 

intrinsically beautiful.

JAMES STEWART
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Advances in technology continue to bring a wider variety of tools for 

doing mathematics. Handheld calculators are becoming more pow-

erful, as are software programs and Internet resources. In addition, 

many mathematical applications have been released for smartphones 

and tablets such as the iPad.

Some exercises in this text are marked with a graphing icon ;, 

which indicates that the use of some technology is required. Often this 

means that we intend for a graphing device to be used in drawing the 

graph of a function or equation. You might also need technology to 

�nd the zeros of a graph or the points of intersection of two graphs. 

In some cases we will use a calculating device to solve an equation or 

evaluate a de�nite integral numerically. Many scienti�c and graphing 

calculators have these features built in, such as the Texas Instruments 

TI-84 or TI-Nspire CX. Similar calculators are made by Hewlett Pack-

ard, Casio, and Sharp.
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You can also use computer software such  

as Graphing Calculator by Paci�c Tech 

(www.paci�ct.com) to perform many of these 

functions, as well as apps for phones and 

tablets, like Quick Graph (Colombiamug) or 

MathStudio (Pomegranate Apps). Similar 

functionality is available using a web interface 

at WolframAlpha.com.
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Calculators, Computers, and 

Other Graphing Devices
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The CAS  icon is reserved for problems in which the full resources of 

a computer algebra system (CAS) are required. A CAS is capable of 

doing mathematics (like solving equations, computing derivatives or 

integrals) symbolically rather than just numerically.

Examples of well-established computer algebra systems are the com-

puter software packages Maple and Mathematica. The WolframAlpha 

website uses the Mathematica engine to provide CAS functionality  

via the Web.

Many handheld graphing calculators have CAS capabilities, such 

as the TI-89 and TI-Nspire CX CAS from Texas Instruments. Some 

tablet and smartphone apps also provide these capabilities, such as the 

previously mentioned MathStudio.

In general, when we use the term “calculator” in this book, we mean 

the use of any of the resources we have mentioned.
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xxvi

Success in calculus depends to a large extent on knowledge of the mathematics that 

precedes calculus: algebra, analytic geometry, functions, and trigonometry. The fol-

lowing tests are intended to diagnose weaknesses that you might have in these areas. 

After taking each test you can check your answers against the given answers and, if 

necessary, refresh your skills by referring to the review materials that are provided.

A

  1. Evaluate each expression without using a calculator.

 (a) s23d4 (b) 234 (c) 324

 (d) 
523

521
 (e) S 2

3
D22

 (f) 1623y4

  2.  Simplify each expression. Write your answer without negative exponents.

 (a) s200 
2 s32  

 (b) s3a3b3ds4ab2d2

 (c) S 3x 3y2y 3

x 2y21y2D
22

  3. Expand and simplify.

   (a) 3sx 1 6d 1 4s2x 2 5d (b) sx 1 3ds4x 2 5d

   (c) ssa 
1 sb dssa 

2 sb d (d) s2x 1 3d2

   (e) sx 1 2d3

  4. Factor each expression.

 (a) 4x 2
2 25 (b) 2x 2

1 5x 2 12

 (c) x 3
2 3x 2

2 4x 1 12 (d) x 4
1 27x

 (e) 3x 3y2
2 9x 1y2

1 6x21y2 (f) x 3y 2 4xy

  5.  Simplify the rational expression.

   (a) 
x 2

1 3x 1 2

x 2
2 x 2 2

 (b) 
2x 2

2 x 2 1

x 2
2 9

?
x 1 3

2x 1 1

   (c) 
x 2

x 2
2 4

2
x 1 1

x 1 2
 (d) 

y

x
2

x

y

1

y
2

1

x

Diagnostic Tests
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 Diagnostic Tests xxvii

  6. Rationalize the expression and simplify.

 (a) 
s10 

s5 
2 2

 (b) 
s4 1 h 

2 2

h

  7. Rewrite by completing the square.

 (a) x 2
1 x 1 1 (b) 2x 2

2 12x 1 11

  8. Solve the equation. (Find only the real solutions.)

 (a) x 1 5 − 14 2
1
2 x (b) 

2x

x 1 1
−

2x 2 1

x

 (c) x 2
2 x 2 12 − 0 (d) 2x 2

1 4x 1 1 − 0

 (e) x 4
2 3x 2

1 2 − 0 (f) 3| x 2 4 | − 10

 (g) 2xs4 2 xd21y2
2 3s4 2 x 

− 0

  9.  Solve each inequality. Write your answer using interval notation.

 (a) 24 , 5 2 3x < 17 (b) x 2
, 2x 1 8

 (c) xsx 2 1dsx 1 2d . 0 (d) | x 2 4 | , 3

 (e) 
2x 2 3

x 1 1
< 1

  10. State whether each equation is true or false.

 (a) sp 1 qd2
− p2

1 q 2 (b) sab 
− sa sb 

 (c) sa2 1 b2 
− a 1 b (d) 

1 1 TC

C
− 1 1 T

 (e) 
1

x 2 y
−

1

x
2

1

y
 (f) 

1yx

ayx 2 byx
−

1

a 2 b

ANSWERS TO DIAGNOSTIC TEST A: ALGEBRA

 1. (a) 81  (b) 281 (c) 1
81

  (d) 25  (e) 
9
4 (f) 1

8

 2. (a) 6s2  (b) 48a5b7 (c) 
x

9y7

 3. (a) 11x 2 2 (b) 4x 2
1 7x 2 15

  (c) a 2 b (d) 4x 2
1 12x 1 9

  (e) x 3
1 6x 2

1 12x 1 8

 4. (a) s2x 2 5ds2x 1 5d (b) s2x 2 3dsx 1 4d

  (c) sx 2 3dsx 2 2dsx 1 2d (d) xsx 1 3dsx 2
2 3x 1 9d

  (e) 3x21y2sx 2 1dsx 2 2d (f) xysx 2 2dsx 1 2d

 5. (a) 
x 1 2

x 2 2
 (b) 

x 2 1

x 2 3

  (c) 
1

x 2 2
 (d) 2sx 1 yd

 6. (a) 5s2 
1 2s10  (b) 

1

s4 1 h 
1 2

 7. (a) sx 1
1
2d2

1
3
4 (b)  2sx 2 3d2

2 7

 8. (a) 6  (b) 1 (c) 23, 4

  (d) 21 6
1
2s2  (e) 61, 6s2  (f) 2

3 , 22
3

  (g) 12
5

 9. (a) f24, 3d (b) s22, 4d

  (c) s22, 0d ø s1, `d (d) s1, 7d

  (e) s21, 4g

 10. (a) False (b) True (c) False

  (d) False (e) False (f) True

If you had dif�culty with these problems, you may wish to consult the  

Review of Algebra on the website www.stewartcalculus.com.
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xxviii Diagnostic Tests

ANSWERS TO DIAGNOSTIC TEST B: ANALYTIC GEOMETRY

 1. (a) y − 23x 1 1 (b) y − 25

  (c) x − 2 (d) y −
1
2 x 2 6

 2. sx 1 1d2
1 sy 2 4d2

− 52

 3. Center s3, 25d, radius 5

 4. (a) 2
4
3

  (b) 4x 1 3y 1 16 − 0; x-intercept 24, y-intercept 216
3

  (c) s21, 24d

  (d) 20

  (e) 3x 2 4y − 13

  (f) sx 1 1d2
1 sy 1 4d2

− 100

 5. 

y

x1 2
0

y

x0

y

x0 4

3

_1

2

y

x
0

y

x0 4_4

y

x0 2

1

(a) (b) (c)

(d) (e) (f)

_1

3
2

_2

y=≈-1

≈+¥=4

 

y=1-   x
1

2

B

  1. Find an equation for the line that passes through the point s2, 25d and

 (a) has slope 23

 (b) is parallel to the x-axis

 (c) is parallel to the y-axis

 (d) is parallel to the line 2x 2 4y − 3

  2.  Find an equation for the circle that has center s21, 4d and passes through the point s3, 22d.

  3.  Find the center and radius of the circle with equation x 2
1 y 2

2 6x 1 10y 1 9 − 0.

  4.  Let As27, 4d and Bs5, 212d be points in the plane.

 (a)  Find the slope of the line that contains A and B.

 (b)  Find an equation of the line that passes through A and B. What are the intercepts?

 (c) Find the midpoint of the segment AB.

 (d) Find the length of the segment AB.

 (e) Find an equation of the perpendicular bisector of AB.

 (f) Find an equation of the circle for which AB  is a diameter.

  5.  Sketch the region in the xy-plane de�ned by the equation or inequalities.

 (a) 21 < y < 3 (b) | x | , 4 and | y | , 2

 (c) y , 1 2
1
2 x (d) y > x 2

2 1

 (e) x 2
1 y 2

, 4 (f) 9x 2
1 16y 2

− 144

If you had dif�culty with these problems, you may wish to consult  

the review of analytic geometry in Appendixes B and C.
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 Diagnostic Tests xxix

C

  1. The graph of a function f  is given at the left.

 (a) State the value of f s21d.
 (b) Estimate the value of f s2d.
 (c) For what values of x is f sxd − 2?

 (d) Estimate the values of x such that f sxd − 0.

 (e) State the domain and range of f.

  2. If f sxd − x 3, evaluate the difference quotient 
f s2 1 hd 2 f s2d

h
 and simplify your answer.

  3. Find the domain of the function.

 (a) f sxd −

2x 1 1

x 2
1 x 2 2

 (b) tsxd −

s3 x 

x 2
1 1

 (c) hsxd − s4 2 x 
1 sx 2 2 1

  4. How are graphs of the functions obtained from the graph of f ?

 (a) y − 2f sxd (b) y − 2 f sxd 2 1 (c) y − f sx 2 3d 1 2

  5. Without using a calculator, make a rough sketch of the graph.

 (a) y − x 3 (b) y − sx 1 1d3 (c) y − sx 2 2d3
1 3

 (d) y − 4 2 x 2 (e) y − sx   (f) y − 2sx  

 (g) y − 22x (h) y − 1 1 x21

  6. Let f sxd − H1 2 x 2

2x 1 1

if x < 0

if x . 0

 (a) Evaluate f s22d and f s1d. (b) Sketch the graph of f.

  7.  If f sxd − x 2
1 2x 2 1 and tsxd − 2x 2 3, �nd each of the following functions.

 (a) f 8 t (b) t 8 f  (c) t 8 t 8 t

y

0 x

1

1

FIGURE FOR PROBLEM 1

ANSWERS TO DIAGNOSTIC TEST C: FUNCTIONS

 1. (a) 22  (b) 2.8

  (c) 23, 1 (d) 22.5, 0.3

  (e) f23, 3g, f22, 3g

 2. 12 1 6h 1 h 2

 3. (a) s2`, 22d ø s22, 1d ø s1, `d
  (b) s2`, `d
  (c) s2`, 21g ø f1, 4g

 4. (a) Re�ect about the x-axis

  (b)  Stretch vertically by a factor of 2, then shift 1 unit  

downward

  (c) Shift 3 units to the right and 2 units upward

 5. y

x0

(a)

1

1

y(b)

x0

1

_1

(c) y

x0

(2, 3)

y(d)

x0

4

2

(e) y

x0 1

(f ) y

x0 1

(g) y

x

0

1
_1

y(h)

x0

1

1
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xxx Diagnostic Tests

    6. (a) 23, 3  (b) y

x0_1

1

 7. (a) s f 8 tdsxd − 4x 2
2 8x 1 2 

  (b) st 8 f dsxd − 2x 2
1 4x 2 5

  (c) st 8 t 8 tdsxd − 8x 2 21

D

  1. Convert from degrees to radians.

 (a) 3008  (b) 2188

  2. Convert from radians to degrees.

 (a) 5�y6 (b) 2

  3.  Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle  

of 308.

  4. Find the exact values.

 (a) tans�y3d (b) sins7�y6d (c) secs5�y3d

  5.  Express the lengths a and b in the �gure in terms of �.

  6.  If sin x −
1
3 and sec y −

5
4, where x and y lie between 0 and �y2, evaluate sinsx 1 yd.

  7. Prove the identities.

 (a) tan � sin � 1 cos � − sec � (b) 
2 tan x

1 1 tan2x
− sin 2x

  8.  Find all values of x such that sin 2x − sin x and 0 < x < 2�.

  9.  Sketch the graph of the function y − 1 1 sin 2x without using a calculator.

a

¨

b

24

FIGURE FOR PROBLEM 5

If you had dif�culty with these problems, you should look at Appendix D of this book.

If you had dif�culty with these problems, you should look at sections 1.1–1.3 of this book.

ANSWERS TO DIAGNOSTIC TEST D: TRIGONOMETRY

 1. (a) 5�y3 (b) 2�y10

 2. (a) 1508  (b) 3608y� < 114.68

 3. 2� cm

 4. (a) s3  (b) 2
1
2 (c) 2

 5. (a) 24 sin � (b) 24 cos �

 6. 
1
15 s4 1 6s2 d

 8. 0, �y3, �, 5�y3, 2�

 9. 

_π π x0

2

y
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1

By the time you �nish this course, you will be able to calcu- 

late the length of the curve used to design the Gateway Arch 

in St. Louis, determine where a pilot should start descent  

for a smooth landing, compute the force on a baseball bat 

when it strikes the ball, and measure the amount of light 

sensed by the human eye as the pupil changes size.

A Preview of Calculus

CALCULUS IS FUNDAMENTALLY DIFFERENT FROM the mathematics that you have studied previ-

ously: calculus is less static and more dynamic. It is concerned with change and motion; it deals 

with quantities that approach other quantities. For that reason it may be useful to have an overview 

of the subject before beginning its intensive study. Here we give a glimpse of some of the main 

ideas of calculus by showing how the concept of a limit arises when we attempt to solve a variety 

of problems.
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2 A PREVIEW OF CALCULUS

The Area Problem

The origins of calculus go back at least 2500 years to the ancient Greeks, who found 

areas using the “method of exhaustion.” They knew how to �nd the area A of any poly-

gon by dividing it into triangles as in Figure 1 and adding the areas of these triangles.

It is a much more dif�cult problem to �nd the area of a curved �gure. The Greek  

method of exhaustion was to inscribe polygons in the �gure and circumscribe polygons 

about the �gure and then let the number of sides of the polygons increase. Figure 2 illus-

trates this process for the special case of a circle with inscribed regular polygons.

A¡™
���

A¶
���

AßA∞A¢A£

Let An be the area of the inscribed polygon with n sides. As n increases, it appears that 

An becomes closer and closer to the area of the circle. We say that the area of the circle 

is the limit of the areas of the inscribed polygons, and we write

A − lim 
nl`

An

The Greeks themselves did not use limits explicitly. However, by indirect reasoning, 

Eudoxus (�fth century bc) used exhaustion to prove the familiar formula for the area of 

a circle: A − �r 2.

We will use a similar idea in Chapter 5 to �nd areas of regions of the type shown in 

Figure 3. We will approximate the desired area A by areas of rectangles (as in Figure 4), 

let the width of the rectangles decrease, and then calculate A as the limit of these sums 

of areas of rectangles.

1
n

10 x

y

(1, 1)

10 x

y

(1, 1)

1
4

1
2

3
4

0 x

y

1

(1, 1)

10 x

y

y=≈

A

(1, 1)

The area problem is the central problem in the branch of calculus called integral cal-

culus. The techniques that we will develop in Chapter 5 for �nding areas will also enable 

us to compute the volume of a solid, the length of a curve, the force of water against a 

dam, the mass and center of gravity of a rod, and the work done in pumping water out 

of a tank.

The Tangent Problem

Consider the problem of trying to �nd an equation of the tangent line t to a curve with 

equation y − f sxd at a given point P. (We will give a precise de�nition of a tangent line in 

A=A¡+A™+A£+A¢+A∞

A¡

A™

A£ A¢

A∞

FIGURE 1

FIGURE 2

TEC In the Preview Visual, you  

can see how areas of inscribed and 

circumscribed polygons approximate 

the area of a circle.

FIGURE 3 FIGURE 4
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Chapter 2. For now you can think of it as a line that touches the curve at P as in Figure 5.)  

Since we know that the point P lies on the tangent line, we can �nd the equation of t if we 

know its slope m. The problem is that we need two points to compute the slope and we 

know only one point, P, on t. To get around the problem we �rst �nd an approximation 

to m by taking a nearby point Q on the curve and computing the slope mPQ of the secant 

line PQ. From Figure 6 we see that

1  mPQ −

 f sxd 2 f sad

x 2 a
 

Now imagine that Q moves along the curve toward P as in Figure 7. You can see that 

the secant line rotates and approaches the tangent line as its limiting position. This means 

that the slope mPQ of the secant line becomes closer and closer to the slope m of the tan-

gent line. We write

m − lim 
QlP

mPQ

and we say that m is the limit of mPQ as Q approaches P along the curve. Because x 

approaches a as Q approaches P, we could also use Equation 1 to write

2  m − lim 
xl a

 
 f sxd 2 f sad

x 2 a
 

Speci�c examples of this procedure will be given in Chapter 2.

The tangent problem has given rise to the branch of calculus called differential calcu- 

lus, which was not invented until more than 2000 years after integral calculus. The main  

ideas behind differential calculus are due to the French mathematician Pierre Fer-

mat (1601–1665) and were developed by the English mathematicians John Wallis  

(1616–1703), Isaac Barrow (1630–1677), and Isaac Newton (1642–1727) and the Ger-

man mathematician Gottfried Leibniz (1646–1716).

The two branches of calculus and their chief problems, the area problem and the tan-

gent problem, appear to be very different, but it turns out that there is a very close con-

nection between them. The tangent problem and the area problem are inverse problems 

in a sense that will be described in Chapter 5.

Velocity

When we look at the speedometer of a car and read that the car is traveling at 48 miyh, 

what does that information indicate to us? We know that if the velocity remains constant, 

then after an hour we will have traveled 48 mi. But if the velocity of the car varies, what 

does it mean to say that the velocity at a given instant is 48 miyh?

In order to analyze this question, let’s examine the motion of a car that travels along a 

straight road and assume that we can measure the distance traveled by the car (in feet) at  

l-second intervals as in the following chart:

t − Time elapsed ssd 0 1 2 3 4 5

d − Distance sftd 0 2 9 24 42 71

0

y

x

P

y=ƒ

t

P

Q

t

0 x

y

y

0 xa x

ƒ-f(a)P{a, f(a)}

x-a

t

Q{x, ƒ}

FIGURE 5  

The tangent line at P

FIGURE 6  

The secant line at PQ

FIGURE 7  

Secant lines approaching the  

tangent line

 A PREVIEW OF CALCULUS  3
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4 A PREVIEW OF CALCULUS

As a �rst step toward �nding the velocity after 2 seconds have elapsed, we �nd the aver-

age velocity during the time interval 2 < t < 4:

 average velocity −

change in position

time elapsed

 −
42 2 9

4 2 2

 − 16.5 ftys

Similarly, the average velocity in the time interval 2 < t < 3 is

average velocity −

24 2 9

3 2 2
− 15 ftys

We have the feeling that the velocity at the instant t − 2 can’t be much different from the 

average velocity during a short time interval starting at t − 2. So let’s imagine that the dis- 

tance traveled has been measured at 0.l-second time intervals as in the following chart:

t 2.0 2.1 2.2 2.3 2.4 2.5

d 9.00 10.02 11.16 12.45 13.96 15.80

Then we can compute, for instance, the average velocity over the time interval f2, 2.5g:

average velocity −

15.80 2 9.00

2.5 2 2
− 13.6 ftys

The results of such calculations are shown in the following chart:

Time interval f2, 3g f2, 2.5g f2, 2.4g f2, 2.3g f2, 2.2g f2, 2.1g

Average velocity sftysd 15.0 13.6 12.4 11.5 10.8 10.2

The average velocities over successively smaller intervals appear to be getting closer to  

a number near 10, and so we expect that the velocity at exactly t − 2 is about 10 ftys. In 

Chapter 2 we will de�ne the instantaneous velocity of a moving object as the limiting value  

of the average velocities over smaller and smaller time intervals.

In Figure 8 we show a graphical representation of the motion of the car by plotting the 

distance traveled as a function of time. If we write d − f std, then f std is the number of 

feet traveled after t seconds. The average velocity in the time interval f2, tg is

average velocity −

change in position

time elapsed
−

 f std 2 f s2d

t 2 2

which is the same as the slope of the secant line PQ in Figure 8. The velocity v when 

t − 2 is the limiting value of this average velocity as t approaches 2; that is,

v − lim 
tl 2

 
 f std 2 f s2d

t 2 2

and we recognize from Equation 2 that this is the same as the slope of the tangent line 

to the curve at P.

t

d

0 1 2 3 4 5

10

20

P{2, f(2)}

Q{ t, f(t)}

FIGURE 8
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 A PREVIEW OF CALCULUS  5

Thus, when we solve the tangent problem in differential calculus, we are also solving 

problems concerning velocities. The same techniques also enable us to solve problems 

involving rates of change in all of the natural and social sciences.

The Limit of a Sequence

In the �fth century bc the Greek philosopher Zeno of Elea posed four problems, now 

known as Zeno’s paradoxes, that were intended to challenge some of the ideas concerning 

space and time that were held in his day. Zeno’s second paradox concerns a race between 

the Greek hero Achilles and a tortoise that has been given a head start. Zeno argued, as fol- 

lows, that Achilles could never pass the tortoise: Suppose that Achil les starts at position  

a1 and the tortoise starts at position t1. (See Figure 9.) When Achilles reaches the point 

a2 − t1, the tortoise is farther ahead at position t2. When Achilles reaches a3 − t2, the tor- 

toise is at t3. This process continues inde�nitely and so it appears that the tortoise will 

always be ahead! But this de�es common sense.

Achilles

tortoise

a¡ a™ a£ a¢ a∞

t¡ t™ t£ t¢

. . .

. . .

One way of explaining this paradox is with the idea of a sequence. The successive posi-

tions of Achilles sa1, a2, a3, . . .d or the successive positions of the tortoise st1, t2, t3, . . .d 
form what is known as a sequence.

In general, a sequence hanj is a set of numbers written in a de�nite order. For instance, 

the sequence

h1, 12 , 13 , 14 , 15 , . . .j

can be described by giving the following formula for the nth term:

an −

1

n

We can visualize this sequence by plotting its terms on a number line as in Fig- 

ure 10(a) or by drawing its graph as in Figure 10(b). Observe from either picture that the 

terms of the sequence an − 1yn are becoming closer and closer to 0 as n increases. In 

fact, we can �nd terms as small as we please by making n large enough. We say that the 

limit of the sequence is 0, and we indicate this by writing

lim 
nl`

1

n
− 0

In general, the notation

lim 
nl`

an − L

is used if the terms an approach the number L as n becomes large. This means that the num- 

bers an can be made as close as we like to the number L by taking n suf�ciently large.

FIGURE 9

1

n1 2 3 4 5 6 7 8

10

a¡a™a£a¢

(a)

(b)

FIGURE 10
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6 A PREVIEW OF CALCULUS

The concept of the limit of a sequence occurs whenever we use the decimal represen-

tation of a real number. For instance, if

 a1 − 3.1

 a2 − 3.14

 a3 − 3.141

 a4 − 3.1415

 a5 − 3.14159

 a6 − 3.141592

 a7 − 3.1415926

 f

then lim
n 
l

 
`

 a n − �

The terms in this sequence are rational approximations to �.

Let’s return to Zeno’s paradox. The successive positions of Achilles and the tortoise 

form sequences hanj and htnj, where an , tn for all n. It can be shown that both sequences 

have the same limit:

lim 
nl`

an − p − lim 
nl`

tn

It is precisely at this point p that Achilles overtakes the tortoise.

The Sum of a Series

Another of Zeno’s paradoxes, as passed on to us by Aristotle, is the following: “A man 

standing in a room cannot walk to the wall. In order to do so, he would �rst have to 

go half the distance, then half the remaining distance, and then again half of what still 

remains. This process can always be continued and can never be ended.” (See Figure 11.)

1

2

1

4

1

8

1

16

Of course, we know that the man can actually reach the wall, so this suggests that per-

haps the total distance can be expressed as the sum of in�nitely many smaller distances 

as follows:

3  1 −

1

2
1

1

4
1

1

8
1

1

16
1 ∙ ∙ ∙ 1

1

2n
1 ∙ ∙ ∙

FIGURE 11
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 A PREVIEW OF CALCULUS 7

Zeno was arguing that it doesn’t make sense to add in�nitely many numbers together. 

But there are other situations in which we implicitly use in�nite sums. For instance, in 

decimal notation, the symbol 0.3 − 0.3333 . . . means

3

10
1

3

100
1

3

1000
1

3

10,000
1 ∙ ∙ ∙

and so, in some sense, it must be true that

3

10
1

3

100
1

3

1000
1

3

10,000
1 ∙ ∙ ∙ −

1

3

More generally, if dn denotes the nth digit in the decimal representation of a number, then

0.d1d2 d3 d4 . . . −

d1

10
1

d2

102
1

d3

103
1 ∙ ∙ ∙ 1

dn

10n
1 ∙ ∙ ∙

Therefore some in�nite sums, or in�nite series as they are called, have a meaning. But 

we must de�ne carefully what the sum of an in�nite series is.

Returning to the series in Equation 3, we denote by sn the sum of the �rst n terms of 

the series. Thus

 s1 −
1
2 − 0.5

 s2 −
1
2 1

1
4 − 0.75

 s3 −
1
2 1

1
4 1

1
8 − 0.875

 s4 −
1
2 1

1
4 1

1
8 1

1
16 − 0.9375

 s5 −
1
2 1

1
4 1

1
8 1

1
16 1

1
32 − 0.96875

 s6 −
1
2 1

1
4 1

1
8 1

1
16 1

1
32 1

1
64 − 0.984375

 s7 −
1
2 1

1
4 1

1
8 1

1
16 1

1
32 1

1
64 1

1
128 − 0.9921875

 f

 s10 −
1
2 1

1
4 1 ∙ ∙ ∙ 1

1
1024 < 0.99902344

 f

 s16 −

1

2
1

1

4
1 ∙ ∙ ∙ 1

1

216
< 0.99998474

Observe that as we add more and more terms, the partial sums become closer and closer 

to 1. In fact, it can be shown that by taking n large enough (that is, by adding suf�ciently 

many terms of the series), we can make the partial sum sn as close as we please to the num- 

ber 1. It therefore seems reasonable to say that the sum of the in�nite series is 1 and to 

write

1

2
1

1

4
1

1

8
1 ∙ ∙ ∙ 1

1

2n
1 ∙ ∙ ∙ − 1
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8 A PREVIEW OF CALCULUS

In other words, the reason the sum of the series is 1 is that

lim 
nl`

sn − 1

In Chapter 11 we will discuss these ideas further. We will then use Newton’s idea of 

combining in�nite series with differential and integral calculus.

Summary

We have seen that the concept of a limit arises in trying to �nd the area of a region, the 

slope of a tangent to a curve, the velocity of a car, or the sum of an in�nite series. In 

each case the common theme is the calculation of a quantity as the limit of other, easily 

calculated quantities. It is this basic idea of a limit that sets calculus apart from other 

areas of mathematics. In fact, we could de�ne calculus as the part of mathematics that 

deals with limits.

After Sir Isaac Newton invented his version of calculus, he used it to explain the 

motion of the planets around the sun. Today calculus is used in calculating the orbits of 

satellites and spacecraft, in predicting population sizes, in estimating how fast oil prices 

rise or fall, in forecasting weather, in measuring the cardiac output of the heart, in cal-

culating life insurance premiums, and in a great variety of other areas. We will explore 

some of these uses of calculus in this book.

In order to convey a sense of the power of the subject, we end this preview with a list 

of some of the questions that you will be able to answer using calculus:

 1.  How can we explain the fact, illustrated in Figure 12, that the angle of elevation 

from an observer up to the highest point in a rainbow is 42°? (See page 285.)

 2.  How can we explain the shapes of cans on supermarket shelves? (See page 343.)

 3. Where is the best place to sit in a movie theater? (See page 465.)

 4.  How can we design a roller coaster for a smooth ride? (See page 182.)

 5. How far away from an airport should a pilot start descent? (See page 208.)

 6.  How can we �t curves together to design shapes to represent letters on a laser 

printer? (See page 657.)

 7.  How can we estimate the number of workers that were needed to build the Great 

Pyramid of Khufu in ancient Egypt? (See page 460.)

 8.  Where should an in�elder position himself to catch a baseball thrown by an 

out�elder and relay it to home plate? (See page 465.)

 9.  Does a ball thrown upward take longer to reach its maximum height or to fall 

back to its original height? (See page 609.)

rays from sun

observer

rays from sun

42°

138°

FIGURE 12
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9

Often a graph is the best 

way to represent a function 

because it conveys so much 

information at a glance. 

Shown is a graph of the 

vertical ground acceleration 

created by the 2011 

earthquake near Tohoku, 

Japan. The earthquake 

had a magnitude of 9.0 on 

the Richter scale and was 

so powerful that it moved 

northern Japan 8 feet closer 

to North America.

Functions and Models

THE FUNDAMENTAL OBJECTS THAT WE deal with in calculus are functions. This chapter pre-

pares the way for calculus by discussing the basic ideas concerning functions, their graphs, 

and ways of transforming and combining them. We stress that a function can be represented in 

different ways: by an equation, in a table, by a graph, or in words. We look at the main types of 

functions that occur in calculus and describe the process of using these functions as mathematical 

models of real-world phenomena.

1

Pictura Collectus/Alamy

Seismological Society of America

0

1000

_1000

2000

_2000

500 100 150 200

(cm/s@)

time
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10 Chapter 1  Functions and Models

Functions arise whenever one quantity depends on another. Consider the following four 

situations.

A.  The area A of a circle depends on the radius r of the circle. The rule that connects r 

and A is given by the equation A − �r 2. With each positive number r there is associ-

ated one value of A, and we say that A is a function of r.

B.  The human population of the world P depends on the time t. The table gives esti-

mates of the world population Pstd at time t, for certain years. For instance,

Ps1950d < 2,560,000,000

But for each value of the time t there is a corresponding value of P, and we say that 

P is a function of t.

C.  The cost C of mailing an envelope depends on its weight w. Although there is no 

simple formula that connects w and C, the post of�ce has a rule for determining C 

when w is known.

D.  The vertical acceleration a of the ground as measured by a seismograph during an 

earthquake is a function of the elapsed time t. Figure 1 shows a graph generated by 

seismic activity during the Northridge earthquake that shook Los Angeles in 1994. 

For a given value of t, the graph provides a corresponding value of a.

{cm/s@}

(seconds)5

50

10 15 20 25

a

t

100

30

_50

Calif. Dept. of Mines and Geology

Each of these examples describes a rule whereby, given a number (r, t, w, or t), 

another number (A, P, C, or a) is assigned. In each case we say that the second number 

is a function of the �rst number.

A function f  is a rule that assigns to each element x in a set D exactly one 

element, called f sxd, in a set E.

We usually consider functions for which the sets D and E are sets of real numbers. 

The set D is called the domain of the function. The number f sxd is the value of f  at x 

and is read “ f  of x.” The range of f  is the set of all possible values of f sxd as x varies 

throughout the domain. A symbol that represents an arbitrary number in the domain of a 

function f  is called an independent variable. A symbol that represents a number in the 

range of f  is called a dependent variable. In Example A, for instance, r is the indepen-

dent variable and A is the dependent variable.

Year

Population 

(millions)

1900 1650

1910 1750

1920 1860

1930 2070

1940 2300

1950 2560

1960 3040

1970 3710

1980 4450

1990 5280

2000 6080

2010 6870

FIGURE 1
Vertical ground acceleration  

during the Northridge earthquake
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 SeCtion 1.1  Four Ways to Represent a Function 11

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of 

the function f, then when x enters the machine, it’s accepted as an input and the machine 

produces an output f sxd according to the rule of the function. Thus we can think of the 

domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a 

machine. For example, the square root key on your calculator computes such a function. 

You press the key labeled s   (or sx ) and enter the input x. If x , 0, then x is not in the 

domain of this function; that is, x is not an acceptable input, and the calculator will indi-

cate an error. If x > 0, then an approximation to sx  will appear in the display. Thus the 

sx  key on your calculator is not quite the same as the exact mathematical function f  

de�ned by f sxd − sx .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow 

connects an element of D to an element of E. The arrow indicates that f sxd is associated 

with x, f sad is associated with a, and so on.

The most common method for visualizing a function is its graph. If f  is a function 

with domain D, then its graph is the set of ordered pairs

hsx, f sxdd | x [ Dj

(Notice that these are input-output pairs.) In other words, the graph of f  consists of all 

points sx, yd in the coordinate plane such that y − f sxd and x is in the domain of f.

The graph of a function f  gives us a useful picture of the behavior or “life history” 

of a function. Since the y-coordinate of any point sx, yd on the graph is y − f sxd, we can 

read the value of f sxd from the graph as being the height of the graph above the point x 

(see Figure 4). The graph of f  also allows us to picture the domain of f  on the x-axis and 

its range on the y-axis as in Figure 5.

0

y � ƒ(x)

domain

range

{x, ƒ}

ƒ

f(1)

f(2)

0 1 2 x xx

y y

EXAMPLE 1 The graph of a function f  is shown in Figure 6.

(a) Find the values of f s1d and f s5d.
(b) What are the domain and range of f ?

Solution

(a) We see from Figure 6 that the point s1, 3d lies on the graph of f, so the value of f  

at 1 is f s1d − 3. (In other words, the point on the graph that lies above x − 1 is 3 units 

above the x-axis.)

When x − 5, the graph lies about 0.7 units below the x-axis, so we estimate that 

f s5d < 20.7.

(b) We see that f sxd is de�ned when 0 < x < 7, so the domain of f  is the closed inter-

val f0, 7g. Notice that f  takes on all values from 22 to 4, so the range of f  is

 hy | 22 < y < 4j − f22, 4g ■

x

(input)

ƒ

(output)

f

FIGURE 2
Machine diagram for a function f  

f
D E

ƒ

f(a)a

x

FIGURE 3
Arrow diagram for f  

FIGURE 4 FIGURE 5

x

y

0

1

1

FIGURE 6

The notation for intervals is given in 

Appendix A.
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12 Chapter 1  Functions and Models

EXAMPLE 2 Sketch the graph and �nd the domain and range of each function.

(a) fsxd − 2x 2 1 (b) tsxd − x 2

Solution

(a) The equation of the graph is y − 2x 2 1, and we recognize this as being the equa-

tion of a line with slope 2 and y-intercept 21. (Recall the slope-intercept form of the 

equation of a line: y − mx 1 b. See Appendix B.) This enables us to sketch a portion 

of the graph of f  in Figure 7. The expression 2x 2 1 is de�ned for all real numbers, so 

the domain of f  is the set of all real numbers, which we denote by R. The graph shows 

that the range is also R.

(b) Since ts2d − 22
− 4 and ts21d − s21d2

− 1, we could plot the points s2, 4d and 

s21, 1d, together with a few other points on the graph, and join them to produce the 

graph (Figure 8). The equation of the graph is y − x 2, which represents a parabola (see 

Appendix C). The domain of t is R. The range of t consists of all values of tsxd, that is, 

all numbers of the form x 2. But x 2
> 0 for all numbers x and any positive number y is a 

square. So the range of t is hy | y > 0j − f0, `d. This can also be seen from Figure 8. ■

EXAMPLE 3 If f sxd − 2x 2
2 5x 1 1 and h ± 0, evaluate 

f sa 1 hd 2 f sad

h
.

Solution We �rst evaluate f sa 1 hd by replacing x by a 1 h in the expression for f sxd:

f sa 1 hd − 2sa 1 hd2
2 5sa 1 hd 1 1

  − 2sa2
1 2ah 1 h2d 2 5sa 1 hd 1 1

  − 2a2
1 4ah 1 2h2

2 5a 2 5h 1 1

Then we substitute into the given expression and simplify:

f sa 1 hd 2 f sad

h
−

s2a2
1 4ah 1 2h2

2 5a 2 5h 1 1d 2 s2a2
2 5a 1 1d

h

  −
2a2

1 4ah 1 2h2
2 5a 2 5h 1 1 2 2a2

1 5a 2 1

h

−
4ah 1 2h2

2 5h

h
− 4a 1 2h 2 5

■

representations of Functions

There are four possible ways to represent a function:

● verbally (by a description in words)

● numerically (by a table of values)

● visually (by a graph)

● algebraically  (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one 

representation to another to gain additional insight into the function. (In Example 2, for 

instance, we started with algebraic formulas and then obtained the graphs.) But certain 

functions are described more naturally by one method than by another. With this in mind, 

let’s reexamine the four situations that we considered at the beginning of this section.

x

y=2x-1

0

-1

y

1

2

FIGURE 7

(_1, 1)

(2, 4)

0

y

1

x1

y=≈

FIGURE 8

The expression

f sa 1 hd 2 f sad

h

in Example 3 is called a difference 

quotient and occurs frequently in 

calculus. As we will see in Chapter 

2, it represents the average rate of 

change of f sxd between x − a and 

x − a 1 h.
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 SeCtion 1.1  Four Ways to Represent a Function 13

A.  The most useful representation of the area of a circle as a function of its radius is 

probably the algebraic formula Asrd − �r 2, though it is possible to compile a table 

of values or to sketch a graph (half a parabola). Because a circle has to have a posi-

tive radius, the domain is hr | r . 0j − s0, `d, and the range is also s0, `d.

B.  We are given a description of the function in words: Pstd is the human population of 

the world at time t. Let’s measure t so that t − 0 corresponds to the year 1900. The 

table of values of world population provides a convenient representation of this func-

tion. If we plot these values, we get the graph (called a scatter plot) in Figure 9. It 

too is a useful representation; the graph allows us to absorb all the data at once. What 

about a formula? Of course, it’s impossible to devise an explicit formula that gives 

the exact human population Pstd at any time t. But it is possible to �nd an expression 

for a function that approximates Pstd. In fact, using methods explained in Section 

1.2, we obtain the approximation

Pstd < f std − s1.43653 3 10 9d ∙ s1.01395dt

  Figure 10 shows that it is a reasonably good “�t.” The function f  is called a mathe-

matical model for population growth. In other words, it is a function with an explicit 

formula that approximates the behavior of our given function. We will see, however, 

that the ideas of calculus can be applied to a table of values; an explicit formula is 

not necessary. 

5x10' 5x10'

P

t20 40 60 80 100 120 20 40 60

Years since 1900Years since 1900

80 100 120

P

t0 0

FIGURE 9 FIGURE 10

The function P is typical of the functions that arise whenever we attempt to apply 

calculus to the real world. We start with a verbal description of a function. Then we 

may be able to construct a table of values of the function, perhaps from instrument 

readings in a scienti�c experiment. Even though we don’t have complete knowledge 

of the values of the function, we will see throughout the book that it is still possible 

to perform the operations of calculus on such a function.

C.  Again the function is described in words: Let Cswd be the cost of mailing a large enve-

lope with weight w. The rule that the US Postal Service used as of 2015 is as follows: 

The cost is 98 cents for up to 1 oz, plus 21 cents for each additional ounce (or less) 

up to 13 oz. The table of values shown in the margin is the most convenient repre-

sentation for this function, though it is possible to sketch a graph (see Example 10).

D.  The graph shown in Figure 1 is the most natural representation of the vertical accel-

eration function astd. It’s true that a table of values could be compiled, and it is 

even possible to devise an approximate formula. But everything a geologist needs to 

t 

(years

since 1900)

Population 

(millions)

0 1650

10 1750

20 1860

30 2070

40 2300

50 2560

60 3040

70 3710

80 4450

90 5280

100 6080

110 6870

A function de�ned by a table of 

values is called a tabular function.

w (ounces) Cswd (dollars)

0 , w < 1  0.98

1 , w < 2  1.19

2 , w < 3  1.40

3 , w < 4  1.61

4 , w < 5  1.82
∙  ∙
∙  ∙
∙  ∙
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14 Chapter 1  Functions and Models

PS  In setting up applied functions as 

in Example 5, it may be useful to review 

the principles of problem solving as 

discussed on page 71, particularly  

Step 1: Understand the Problem.

know— amplitudes and patterns — can be seen easily from the graph. (The same is  

true for the patterns seen in electrocardiograms of heart patients and polygraphs for 

lie-detection.)

In the next example we sketch the graph of a function that is de�ned verbally.

EXAMPLE 4  When you turn on a hot-water faucet, the temperature T  of the water 

depends on how long the water has been running. Draw a rough graph of T  as a func-

tion of the time t that has elapsed since the faucet was turned on.

Solution The initial temperature of the running water is close to room temperature 

because the water has been sitting in the pipes. When the water from the hot-water tank 

starts �owing from the faucet, T  increases quickly. In the next phase, T  is constant at 

the tempera ture of the heated water in the tank. When the tank is drained, T  decreases 

to the temperature of the water supply. This enables us to make the rough sketch of T  

as a function of t in Figure 11. ■

In the following example we start with a verbal description of a function in a physical 

situation and obtain an explicit algebraic formula. The ability to do this is a useful skill 

in solving calculus problems that ask for the maximum or minimum values of quantities.

EXAMPLE 5 A rectangular storage container with an open top has a volume of  

10 m3. The length of its base is twice its width. Material for the base costs $10 per 

square meter; material for the sides costs $6 per square meter. Express the cost of mate-

rials as a function of the width of the base.

Solution We draw a diagram as in Figure 12 and introduce notation by letting w and 

2w be the width and length of the base, respectively, and h be the height. 

The area of the base is s2wdw − 2w
2, so the cost, in dollars, of the material for the 

base is 10s2w
2 d. Two of the sides have area wh and the other two have area 2wh, so the 

cost of the material for the sides is 6f2swhd 1 2s2whdg. The total cost is therefore

C − 10s2w
2 d 1 6f2swhd 1 2s2whdg − 20w

2
1 36wh

 To express C as a function of w alone, we need to eliminate h and we do so by using 

the fact that the volume is 10 m3. Thus

ws2wdh − 10

which gives   h −
10

2w
2

−
5

w
2

Substituting this into the expression for C, we have

C − 20w
2

1 36wS 5

w
2D − 20w

2
1

180

w

Therefore the equation

Cswd − 20w
2

1
180

w

    w . 0

expresses C as a function of w. ■

EXAMPLE 6 Find the domain of each function.

(a) f sxd − sx 1 2          (b) tsxd −
1

x 2
2 x

t

T

0

FIGURE 11

w

2w

h

FIGURE 12
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 SeCtion 1.1  Four Ways to Represent a Function  15

Solution

(a) Because the square root of a negative number is not de�ned (as a real number), 

the domain of f  consists of all values of x such that x 1 2 > 0. This is equivalent to 

x > 22, so the domain is the interval f22, `d.

(b) Since

tsxd −
1

x 2
2 x

−
1

xsx 2 1d

and division by 0 is not allowed, we see that tsxd is not de�ned when x − 0 or x − 1. 

Thus the domain of t is

hx | x ± 0, x ± 1j

which could also be written in interval notation as

 s2`, 0d ø s0, 1d ø s1, `d	 ■

The graph of a function is a curve in the xy-plane. But the question arises: Which 

curves in the xy-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test A curve in the xy-plane is the graph of a function of x if 

and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each 

vertical line x − a intersects a curve only once, at sa, bd, then exactly one function value 

is de�ned by f sad − b. But if a line x − a intersects the curve twice, at sa, bd and sa, cd,  
then the curve can’t represent a function because a function can’t assign two different 

values to a.

For example, the parabola x − y 2
2 2 shown in Figure 14(a) is not the graph of a 

function of x because, as you can see, there are vertical lines that intersect the parabola 

twice. The parabola, however, does contain the graphs of two functions of x. Notice 

that the equation x − y 2
2 2 implies y 2

− x 1 2, so y − 6sx 1 2 . Thus the upper 

and lower halves of the parabola are the graphs of the functions f sxd − sx 1 2  [from 

Example 6(a)] and tsxd − 2sx 1 2 . [See Figures 14(b) and (c).] 

We observe that if we reverse the roles of x and y, then the equation x − hsyd − y 2
2 2 

does de�ne x as a function of y (with y as the independent variable and x as the depen-

dent variable) and the parabola now appears as the graph of the function h.

(b) y=œ„„„„x+2

_2 0 x

y

(_2, 0)

(a) x=¥-2

0 x

y

(c) y=_œ„„„„x+2

_2
0

y

x

piecewise Defined Functions

The functions in the following four examples are de�ned by different formulas in dif-

ferent parts of their domains. Such functions are called piecewise de�ned functions.

a

x=a

(a, b)

0

a

(a, c)

(a, b)

x=a

0 x

y

x

y

(a) This curve represents a function.

(b) This curve doesn’t represent

     a function.

FIGURE 13

FIGURE 14

Domain Convention

If a function is given by a formula 

and the domain is not stated explic-

itly, the convention is that the domain 

is the set of all numbers for which 

the formula makes sense and de�nes 

a real number.
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16 Chapter 1  Functions and Models

EXAMPLE 7 A function f  is de�ned by

f sxd − H1 2 x

x 2

if  x < 21

if  x . 21

Evaluate f s22d, f s21d, and f s0d and sketch the graph.

Solution Remember that a function is a rule. For this particular function the rule is 

the following: First look at the value of the input x. If it happens that x < 21, then the 

value of f sxd is 1 2 x. On the other hand, if x . 21, then the value of f sxd is x 2.

Since 22 < 21, we have f s22d − 1 2 s22d − 3.

Since 21 < 21, we have f s21d − 1 2 s21d − 2.

Since 0 . 21, we have f s0d − 02
− 0.

How do we draw the graph of f ? We observe that if x < 21, then f sxd − 1 2 x,  

so the part of the graph of f  that lies to the left of the vertical line x − 21 must coin-

cide with the line y − 1 2 x, which has slope 21 and y-intercept 1. If x . 21,  

then f sxd − x 2, so the part of the graph of f  that lies to the right of the line x − 21 

must coincide with the graph of y − x 2, which is a parabola. This enables us to sketch 

the graph in Figure 15. The solid dot indicates that the point s21, 2d is included on the 

graph; the open dot indicates that the point s21, 1d is excluded from the graph. ■

The next example of a piecewise de�ned function is the absolute value function. 

Recall that the absolute value of a number a, denoted by | a |, is the distance from a to 0 

on the real number line. Distances are always positive or 0, so we have

| a | > 0    for every number a

For example,

| 3 | − 3   | 23 | − 3   | 0 | − 0   |s2 
2 1 | − s2 

2 1   | 3 2 � | − � 2 3

In general, we have

| a | − a  if  a > 0

| a | − 2a if  a , 0

(Remember that if a is negative, then 2a is positive.)

EXAMPLE  8 Sketch the graph of the absolute value function f sxd − | x |.
Solution From the preceding discussion we know that

| x | − Hx

2x

if  x > 0

if  x , 0

Using the same method as in Example 7, we see that the graph of f  coincides with the 

line y − x to the right of the y-axis and coincides with the line y − 2x to the left of the 

y-axis (see Figure 16). ■

1

x

y

1_1
0

FIGURE 15

For a more extensive review of 

absolute values, see Appendix A.

x

y=| x |

0

y

FIGURE 16
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 SeCtion 1.1  Four Ways to Represent a Function  17

Point-slope form of the equation of 

a line:

y 2 y1 − msx 2 x1 d

See Appendix B.

EXAMPLE 9 Find a formula for the function f  graphed in Figure 17.

Solution The line through s0, 0d and s1, 1d has slope m − 1 and y-intercept b − 0, 

so its equation is y − x. Thus, for the part of the graph of f  that joins s0, 0d to s1, 1d, 
we have

f sxd − x    if  0 < x < 1

The line through s1, 1d and s2, 0d has slope m − 21, so its point-slope form is

y 2 0 − s21dsx 2 2d    or    y − 2 2 x

So we have  f sxd − 2 2 x    if  1 , x < 2

We also see that the graph of f  coincides with the x-axis for x . 2. Putting this infor-

mation together, we have the following three-piece formula for f :

f sxd − Hx

2 2 x

0

if  0 < x < 1

if  1 , x < 2

if  x . 2 ■

EXAMPLE 10 In Example C at the beginning of this section we considered the cost 

Cswd of mailing a large envelope with weight w. In effect, this is a piecewise de�ned 

function because, from the table of values on page 13, we have

Cswd −    

0.98

1.19

1.40

1.61

if  0 , w < 1

if  1 , w < 2

if  2 , w < 3

if  3 , w < 4
 ∙
 ∙
 ∙

 The graph is shown in Figure 18. You can see why functions similar to this one are 

called step functions—they jump from one value to the next. Such functions will be 

studied in Chapter 2. ■

Symmetry

If a function f  satis�es f s2xd − f sxd for every number x in its domain, then f  is called 

an even function. For instance, the function f sxd − x 2 is even because

f s2xd − s2xd2
− x 2

− f sxd

The geometric signi�cance of an even function is that its graph is symmetric with respect 

to the y-axis (see Figure 19). This means that if we have plotted the graph of f  for x > 0, 

we obtain the entire graph simply by re�ecting this portion about the y-axis.

If f  satis�es f s2xd − 2f sxd for every number x in its domain, then f  is called an odd 

function. For example, the function f sxd − x 3 is odd because

f s2xd − s2xd3
− 2x 3

− 2f sxd

x

y

0 1

1

FIGURE 17

FIGURE 19  
An even function

0 x_x

f(_x) ƒ

x

y

C

0.50

1.00

1.50

0 1 2 3 54 w

FIGURE 18
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18 Chapter 1  Functions and Models

The graph of an odd function is symmetric about the origin (see Figure 20). If we already 

have the graph of f  for x > 0, we can obtain the entire graph by rotating this portion 

through 1808 about the origin.

EXAMPLE 11 Determine whether each of the following functions is even, odd, or 

neither even nor odd.

(a) f sxd − x 5
1 x   (b) tsxd − 1 2 x 4   (c) hsxd − 2x 2 x 2 

Solution

(a) f s2xd − s2xd5
1 s2xd − s21d5x 5

1 s2xd

 − 2x 5
2 x − 2sx 5

1 xd

 − 2f sxd

Therefore f  is an odd function.

(b) ts2xd − 1 2 s2xd4
− 1 2 x 4

− tsxd

So t is even.

(c) hs2xd − 2s2xd 2 s2xd2
− 22x 2 x 2

Since hs2xd ± hsxd and hs2xd ± 2hsxd, we conclude that h is neither even nor odd. ■

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the 

graph of h is symmetric neither about the y-axis nor about the origin.

1

1 x

y

h1

1

y

x

g1

_1

1

y

x

f

_1

(a) (b) (c)

increasing and Decreasing Functions

The graph shown in Figure 22 rises from A to B, falls from B to C, and rises again from C 

to D. The function f  is said to be increasing on the interval fa, bg, decreasing on fb, cg, 
and increasing again on fc, dg. Notice that if x1 and x2 are any two numbers between  

a and b with x1 , x2, then f sx1 d , f sx2 d. We use this as the de�ning property of an 

increasing function.

A

B

C

D

y=ƒ

f(x¡)

a

y

0 xx¡ x™ b c d

f(x™)

FIGURE 20  
An odd function

0

x

_x ƒ

x

y

FIGURE 21

FIGURE 22
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 SeCtion 1.1  Four Ways to Represent a Function  19

A function f  is called increasing on an interval I if

f sx1 d , f sx2 d   whenever x1 , x2 in I

It is called decreasing on I if

f sx1 d . f sx2 d   whenever x1 , x2 in I

In the de�nition of an increasing function it is important to realize that the inequality 

f sx1 d , f sx2 d must be satis�ed for every pair of numbers x1 and x2 in I with x1 , x2.

You can see from Figure 23 that the function f sxd − x 2 is decreasing on the interval 

s2`, 0g and increasing on the interval f0, `d.FIGURE 23

0

y

x

y=≈

 1.  If f sxd − x 1 s2 2 x  and tsud − u 1 s2 2 u , is it true  

that f − t?

 2.  If

f sxd −
x 2

2 x

x 2 1
    and    tsxd − x

is it true that f − t?

 3.  The graph of a function f  is given.

 (a) State the value of f s1d.
 (b) Estimate the value of f s21d.
 (c) For what values of x is f sxd − 1?

 (d) Estimate the value of x such that f sxd − 0.

 (e) State the domain and range of f.

 (f)  On what interval is f  increasing?

y

0 x1

1

 4.  The graphs of f  and t are given.

g

x

y

0

f
2

2

 (a) State the values of f s24d and ts3d.
 (b) For what values of x is f sxd − tsxd?

 (c) Estimate the solution of the equation f sxd − 21.

 (d) On what interval is f  decreasing?

 (e) State the domain and range of f.

 (f)  State the domain and range of t.

 5.  Figure 1 was recorded by an instrument operated by the 

California Department of Mines and Geology at the University 

Hospital of the University of Southern California in Los 

Angeles. Use it to estimate the range of the vertical ground 

acceleration function at USC during the Northridge earthquake.

 6.  In this section we discussed examples of ordinary, everyday 

functions: Population is a function of time, postage cost is a 

function of weight, water temperature is a function of time. Give 

three other examples of functions from everyday life that are 

described verbally. What can you say about the domain and 

range of each of your functions? If possible, sketch a rough 

graph of each function.

7–10  Determine whether the curve is the graph of a function of x.  

If it is, state the domain and range of the function.

7. 8. y

x0 1

1

y

x0

1

1

y

x0 1

1

y

x0 1

1

 9. 10.

1.1  EXERCISES
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20 CHAPTER 1  Functions and Models

 11.  Shown is a graph of the global average temperature T during 

the 20th century. Estimate the following.

 (a) The global average temperature in 1950

 (b) The year when the average temperature was 14.2°C

 (c) The year when the temperature was smallest? Largest?

 (d) The range of T

t

T (•C)

1900 1950 2000

13

14

Source: Adapted from Globe and Mail [Toronto], 5 Dec. 2009. Print.

 12.  Trees grow faster and form wider rings in warm years and 

grow more slowly and form narrower rings in cooler years. The 

�gure shows ring widths of a Siberian pine from 1500 to 2000.

 (a) What is the range of the ring width function?

 (b)  What does the graph tend to say about the temperature 

of the earth? Does the graph re�ect the volcanic erup-

tions of the mid-19th century?

R
in

g
 w

id
th

 (
m

m
)

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

1500 1600 1700 1800 1900

Year

2000
t

R

Source: Adapted from G. Jacoby et al., “Mongolian Tree Rings and 20th-

Century Warming,” Science 273 (1996): 771–73.

 13.  You put some ice cubes in a glass, �ll the glass with cold water, 

and then let the glass sit on a table. Describe how the tempera-

ture of the water changes as time passes. Then sketch a rough 

graph of the temperature of the water as a function of the 

elapsed time.

 14.  Three runners compete in a 100-meter race. The graph 

depicts the distance run as a function of time for each runner. 

Describe in words what the graph tells you about this race. 

Who won the race? Did each runner �nish the race?

0

100

20

A B C

y

 15.  The graph shows the power consumption for a day in Septem-

ber in San Francisco. (P is measured in megawatts; t is mea-

sured in hours starting at midnight.)

 (a) What was the power consumption at 6 am? At 6 pm?

 (b)  When was the power consumption the lowest? When was 

it the highest? Do these times seem reasonable?

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric

 16.  Sketch a rough graph of the number of hours of daylight as a 

function of the time of year.

 17.  Sketch a rough graph of the outdoor temperature as a function 

of time during a typical spring day.

 18.   Sketch a rough graph of the market value of a new car as a 

function of time for a period of 20 years. Assume the car is 

well maintained.

 19.  Sketch the graph of the amount of a particular brand of coffee 

sold by a store as a function of the price of the coffee.

 20.  You place a frozen pie in an oven and bake it for an hour. 

Then you take it out and let it cool before eating it. Describe 

how the temperature of the pie changes as time passes. 

Then sketch a rough graph of the temperature of the pie as a 

function of time.

 21.  A homeowner mows the lawn every Wednesday afternoon. 

Sketch a rough graph of the height of the grass as a function 

of time over the course of a four-week period.

 22.  An airplane takes off from an airport and lands an hour later 

at another airport, 400 miles away. If t represents the time in 

minutes since the plane has left the terminal building, let xstd 
be the horizontal distance traveled and ystd be the altitude of 

the plane.

 (a) Sketch a possible graph of xstd.
 (b) Sketch a possible graph of ystd.
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 SeCtion 1.1  Four Ways to Represent a Function 21

 (c) Sketch a possible graph of the ground speed.

 (d) Sketch a possible graph of the vertical velocity.

 23.  Temperature readings T (in °F) were recorded every two hours 

from midnight to 2:00 pm in Atlanta on June 4, 2013. The time 

t was measured in hours from midnight.

t 0 2  4  6 8 10 12 14

T 74 69 68 66 70 78 82 86

 (a)  Use the readings to sketch a rough graph of T as a function 

of t.

 (b)  Use your graph to estimate the temperature at 9:00 am.

 24.  Researchers measured the blood alcohol concentration (BAC) 

of eight adult male subjects after rapid consumption of 30 mL 

of ethanol (corresponding to two standard alcoholic drinks). 

The table shows the data they obtained by averaging the BAC 

(in mgymL) of the eight men.

 (a)  Use the readings to sketch the graph of the BAC as a 

function of t.

 (b)  Use your graph to describe how the effect of alcohol  

varies with time.

t (hours) BAC t (hours) BAC

0 0  1.75 0.22

0.2 0.25  2.0 0.18

0.5 0.41  2.25 0.15

0.75 0.40  2.5 0.12

1.0 0.33  3.0 0.07

1.25 0.29  3.5 0.03

1.5 0.24  4.0 0.01

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 

Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 

Biopharmaceutics 5 (1977): 207–24.

 25.  If f sxd − 3x 2
2 x 1 2, �nd f s2d,   f s22d,   f sad,   f s2ad,  

f sa 1 1d, 2 f sad,   f s2ad,   f sa2d, [ f sad]2, and   f sa 1 hd.

 26.  A spherical balloon with radius r inches has volume 

Vsrd −
4
3 �r 3. Find a function that represents the amount of 

air required to in�ate the balloon from a radius of r inches 

to a radius of r 1 1 inches.

27–30 Evaluate the difference quotient for the given function.  

Simplify your answer.

 27. f sxd − 4 1 3x 2 x 2,    
f s3 1 hd 2 f s3d

h

 28.  f sxd − x 3,    
f sa 1 hd 2 f sad

h
 

29.   f sxd −
1

x
,    

f sxd 2 f sad

x 2 a

 30.  f sxd −
x 1 3

x 1 1
,    

f sxd 2 f s1d

x 2 1

31–37 Find the domain of the function.

 31. f sxd −
x 1 4

x 2
2 9

 32. f sxd −
2x 3

2 5

x 2
1 x 2 6

 33. f std − s3 2t 2 1 
 34. tstd − s3 2 t 

2 s2 1 t 

 35. hsxd −
1

s4 x 2 2 5x 
 36. f sud −

u 1 1

1 1
1

u 1 1
 37. Fspd − s2 2 sp  

 38.  Find the domain and range and sketch the graph of the  

function hsxd − s4 2 x 2 .

39–40 Find the domain and sketch the graph of the function.

 39. f sxd − 1.6x 2 2.4 40. tstd −
t 2

2 1

t 1 1

41–44 Evaluate f s23d, f s0d, and f s2d for the piecewise de�ned 

function. Then sketch the graph of the function.

 41. f sxd − Hx 1 2

1 2 x

if  x , 0

if  x > 0

 42. f sxd − H3 2
1
2 x

2x 2 5

if  x , 2

if  x > 2

 43. f sxd − Hx 1 1

x 2

if  x < 21

if  x . 21

 44. f sxd − H21

7 2 2x

if  x < 1

if  x . 1

45–50 Sketch the graph of the function.

 45. f sxd − x 1 | x | 46. f sxd − | x 1 2 |

 47. tstd − |1 2 3t | 48. hstd − | t | 1 | t 1 1|

 49. f sxd − H| x |
1

if  | x | < 1

if  | x | . 1
 50. tsxd − || x | 2 1|

51–56 Find an expression for the function whose graph is the  

given curve.

 51.  The line segment joining the points s1, 23d and s5, 7d

 52.  The line segment joining the points s25, 10d and s7, 210d

 53.  The bottom half of the parabola x 1 sy 2 1d2
− 0

 54.  The top half of the circle x 2
1 sy 2 2d2

− 4
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22 Chapter 1  Functions and Models

 55. y

0 x

1

1

 56. y

0 x

1

1

57–61 Find a formula for the described function and state its 

domain.

 57.  A rectangle has perimeter 20 m. Express the area of the 

rectangle as a function of the length of one of its sides.

 58.  A rectangle has area 16 m2. Express the perimeter of the rect-

angle as a function of the length of one of its sides.

 59.  Express the area of an equilateral triangle as a function of the 

length of a side.

 60.  A closed rectangular box with volume 8 ft3 has length twice the 

width. Express the height of the box as a function of the width.

 61.  An open rectangular box with volume 2 m3 has a square base. 

Express the surface area of the box as a function of the length 

of a side of the base.

 62.  A Norman window has the shape of a rectangle surmounted 

by a semicircle. If the perimeter of the window is 30 ft, 

express the area A of the window as a function of the width 

x of the window.

x

 63.  A box with an open top is to be constructed from a rectan-

gular piece of cardboard with dimensions 12 in. by 20 in. 

by cutting out equal squares of side x at each corner and 

then folding up the sides as in the �gure. Express the vol-

ume V of the box as a function of x.

20

12
x

x

x

x

x x

x x

 64.  A cell phone plan has a basic charge of $35 a month. The 

plan includes 400 free minutes and charges 10 cents for each 

additional minute of usage. Write the monthly cost C as a 

function of the number x of minutes used and graph C as a 

function of x for 0 < x < 600.

 65.  In a certain state the maximum speed permitted on freeways 

is 65 miyh and the minimum speed is 40 miyh. The �ne for 

violating these limits is $15 for every mile per hour above the 

maximum speed or below the minimum speed. Express the 

amount of the �ne F as a function of the driving speed x and 

graph Fsxd for 0 < x < 100.

 66.  An electricity company charges its customers a base rate 

of $10 a month, plus 6 cents per kilowatt-hour (kWh) for 

the �rst 1200 kWh and 7 cents per kWh for all usage over 

1200 kWh. Express the monthly cost E as a function of the 

amount x of electricity used. Then graph the function E for 

0 < x < 2000.

 67.  In a certain country, income tax is assessed as follows. There 

is no tax on income up to $10,000. Any income over $10,000 

is taxed at a rate of 10%, up to an income of $20,000. Any 

income over $20,000 is taxed at 15%.

 (a)  Sketch the graph of the tax rate R as a function of the 

income I.

 (b)  How much tax is assessed on an income of $14,000?  

On $26,000?

 (c)  Sketch the graph of the total assessed tax T as a function 

of the income I.

 68.  The functions in Example 10 and Exercise 67 are called step 

functions because their graphs look like stairs. Give two other 

examples of step functions that arise in everyday life.

69–70 Graphs of f  and t are shown. Decide whether each func-

tion is even, odd, or neither. Explain your reasoning.

 69. y

x

f

g
 70. y

x

f

g

 71. (a)  If the point s5, 3d is on the graph of an even function, 

what other point must also be on the graph?

 (b)  If the point s5, 3d is on the graph of an odd function, what 

other point must also be on the graph?

 72.  A function f  has domain f25, 5g and a portion of its graph  

is shown.

 (a) Complete the graph of f  if it is known that f  is even.

 (b) Complete the graph of f  if it is known that f  is odd.
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x0

y

5_5

73–78 Determine whether f  is even, odd, or neither. If you have  

a graphing calculator, use it to check your answer visually.

 73. f sxd −
x

x 2
1 1

 74. f sxd −
x 2

x 4
1 1

 75. f sxd −
x

x 1 1
 76. f sxd − x | x |

 77. f sxd − 1 1 3x 2
2 x 4

 78. f sxd − 1 1 3x 3
2 x 5

 79.  If f  and t are both even functions, is f 1 t even? If f  and t 
are both odd functions, is f 1 t odd? What if f  is even and t is 

odd? Justify your answers.

 80.  If f  and t are both even functions, is the product ft even? If f  

and t are both odd functions, is ft odd? What if f  is even and  

t is odd? Justify your answers.

A mathematical model is a mathematical description (often by means of a function or 

an equation) of a real-world phenomenon such as the size of a population, the demand 

for a product, the speed of a falling object, the concentration of a product in a chemical 

reaction, the life expectancy of a person at birth, or the cost of emission reductions. The 

purpose of the model is to understand the phenomenon and perhaps to make predictions 

about future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world prob-

lem, our �rst task is to formulate a mathematical model by identifying and naming the 

independent and dependent variables and making assumptions that simplify the phenom-

enon enough to make it mathematically tractable. We use our knowledge of the physical 

situation and our mathematical skills to obtain equations that relate the variables. In 

situations where there is no physical law to guide us, we may need to collect data (either 

from a library or the Internet or by conducting our own experiments) and examine the 

data in the form of a table in order to discern patterns. From this numeri cal representation 

of a function we may wish to obtain a graphical representation by plotting the data. The 

graph might even suggest a suitable algebraic formula in some cases.

Real-world

problem

Mathematical

model

Real-world

predictions

Mathematical

conclusions

Test

Formulate Solve Interpret

The second stage is to apply the mathematics that we know (such as the calculus 

that will be developed throughout this book) to the mathematical model that we have 

formulated in order to derive mathematical conclusions. Then, in the third stage, we take 

those mathematical conclusions and interpret them as information about the original 

real-world phenomenon by way of offering explanations or making predictions. The �nal 

step is to test our predictions by checking against new real data. If the predictions don’t 

compare well with reality, we need to re�ne our model or to formulate a new model and 

start the cycle again.

A mathematical model is never a completely accurate representation of a physical 

situation—it is an idealization. A good model simpli�es reality enough to permit math-

FIGURE 1
The modeling process
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