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This edition is dedicated to the memory of

J. Douglas Faires

Doug was a friend, colleague, and coauthor for over 40 years.

He will be sadly missed.
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Preface

About the Text

This text was written for a sequence of courses on the theory and application of numerical

approximation techniques. It is designed primarily for junior-level mathematics, science,

and engineering majors who have completed at least the first year of the standard college

calculus sequence. Familiarity with the fundamentals of matrix algebra and differential

equations is useful, but there is sufficient introductory material on these topics so that

courses in these subjects are not needed as prerequisites.

Previous editions of Numerical Analysis have been used in a wide variety of situations.

In some cases, the mathematical analysis underlying the development of approximation

techniques was given more emphasis than the methods; in others, the emphasis was reversed.

The book has been used as a core reference for beginning graduate-level courses in engi-

neering, mathematics, computer science programs, and in first-year courses in introductory

analysis offered at international universities. We have adapted the book to fit these diverse

users without compromising our original purpose:

To introduce modern approximation techniques; to explain how, why, and when they

can be expected to work; and to provide a foundation for further study of numerical

analysis and scientific computing.

The book contains sufficient material for at least a full year of study, but we expect

many people will use the text only for a single-term course. In such a single-term course,

students learn to identify the types of problems that require numerical techniques for their

solution and see examples of the error propagation that can occur when numerical methods

are applied. They accurately approximate the solution of problems that cannot be solved

exactly and learn typical techniques for estimating error bounds for their approximations.

The remainder of the text then serves as a reference for methods that are not considered in the

course. Either the full-year or the single-course treatment is consistent with the philosophy

of the text.

Virtually every concept in the text is illustrated by example, and this edition contains

more than 2500 class-tested exercises ranging from elementary applications of methods

and algorithms to generalizations and extensions of the theory. In addition, the exercise

sets include numerous applied problems from diverse areas of engineering as well as from

the physical, computer, biological, economic, and social sciences. The applications, chosen

clearly and concisely, demonstrate how numerical techniques can and often must be applied

in real-life situations.

A number of software packages, known as Computer Algebra Systems (CAS), have

been developed to produce symbolic mathematical computations. Maple c©, Mathematica c©,

and MATLAB c© are predominant among these in the academic environment. Student

versions of these software packages are available at reasonable prices for most common

xi
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xii Preface

computer systems. In addition, Sage, a free open source system, is now available.

Information about this system can be found at the site

http://www.sagemath.org

Although there are differences among the packages, both in performance and in price,

all can perform standard algebra and calculus operations.

The results in most of our examples and exercises have been generated using problems

for which exact values can be determined because this better permits the performance of

the approximation method to be monitored. In addition, for many numerical techniques,

the error analysis requires bounding a higher ordinary or partial derivative of a function,

which can be a tedious task and one that is not particularly instructive once the techniques

of calculus have been mastered. So having a symbolic computation package available

can be very useful in the study of approximation techniques because exact solutions can

often be obtained easily using symbolic computation. Derivatives can be quickly obtained

symbolically, and a little insight often permits a symbolic computation to aid in the bounding

process as well.

Algorithms and Programs

In our first edition, we introduced a feature that at the time was innovative and somewhat

controversial. Instead of presenting our approximation techniques in a specific programming

language (FORTRAN was dominant at the time), we gave algorithms in a pseudocode that

would lead to a well-structured program in a variety of languages. Beginning with the

second edition, we listed programs in specific languages in the Instructor’s Manual for the

book, and the number of these languages increased in subsequent editions. We now have the

programs coded and available online in most common programming languages and CAS

worksheets. All of these are on the companion website for the book (see “Supplements”).

For each algorithm, there is a program written in Fortran, Pascal, C, and Java. In

addition, we have coded the programs using Maple, Mathematica, and MATLAB. This

should ensure that a set of programs is available for most common computing systems.

Every program is illustrated with a sample problem that is closely correlated to the text.

This permits the program to be run initially in the language of your choice to see the form

of the input and output. The programs can then be modified for other problems by making

minor changes. The form of the input and output are, as nearly as possible, the same in each

of the programming systems. This permits an instructor using the programs to discuss them

generically without regard to the particular programming system an individual student uses.

The programs are designed to run on a minimally configured computer and given

in ASCII format to permit flexibility of use. This permits them to be altered using any

editor or word processor that creates standard ASCII files. (These are also commonly called

“text-only” files.) Extensive README files are included with the program files so that

the peculiarities of the various programming systems can be individually addressed. The

README files are presented both in ASCII format and as PDF files. As new software is

developed, the programs will be updated and placed on the website for the book.

For most of the programming systems, the appropriate software is needed, such as

a compiler for Pascal, Fortran, and C, or one of the computer algebra systems (Maple,

Mathematica, and MATLAB). The Java implementations are an exception. You need the

system to run the programs, but Java can be freely downloaded from various sites. The best

way to obtain Java is to use a search engine to search on the name, choose a download site,

and follow the instructions for that site.
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Preface xiii

New for This Edition

The first edition of this book was published more than 35 years ago, in the decade after major

advances in numerical techniques were made to reflect the new widespread availability of

computer equipment. In our revisions of the book, we have added new techniques in an

attempt to keep our treatment current. To continue this trend, we have made a number of

significant changes for this edition:

• Some of the examples in the book have been rewritten to better emphasize the problem

being solved before the solution is given. Additional steps have been added to some of

the examples to explicitly show the computations required for the first steps of iteration

processes. This gives readers a way to test and debug programs they have written for

problems similar to the examples.

• Chapter exercises have been split into computational, applied, and theoretical to give

the instructor more flexibility in assigning homework. In almost all of the computational

situations, the exercises have been paired in an odd-even manner. Since the odd problems

are answered in the back of the text, if even problems were assigned as homework,

students could work the odd problems and check their answers prior to doing the even

problem.

• Many new applied exercises have been added to the text.

• Discussion questions have been added after each chapter section primarily for instructor

use in online courses.

• The last section of each chapter has been renamed and split into four subsections: Nu-

merical Software, Discussion Questions, Key Concepts, and Chapter Review. Many of

these discussion questions point the student to modern areas of research in software

development.

• Parts of the text were reorganized to facilitate online instruction.

• Additional PowerPoints have been added to supplement the reading material.

• The bibliographic material has been updated to reflect new editions of books that we

reference. New sources have been added that were not previously available.

As always with our revisions, every sentence was examined to determine if it was phrased

in a manner that best relates what we are trying to describe.

Supplements

The authors have created a companion website containing the supplementary materials

listed below. The website located at

https://sites.google.com/site/numericalanalysis1burden/

is for students and instructors. Some material on the website is for instructor use only.

Instructors can access protected materials by contacting the authors for the password.
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xiv Preface

Some of the supplements can also be obtained at

https://www.cengagebrain.com

by searching the ISBN.

1. Student Program Examples that contain Maple, Matlab, and Excel code for student

use in solving text problems. This is organized to parallel the text chapter by chapter.

Commands in these systems are illustrated. The commands are presented in very

short program segments to show how exercises may be solved without extensive

programming.

2. Student Lectures that contain additional insight to the chapter content. These

lectures were written primarily for the online learner but can be useful to students

taking the course in a traditional setting.

3. Student Study Guide that contains worked-out solutions to many of the problems.

The first two chapters of this guide are available on the website for the book in

PDF format so that prospective users can tell if they find it sufficiently useful.

The entire guide can be obtained only from the publisher by calling Cengage

Learning Customer & Sales Support at 1-800-354-9706 or by ordering online at

http://www.cengagebrain.com/.

4. Algorithm Programs that are complete programs written in Maple, Matlab, Math-

ematica, C, Pascal, Fortran, and Java for all the algorithms in the text. These

programs are intended for students who are more experienced with programming

languages.

5. Instructor PowerPoints in PDF format for instructor use in both traditional and

online courses. Contact authors for password.

6. Instructor’s Manual that provides answers and solutions to all the exercises in

the book. Computation results in the Instructor’s Manual were regenerated for

this edition using the programs on the website to ensure compatibility among the

various programming systems. Contact authors for password.

7. Instructor Sample Tests for instructor use. Contact authors for password.

8. Errata.

Possible Course Suggestions

Numerical Analysis is designed to allow instructors flexibility in the choice of topics as well

as in the level of theoretical rigor and in the emphasis on applications. In line with these

aims, we provide detailed references for the results that are not demonstrated in the text

and for the applications that are used to indicate the practical importance of the methods.

The text references cited are those most likely to be available in college libraries and have

been updated to reflect recent editions. We also include quotations from original research

papers when we feel this material is accessible to our intended audience. All referenced

material has been indexed to the appropriate locations in the text, and Library of Congress

call information for reference material has been included to permit easy location if searching

for library material.

The following flowchart indicates chapter prerequisites. Most of the possible sequences

that can be generated from this chart have been taught by the authors at Youngstown State

University.
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Preface xv

The material in this edition should permit instructors to prepare an undergraduate course

in numerical linear algebra for students who have not previously studied numerical analysis.

This could be done by covering Chapters 1, 6, 7, and 9.

Chapter 6Chapter 2 Chapter 3

Chapter 7Chapter 10 Chapter 8

Chapter 9

Chapter 11

Chapter 12

Chapter 4 Chapter 5

Chapter 1
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C H A P T E R

1 Mathematical Preliminaries
and Error Analysis

Introduction

In beginning chemistry courses, we see the ideal gas law,

PV = NRT,

which relates the pressure P , volume V , temperature T , and number of moles N of an

“ideal” gas. In this equation, R is a constant that depends on the measurement system.

Suppose two experiments are conducted to test this law, using the same gas in each

case. In the first experiment,

P = 1.00 atm, V = 0.100 m3,

N = 0.00420 mol, R = 0.08206.

The ideal gas law predicts the temperature of the gas to be

T =
PV

NR
=

(1.00)(0.100)

(0.00420)(0.08206)
= 290.15 K = 17◦C.

When we measure the temperature of the gas, however, we find that the true temperature is

15◦C.

V1

V2

We then repeat the experiment using the same values of R and N but increase the

pressure by a factor of two and reduce the volume by the same factor. The product PV

remains the same, so the predicted temperature is still 17◦C. But now we find that the actual

temperature of the gas is 19◦C.

1
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2 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Clearly, the ideal gas law is suspect, but before concluding that the law is invalid in

this situation, we should examine the data to see whether the error could be attributed to

the experimental results. If so, we might be able to determine how much more accurate our

experimental results would need to be to ensure that an error of this magnitude does not

occur.

Analysis of the error involved in calculations is an important topic in numerical analysis

and is introduced in Section 1.2. This particular application is considered in Exercise 26 of

that section.

This chapter contains a short review of those topics from single-variable calculus

that will be needed in later chapters. A solid knowledge of calculus is essential for an

understanding of the analysis of numerical techniques, and more thorough review might

be needed for those who have been away from this subject for a while. In addition there is

an introduction to convergence, error analysis, the machine representation of numbers, and

some techniques for categorizing and minimizing computational error.

1.1 Review of Calculus

Limits and Continuity

The concepts of limit and continuity of a function are fundamental to the study of calculus

and form the basis for the analysis of numerical techniques.

Definition 1.1 A function f defined on a set X of real numbers has the limit L at x0, written

lim
x→x0

f (x) = L ,

if, given any real number ε > 0, there exists a real number δ > 0 such that

| f (x) − L| < ε, whenever x ∈ X and 0 < |x − x0| < δ.

(See Figure 1.1.)

Figure 1.1

x

L 1 

L 2

L

x0 2 d x0 1 dx0

y

y 5 f (x)

ε

e

e
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1.1 Review of Calculus 3

Definition 1.2 Let f be a function defined on a set X of real numbers and x0 ∈ X . Then f is continuous

at x0 if

lim
x→x0

f (x) = f (x0).

The function f is continuous on the set X if it is continuous at each number in X .

The set of all functions that are continuous on the set X is denoted C(X). When X is

an interval of the real line, the parentheses in this notation are omitted. For example, the

set of all functions continuous on the closed interval [a, b] is denoted C[a, b]. The symbol

R denotes the set of all real numbers, which also has the interval notation (−∞, ∞). So

the set of all functions that are continuous at every real number is denoted by C(R) or by

C(−∞, ∞).

The basic concepts of calculus

and its applications were

developed in the late 17th and

early 18th centuries, but the

mathematically precise concepts

of limits and continuity were not

described until the time of

Augustin Louis Cauchy

(1789–1857), Heinrich Eduard

Heine (1821–1881), and Karl

Weierstrass (1815 –1897) in the

latter portion of the 19th century.

The limit of a sequence of real or complex numbers is defined in a similar manner.

Definition 1.3 Let {xn}∞n=1 be an infinite sequence of real numbers. This sequence has the limit x

(converges to x) if, for any ε > 0, there exists a positive integer N (ε) such that |xn −x | < ε

whenever n > N (ε). The notation

lim
n→∞

xn = x, or xn → x as n → ∞,

means that the sequence {xn}∞n=1 converges to x .

Theorem 1.4 If f is a function defined on a set X of real numbers and x0 ∈ X , then the following

statements are equivalent:

a. f is continuous at x0;

b. If {xn}∞n=1 is any sequence in X converging to x0, then limn→∞ f (xn) = f (x0).

The functions we will consider when discussing numerical methods will be assumed to

be continuous because this is a minimal requirement for predictable behavior. Functions that

are not continuous can skip over points of interest, which can cause difficulties in attempts

to approximate a solution to a problem.

Differentiability

More sophisticated assumptions about a function generally lead to better approximation

results. For example, a function with a smooth graph will normally behave more predictably

than one with numerous jagged features. The smoothness condition relies on the concept

of the derivative.

Definition 1.5 Let f be a function defined in an open interval containing x0. The function f is differen-

tiable at x0 if

f ′(x0) = lim
x→x0

f (x) − f (x0)

x − x0

exists. The number f ′(x0) is called the derivative of f at x0. A function that has a derivative

at each number in a set X is differentiable on X .

The derivative of f at x0 is the slope of the tangent line to the graph of f at (x0, f (x0)),

as shown in Figure 1.2.
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4 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Figure 1.2

x

y

y 5 f (x)(x0,  f (x0))
f (x0)

x0

The tangent line has slope f 9(x0)

Theorem 1.6 If the function f is differentiable at x0, then f is continuous at x0.

The next theorems are of fundamental importance in deriving methods for error esti-

mation. The proofs of these theorems and the other unreferenced results in this section can

be found in any standard calculus text.

The theorem attributed to Michel

Rolle (1652–1719) appeared in

1691 in a little-known treatise

titled Méthode pour résoundre les

égalites. Rolle originally

criticized the calculus that was

developed by Isaac Newton and

Gottfried Leibniz but later

became one of its proponents.

The set of all functions that have n continuous derivatives on X is denoted Cn(X), and

the set of functions that have derivatives of all orders on X is denoted C∞(X). Polynomial,

rational, trigonometric, exponential, and logarithmic functions are in C∞(X), where X

consists of all numbers for which the functions are defined. When X is an interval of the

real line, we will again omit the parentheses in this notation.

Theorem 1.7 (Rolle’s Theorem)

Suppose f ∈ C[a, b] and f is differentiable on (a, b). If f (a) = f (b), then a number c in

(a, b) exists with f ′(c) = 0. (See Figure 1.3.)

Figure 1.3

x

 f 9(c) 5 0

a bc

 f (a) 5 f (b)

y

y 5 f (x)

Theorem 1.8 (Mean Value Theorem)

If f ∈ C[a, b] and f is differentiable on (a, b), then a number c in (a, b) exists with (See

Figure 1.4.)

f ′(c) =
f (b) − f (a)

b − a
.
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Figure 1.4
y

xa bc

Slope f 9(c)

Parallel lines

Slope
b 2 a

f (b) 2 f (a)

y 5 f (x)

Theorem 1.9 (Extreme Value Theorem)

If f ∈ C[a, b], then c1, c2 ∈ [a, b] exist with f (c1) ≤ f (x) ≤ f (c2), for all x ∈ [a, b].

In addition, if f is differentiable on (a, b), then the numbers c1 and c2 occur either at the

endpoints of [a, b] or where f ′ is zero. (See Figure 1.5.)

Figure 1.5
y

xa c2 c1 b

y 5 f (x)

Example 1 Find the absolute minimum and absolute maximum values of

f (x) = 2 − ex + 2x

on the intervals (a) [0, 1], and (b) [1, 2].

Solution We begin by differentiating f (x) to obtain

f ′(x) = −ex + 2.

f ′(x) = 0 when −ex + 2 = 0 or, equivalently, when ex = 2. Taking the natural logarithm

of both sides of the equation gives

ln (ex ) = ln (2) or x = ln (2) ≈ 0.69314718056
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6 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

(a) When the interval is [0, 1], the absolute extrema must occur at f (0), f (ln (2)), or

f (1). Evaluating, we have

f (0) = 2 − e0 + 2(0) = 1

f (ln (2)) = 2 − eln (2) + 2 ln (2) = 2 ln (2) ≈ 1.38629436112

f (1) = 2 − e + 2(1) = 4 − e ≈ 1.28171817154.

Thus, the absolute minimum of f (x) on [0, 1] is f (0) = 1 and the absolute

maximum is f (ln (2)) = 2 ln (2).

(b) When the interval is [1, 2], we know that f ′(x) 	= 0 so the absolute extrema occur

at f (1) and f (2). Thus, f (2) = 2 − e2 + 2(2) = 6 − e2 ≈ −1.3890560983. The

absolute minimum on [1, 2] is 6 − e2 and the absolute maximum is 1.

We note that

max
0≤x≤2

| f (x)| = |6 − e2| ≈ 1.3890560983.

The following theorem is not generally presented in a basic calculus course but is

derived by applying Rolle’s Theorem successively to f, f ′, . . . , and, finally, to f (n−1).

This result is considered in Exercise 26.

Theorem 1.10 (Generalized Rolle’s Theorem)

Suppose f ∈ C[a, b] is n times differentiable on (a, b). If f (x) = 0 at the n + 1 distinct

numbers a ≤ x0 < x1 < . . . < xn ≤ b, then a number c in (x0, xn) and hence in (a, b)

exists with f (n)(c) = 0.

We will also make frequent use of the Intermediate Value Theorem. Although its

statement seems reasonable, its proof is beyond the scope of the usual calculus course. It

can, however, be found in most analysis texts (see, for example, [Fu], p. 67).

Theorem 1.11 (Intermediate Value Theorem)

If f ∈ C[a, b] and K is any number between f (a) and f (b), then there exists a number c

in (a, b) for which f (c) = K .

Figure 1.6 shows one choice for the number that is guaranteed by the Intermediate

Value Theorem. In this example, there are two other possibilities.

Figure 1.6

x

y

f (a)

f (b)

y 5 f (x)

K

(a,  f (a))

(b,  f (b))

a bc
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1.1 Review of Calculus 7

Example 2 Show that x5 − 2x3 + 3x2 − 1 = 0 has a solution in the interval [0, 1].

Solution Consider the function defined by f (x) = x5 − 2x3 + 3x2 − 1. The function f is

continuous on [0, 1]. In addition,

f (0) = −1 < 0 and 0 < 1 = f (1).

Hence, the Intermediate Value Theorem implies that a number c exists, with 0 < c < 1, for

which c5 − 2c3 + 3c2 − 1 = 0.

As seen in Example 2, the Intermediate Value Theorem is used to determine when

solutions to certain problems exist. It does not, however, give an efficient means for finding

these solutions. This topic is considered in Chapter 2.

Integration

The other basic concept of calculus that will be used extensively is the Riemann integral.

George Fredrich Berhard

Riemann (1826–1866) made

many of the important

discoveries classifying the

functions that have integrals. He

also did fundamental work in

geometry and complex function

theory and is regarded as one of

the profound mathematicians of

the 19th century.

Definition 1.12 The Riemann integral of the function f on the interval [a, b] is the following limit,

provided it exists:

∫ b

a

f (x) dx = lim
max �xi →0

n
∑

i=1

f (zi ) �xi ,

where the numbers x0, x1, . . . , xn satisfy a = x0 ≤ x1 ≤ · · · ≤ xn = b, where �xi =
xi − xi−1, for each i = 1, 2, . . . , n, and zi is arbitrarily chosen in the interval [xi−1, xi ].

A function f that is continuous on an interval [a, b] is also Riemann integrable on

[a, b]. This permits us to choose, for computational convenience, the points xi to be equally

spaced in [a, b] and, for each i = 1, 2, . . . , n, to choose zi = xi . In this case,

∫ b

a

f (x) dx = lim
n→∞

b − a

n

n
∑

i=1

f (xi ),

where the numbers shown in Figure 1.7 as xi are xi = a + i(b − a)/n.

Figure 1.7
y

x

y 5 f (x)

a 5 x0 x1 x2 xi21 xi xn21 b 5 xn. . . . . .

Two other results will be needed in our study of numerical analysis. The first is a

generalization of the usual Mean Value Theorem for Integrals.
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8 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Theorem 1.13 (Weighted Mean Value Theorem for Integrals)

Suppose f ∈ C[a, b], the Riemann integral of g exists on [a, b], and g(x) does not change

sign on [a, b]. Then there exists a number c in (a, b) with

∫ b

a

f (x)g(x) dx = f (c)

∫ b

a

g(x) dx .

When g(x) ≡ 1, Theorem 1.13 is the usual Mean Value Theorem for Integrals. It gives

the average value of the function f over the interval [a, b] as (See Figure 1.8.)

f (c) =
1

b − a

∫ b

a

f (x) dx .

Figure 1.8

x

y

 f (c)

y 5 f (x)

a bc

The proof of Theorem 1.13 is not generally given in a basic calculus course but can be

found in most analysis texts (see, for example, [Fu], p. 162).

Taylor Polynomials and Series

The final theorem in this review from calculus describes the Taylor polynomials. These

polynomials are used extensively in numerical analysis.

Theorem 1.14 (Taylor’s Theorem)

Suppose f ∈ Cn[a, b], f (n+1) exists on [a, b], and x0 ∈ [a, b]. For every x ∈ [a, b], there

exists a number ξ(x) between x0 and x with

f (x) = Pn(x) + Rn(x),Brook Taylor (1685–1731)

described this series in 1715 in

the paper Methodus

incrementorum directa et inversa.

Special cases of the result and

likely the result itself had been

previously known to Isaac

Newton, James Gregory, and

others.

where

Pn(x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)

2 + · · · +
f (n)(x0)

n!
(x − x0)

n

=
n

∑

k=0

f (k)(x0)

k!
(x − x0)

k
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1.1 Review of Calculus 9

and

Rn(x) =
f (n+1)(ξ(x))

(n + 1)!
(x − x0)

n+1.

Here Pn(x) is called the nth Taylor polynomial for f about x0, and Rn(x) is called

the remainder term (or truncation error) associated with Pn(x). Since the number ξ(x)

in the truncation error Rn(x) depends on the value of x at which the polynomial Pn(x) is

being evaluated, it is a function of the variable x . However, we should not expect to be

able to explicitly determine the function ξ(x). Taylor’s Theorem simply ensures that such a

function exists and that its value lies between x and x0. In fact, one of the common problems

in numerical methods is to try to determine a realistic bound for the value of f (n+1)(ξ(x))

when x is in some specified interval.

Colin Maclaurin (1698–1746) is

best known as the defender of the

calculus of Newton when it came

under bitter attack by Irish

philosopher Bishop George

Berkeley.

The infinite series obtained by taking the limit of Pn(x) as n → ∞ is called the Taylor

series for f about x0. In the case x0 = 0, the Taylor polynomial is often called a Maclaurin

polynomial, and the Taylor series is often called a Maclaurin series.

Maclaurin did not discover the

series that bears his name; it was

known to century mathematicians

before he was born. However, he

did devise a method for solving a

system of linear equations that is

known as Cramer’s rule, which

Cramer did not publish until

1750.

The term truncation error in the Taylor polynomial refers to the error involved in

using a truncated, or finite, summation to approximate the sum of an infinite series.

Example 3 Let f (x) = cos x and x0 = 0. Determine

(a) the second Taylor polynomial for f about x0; and

(b) the third Taylor polynomial for f about x0.

Solution Since f ∈ C∞(R), Taylor’s Theorem can be applied for any n ≥ 0. Also,

f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x, and f (4)(x) = cos x,

so

f (0) = 1, f ′(0) = 0, f ′′(0) = −1, and f ′′′(0) = 0.

(a) For n = 2 and x0 = 0, we have

cos x = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(ξ(x))

3!
x3

= 1 −
1

2
x2 +

1

6
x3 sin ξ(x),

where ξ(x) is some (generally unknown) number between 0 and x . (See Figure 1.9.)

Figure 1.9
y

x

y 5 cos x

y 5 P2(x) 5 1 2    x2
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1
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10 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

When x = 0.01, this becomes

cos 0.01 = 1 −
1

2
(0.01)2 +

1

6
(0.01)3 sin ξ(0.01) = 0.99995 +

10−6

6
sin ξ(0.01).

The approximation to cos 0.01 given by the Taylor polynomial is therefore 0.99995. The

truncation error, or remainder term, associated with this approximation is

10−6

6
sin ξ(0.01) = 0.16 × 10−6 sin ξ(0.01),

where the bar over the 6 in 0.16 is used to indicate that this digit repeats indefinitely.

Although we have no way of determining sin ξ(0.01), we know that all values of the sine

lie in the interval [−1, 1], so the error occurring if we use the approximation 0.99995 for

the value of cos 0.01 is bounded by

| cos(0.01) − 0.99995| = 0.16 × 10−6| sin ξ(0.01)| ≤ 0.16 × 10−6.

Hence, the approximation 0.99995 matches at least the first five digits of cos 0.01, and

0.9999483 < 0.99995 − 1.6 × 10−6 ≤ cos 0.01

≤ 0.99995 + 1.6 × 10−6 < 0.9999517.

The error bound is much larger than the actual error. This is due in part to the poor

bound we used for | sin ξ(x)|. It is shown in Exercise 27 that for all values of x , we have

| sin x | ≤ |x |. Since 0 ≤ ξ < 0.01, we could have used the fact that | sin ξ(x)| ≤ 0.01 in

the error formula, producing the bound 0.16 × 10−8.

(b) Since f ′′′(0) = 0, the third Taylor polynomial with remainder term about

x0 = 0 is

cos x = 1 −
1

2
x2 +

1

24
x4 cos ξ̃ (x),

where 0 < ξ̃(x) < 0.01. The approximating polynomial remains the same, and the ap-

proximation is still 0.99995, but we now have much better accuracy assurance. Since

| cos ξ̃ (x)| ≤ 1 for all x , we have
∣

∣

∣

∣

1

24
x4 cos ξ̃ (x)

∣

∣

∣

∣

≤
1

24
(0.01)4(1) ≈ 4.2 × 10−10.

So,

| cos 0.01 − 0.99995| ≤ 4.2 × 10−10,

and

0.99994999958 = 0.99995 − 4.2 × 10−10

≤ cos 0.01 ≤ 0.99995 + 4.2 × 10−10 = 0.99995000042.

Example 3 illustrates the two objectives of numerical analysis:

(i) Find an approximation to the solution of a given problem.

(ii) Determine a bound for the accuracy of the approximation.

The Taylor polynomials in both parts provide the same answer to (i), but the third Taylor

polynomial gave a much better answer to (ii) than the second Taylor polynomial.

We can also use the Taylor polynomials to give us approximations to integrals.
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Illustration We can use the third Taylor polynomial and its remainder term found in Example 3 to

approximate
∫ 0.1

0
cos x dx . We have

∫ 0.1

0

cos x dx =
∫ 0.1

0

(

1 −
1

2
x2

)

dx +
1

24

∫ 0.1

0

x4 cos ξ̃ (x) dx

=
[

x −
1

6
x3

]0.1

0

+
1

24

∫ 0.1

0

x4 cos ξ̃ (x) dx

= 0.1 −
1

6
(0.1)3 +

1

24

∫ 0.1

0

x4 cos ξ̃ (x) dx .

Therefore,

∫ 0.1

0

cos x dx ≈ 0.1 −
1

6
(0.1)3 = 0.09983.

A bound for the error in this approximation is determined from the integral of the Taylor

remainder term and the fact that | cos ξ̃ (x)| ≤ 1 for all x :

1

24

∣

∣

∣

∣

∫ 0.1

0

x4 cos ξ̃ (x) dx

∣

∣

∣

∣

≤
1

24

∫ 0.1

0

x4| cos ξ̃ (x)| dx

≤
1

24

∫ 0.1

0

x4 dx =
(0.1)5

120
= 8.3 × 10−8.

The true value of this integral is

∫ 0.1

0

cos x dx = sin x

]0.1

0

= sin 0.1 ≈ 0.099833416647,

so the actual error for this approximation is 8.3314 × 10−8, which is within the error

bound.

E X E R C I S E S E T 1.1

1. Show that the following equations have at least one solution in the given intervals.

a. x cos x − 2x2 + 3x − 1 = 0, [0.2, 0.3] and [1.2, 1.3]

b. (x − 2)2 − ln x = 0, [1, 2] and [e, 4]

c. 2x cos(2x) − (x − 2)2 = 0, [2, 3] and [3, 4]

d. x − (ln x)x = 0, [4, 5]

2. Show that the following equations have at least one solution in the given intervals.

a.
√

x − cos x = 0, [0, 1]

b. ex − x2 + 3x − 2 = 0, [0, 1]

c. −3 tan(2x) + x = 0, [0, 1]

d. ln x − x2 + 5

2
x − 1 = 0, [ 1

2
, 1]

3. Find intervals containing solutions to the following equations.

a. x − 2−x = 0

b. 2x cos(2x) − (x + 1)2 = 0

c. 3x − ex = 0

d. x + 1 − 2 sin(πx) = 0
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12 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

4. Find intervals containing solutions to the following equations.

a. x − 3−x = 0

b. 4x2 − ex = 0

c. x3 − 2x2 − 4x + 2 = 0

d. x3 + 4.001x2 + 4.002x + 1.101 = 0

5. Find maxa≤x≤b | f (x)| for the following functions and intervals.

a. f (x) = (2 − ex + 2x)/3, [0, 1]

b. f (x) = (4x − 3)/(x2 − 2x), [0.5, 1]

c. f (x) = 2x cos(2x) − (x − 2)2, [2, 4]

d. f (x) = 1 + e− cos(x−1), [1, 2]

6. Find maxa≤x≤b | f (x)| for the following functions and intervals.

a. f (x) = 2x/(x2 + 1), [0, 2]

b. f (x) = x2
√

(4 − x), [0, 4]

c. f (x) = x3 − 4x + 2, [1, 2]

d. f (x) = x
√

(3 − x2), [0, 1]

7. Show that f ′(x) is 0 at least once in the given intervals.

a. f (x) = 1 − ex + (e − 1) sin((π/2)x), [0, 1]

b. f (x) = (x − 1) tan x + x sin πx, [0, 1]

c. f (x) = x sin πx − (x − 2) ln x, [1, 2]

d. f (x) = (x − 2) sin x ln(x + 2), [−1, 3]

8. Suppose f ∈ C[a, b] and f ′(x) exists on (a, b). Show that if f ′(x) 	= 0 for all x in (a, b), then there

can exist at most one number p in [a, b] with f (p) = 0.

9. Let f (x) = x3.

a. Find the second Taylor polynomial P2(x) about x0 = 0.

b. Find R2(0.5) and the actual error in using P2(0.5) to approximate f (0.5).

c. Repeat part (a) using x0 = 1.

d. Repeat part (b) using the polynomial from part (c).

10. Find the third Taylor polynomial P3(x) for the function f (x) =
√

x + 1 about x0 = 0. Approximate√
0.5,

√
0.75,

√
1.25, and

√
1.5 using P3(x) and find the actual errors.

11. Find the second Taylor polynomial P2(x) for the function f (x) = ex cos x about x0 = 0.

a. Use P2(0.5) to approximate f (0.5). Find an upper bound for error | f (0.5) − P2(0.5)| using the

error formula and compare it to the actual error.

b. Find a bound for the error | f (x) − P2(x)| in using P2(x) to approximate f (x) on the interval

[0, 1].

c. Approximate
∫ 1

0
f (x) dx using

∫ 1

0
P2(x) dx .

d. Find an upper bound for the error in (c) using
∫ 1

0
|R2(x) dx | and compare the bound to the actual

error.

12. Repeat Exercise 11 using x0 = π/6.

13. Find the third Taylor polynomial P3(x) for the function f (x) = (x − 1) ln x about x0 = 1.

a. Use P3(0.5) to approximate f (0.5). Find an upper bound for error | f (0.5) − P3(0.5)| using the

error formula and compare it to the actual error.

b. Find a bound for the error | f (x) − P3(x)| in using P3(x) to approximate f (x) on the interval

[0.5, 1.5].

c. Approximate
∫ 1.5

0.5
f (x) dx using

∫ 1.5

0.5
P3(x) dx .

d. Find an upper bound for the error in (c) using
∫ 1.5

0.5
|R3(x) dx | and compare the bound to the

actual error.

14. Let f (x) = 2x cos(2x) − (x − 2)2 and x0 = 0.

a. Find the third Taylor polynomial P3(x) and use it to approximate f (0.4).
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1.1 Review of Calculus 13

b. Use the error formula in Taylor’s Theorem to find an upper bound for the error | f (0.4)−P3(0.4)|.
Compute the actual error.

c. Find the fourth Taylor polynomial P4(x) and use it to approximate f (0.4).

d. Use the error formula in Taylor’s Theorem to find an upper bound for the error | f (0.4)−P4(0.4)|.
Compute the actual error.

15. Find the fourth Taylor polynomial P4(x) for the function f (x) = xex2
about x0 = 0.

a. Find an upper bound for | f (x) − P4(x)|, for 0 ≤ x ≤ 0.4.

b. Approximate
∫ 0.4

0
f (x) dx using

∫ 0.4

0
P4(x) dx .

c. Find an upper bound for the error in (b) using
∫ 0.4

0
P4(x) dx .

d. Approximate f ′(0.2) using P ′
4(0.2) and find the error.

16. Use the error term of a Taylor polynomial to estimate the error involved in using sin x ≈ x to

approximate sin 1◦.

17. Use a Taylor polynomial about π/4 to approximate cos 42◦ to an accuracy of 10−6.

18. Let f (x) = (1 − x)−1 and x0 = 0. Find the nth Taylor polynomial Pn(x) for f (x) about x0. Find a

value of n necessary for Pn(x) to approximate f (x) to within 10−6 on [0, 0.5].

19. Let f (x) = ex and x0 = 0. Find the nth Taylor polynomial Pn(x) for f (x) about x0. Find a value of

n necessary for Pn(x) to approximate f (x) to within 10−6 on [0, 0.5].

20. Find the nth Maclaurin polynomial Pn(x) for f (x) = arctan x .

21. The polynomial P2(x) = 1− 1

2
x2 is to be used to approximate f (x) = cos x in [− 1

2
, 1

2
]. Find a bound

for the maximum error.

22. Use the Intermediate Value Theorem 1.11 and Rolle’s Theorem 1.7 to show that the graph of f (x) =
x3 + 2x + k crosses the x-axis exactly once, regardless of the value of the constant k.

23. A Maclaurin polynomial for ex is used to give the approximation 2.5 to e. The error bound in this

approximation is established to be E = 1

6
. Find a bound for the error in E .

24. The error function defined by

erf(x) =
2

√
π

∫ x

0

e−t2

dt

gives the probability that any one of a series of trials will lie within x units of the mean, assuming that

the trials have a normal distribution with mean 0 and standard deviation
√

2/2. This integral cannot

be evaluated in terms of elementary functions, so an approximating technique must be used.

a. Integrate the Maclaurin series for e−x2
to show that

erf(x) =
2

√
π

∞
∑

k=0

(−1)k x2k+1

(2k + 1)k!
.

b. The error function can also be expressed in the form

erf(x) =
2

√
π

e−x2
∞

∑

k=0

2k x2k+1

1 · 3 · 5 · · · (2k + 1)
.

Verify that the two series agree for k = 1, 2, 3, and 4. [Hint: Use the Maclaurin series for e−x2
.]

c. Use the series in part (a) to approximate erf(1) to within 10−7.

d. Use the same number of terms as in part (c) to approximate erf(1) with the series in part (b).

e. Explain why difficulties occur using the series in part (b) to approximate erf(x).

THEORETICAL EXERCISES

25. The nth Taylor polynomial for a function f at x0 is sometimes referred to as the polynomial of degree

at most n that “best” approximates f near x0.

a. Explain why this description is accurate.
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14 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

b. Find the quadratic polynomial that best approximates a function f near x0 = 1 if the tangent

line at x0 = 1 has equation y = 4x − 1 and if f ′′(1) = 6.

26. Prove the Generalized Rolle’s Theorem, Theorem 1.10, by verifying the following.

a. Use Rolle’s Theorem to show that f
′
(zi ) = 0 for n − 1 numbers in [a, b] with a < z1 < z2 <

· · · < zn−1 < b.

b. Use Rolle’s Theorem to show that f
′′
(w i ) = 0 for n − 2 numbers in [a, b] with z1 < w1 < z2 <

w2 · · · wn−2 < zn−1 < b.

c. Continue the arguments in parts (a) and (b) to show that for each j = 1, 2, . . . , n − 1, there are

n − j distinct numbers in [a, b], where f ( j) is 0.

d. Show that part (c) implies the conclusion of the theorem.

27. Example 3 stated that for all x we have | sin x | ≤ |x |. Use the following to verify this statement.

a. Show that for all x ≥ 0, f (x) = x − sin x is nondecreasing, which implies that sin x ≤ x with

equality only when x = 0.

b. Use the fact that the sine function is odd to reach the conclusion.

28. A function f : [a, b] → R is said to satisfy a Lipschitz condition with Lipschitz constant L on [a, b]

if, for every x , y ∈ [a, b], we have | f (x) − f (y)| ≤ L|x − y|.
a. Show that if f satisfies a Lipschitz condition with Lipschitz constant L on an interval [a, b],

then f ∈ C[a, b].

b. Show that if f has a derivative that is bounded on [a, b] by L , then f satisfies a Lipschitz

condition with Lipschitz constant L on [a, b].

c. Give an example of a function that is continuous on a closed interval but does not satisfy a

Lipschitz condition on the interval.

29. Suppose f ∈ C[a, b] and x1 and x2 are in [a, b].

a. Show that a number ξ exists between x1 and x2 with

f (ξ) =
f (x1) + f (x2)

2
=

1

2
f (x1) +

1

2
f (x2).

b. Suppose c1 and c2 are positive constants. Show that a number ξ exists between x1 and x2 with

f (ξ) =
c1 f (x1) + c2 f (x2)

c1 + c2

.

c. Give an example to show that the result in part (b) does not necessarily hold when c1 and c2 have

opposite signs with c1 	= −c2.

30. Let f ∈ C[a, b], and let p be in the open interval (a, b).

a. Suppose f (p) 	= 0. Show that a δ > 0 exists with f (x) 	= 0, for all x in [p − δ, p + δ], with

[p − δ, p + δ] a subset of [a, b].

b. Suppose f (p) = 0 and k > 0 is given. Show that a δ > 0 exists with | f (x)| ≤ k, for all x in

[p − δ, p + δ], with [p − δ, p + δ] a subset of [a, b].

DISCUSSION QUESTION

1. In your own words, describe the Lipschitz condition. Give several examples of functions that satisfy

this condition or give several examples of functions that do not satisfy this condition.

1.2 Round-off Errors and Computer Arithmetic

The arithmetic performed by a calculator or computer is different from the arithmetic in

algebra and calculus courses. You would likely expect that we always have as true statements

things such as 2+2 = 4, 4·8 = 32, and (
√

3)2 = 3. However, with computer arithmetic, we
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1.2 Round-off Errors and Computer Arithmetic 15

expect exact results for 2+2 = 4 and 4 ·8 = 32, but we will not have precisely (
√

3)2 = 3.

To understand why this is true, we must explore the world of finite-digit arithmetic.

In our traditional mathematical world, we permit numbers with an infinite number of

digits. The arithmetic we use in this world defines
√

3 as that unique positive number that

when multiplied by itself produces the integer 3. In the computational world, however, each

representable number has only a fixed and finite number of digits. This means, for example,

that only rational numbers—and not even all of these—can be represented exactly. Since√
3 is not rational, it is given an approximate representation, one whose square will not

be precisely 3, although it will likely be sufficiently close to 3 to be acceptable in most

situations. In most cases, then, this machine arithmetic is satisfactory and passes without

notice or concern, but at times problems arise because of this discrepancy.

Error due to rounding should be

expected whenever computations

are performed using numbers that

are not powers of 2. Keeping this

error under control is extremely

important when the number of

calculations is large.

The error that is produced when a calculator or computer is used to perform real-

number calculations is called round-off error. It occurs because the arithmetic performed

in a machine involves numbers with only a finite number of digits, with the result that

calculations are performed with only approximate representations of the actual numbers.

In a computer, only a relatively small subset of the real number system is used for the

representation of all the real numbers. This subset contains only rational numbers, both

positive and negative, and stores the fractional part, together with an exponential part.

Binary Machine Numbers

In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report

called Binary Floating Point Arithmetic Standard 754–1985. An updated version was pub-

lished in 2008 as IEEE 754-2008. This provides standards for binary and decimal floating

point numbers, formats for data interchange, algorithms for rounding arithmetic operations,

and the handling of exceptions. Formats are specified for single, double, and extended pre-

cisions, and these standards are generally followed by all microcomputer manufacturers

using floating-point hardware.

A 64-bit (binary digit) representation is used for a real number. The first bit is a sign

indicator, denoted s. This is followed by an 11-bit exponent, c, called the characteristic,

and a 52-bit binary fraction, f , called the mantissa. The base for the exponent is 2.

Since 52 binary digits correspond to between 16 and 17 decimal digits, we can assume

that a number represented in this system has at least 16 decimal digits of precision. The

exponent of 11 binary digits gives a range of 0 to 211 −1 = 2047. However, using only posi-

tive integers for the exponent would not permit an adequate representation of numbers with

small magnitude. To ensure that numbers with small magnitude are equally representable,

1023 is subtracted from the characteristic, so the range of the exponent is actually from

−1023 to 1024.

To save storage and provide a unique representation for each floating-point number, a

normalization is imposed. Using this system gives a floating-point number of the form

(−1)s2c−1023(1 + f ).

Illustration Consider the machine number

0 10000000011 1011100100010000000000000000000000000000000000000000.

The leftmost bit is s = 0, which indicates that the number is positive. The next 11 bits,

10000000011, give the characteristic and are equivalent to the decimal number

c = 1 · 210 + 0 · 29 + · · · + 0 · 22 + 1 · 21 + 1 · 20 = 1024 + 2 + 1 = 1027.
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16 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

The exponential part of the number is, therefore, 21027−1023 = 24. The final 52 bits specify

that the mantissa is

f = 1 ·
(

1

2

)1

+ 1 ·
(

1

2

)3

+ 1 ·
(

1

2

)4

+ 1 ·
(

1

2

)5

+ 1 ·
(

1

2

)8

+ 1 ·
(

1

2

)12

.

As a consequence, this machine number precisely represents the decimal number

(−1)s2c−1023(1 + f ) = (−1)0 · 21027−1023

(

1 +
(

1

2
+

1

8
+

1

16
+

1

32
+

1

256
+

1

4096

))

= 27.56640625.

However, the next smallest machine number is

0 10000000011 1011100100001111111111111111111111111111111111111111,

and the next largest machine number is

0 10000000011 1011100100010000000000000000000000000000000000000001.

This means that our original machine number represents not only 27.56640625 but also half

of the real numbers that are between 27.56640625 and the next smallest machine number

as well as half the numbers between 27.56640625 and the next largest machine number. To

be precise, it represents any real number in the interval

[27.5664062499999982236431605997495353221893310546875,

27.5664062500000017763568394002504646778106689453125).

The smallest normalized positive number that can be represented has s = 0, c = 1,

and f = 0 and is equivalent to

2−1022 · (1 + 0) ≈ 0.22251 × 10−307,

and the largest has s = 0, c = 2046, and f = 1 − 2−52 and is equivalent to

21023 · (2 − 2−52) ≈ 0.17977 × 10309.

Numbers occurring in calculations that have a magnitude less than

2−1022 · (1 + 0)

result in underflow and are generally set to zero. Numbers greater than

21023 · (2 − 2−52)

result in overflow and typically cause the computations to stop (unless the program has

been designed to detect this occurrence). Note that there are two representations for the

number zero: a positive 0 when s = 0, c = 0, and f = 0 and a negative 0 when s = 1,

c = 0, and f = 0.
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1.2 Round-off Errors and Computer Arithmetic 17

Decimal Machine Numbers

The use of binary digits tends to conceal the computational difficulties that occur when a

finite collection of machine numbers is used to represent all the real numbers. To examine

these problems, we will use more familiar decimal numbers instead of binary representation.

Specifically, we assume that machine numbers are represented in the normalized decimal

floating-point form

±0.d1d2 . . . dk × 10n, 1 ≤ d1 ≤ 9, and 0 ≤ di ≤ 9,

for each i = 2, . . . , k. Numbers of this form are called k-digit decimal machine numbers.

Any positive real number within the numerical range of the machine can be normalized

to the form

y = 0.d1d2 . . . dkdk+1dk+2 . . . × 10n.

The floating-point form of y, denoted f l(y), is obtained by terminating the mantissa ofThe error that results from

replacing a number with its

floating-point form is called

round-off error regardless of

whether the rounding or the

chopping method is used.

y at k decimal digits. There are two common ways of performing this termination. One

method, called chopping, is to simply chop off the digits dk+1dk+2 . . . . This produces the

floating-point form

f l(y) = 0.d1d2 . . . dk × 10n.

The other method, called rounding, adds 5 × 10n−(k+1) to y and then chops the result to

obtain a number of the form

f l(y) = 0.δ1δ2 . . . δk × 10n.

For rounding, when dk+1 ≥ 5, we add 1 to dk to obtain f l(y); that is, we round up. When

dk+1 < 5, we simply chop off all but the first k digits; that is, round down. If we round

down, then δi = di , for each i = 1, 2, . . . , k. However, if we round up, the digits (and even

the exponent) might change.

Example 1 Determine the five-digit (a) chopping and (b) rounding values of the irrational number π .

Solution The number π has an infinite decimal expansion of the form π = 3.14159265 . . . .

Written in normalized decimal form, we have

π = 0.314159265 . . . × 101.

(a) The floating-point form of π using five-digit chopping is

f l(π) = 0.31415 × 101 = 3.1415.

(b) The sixth digit of the decimal expansion of π is a 9, so the floating-point form of π

using five-digit rounding is

f l(π) = (0.31415 + 0.00001) × 101 = 3.1416.

The following definition describes three methods for measuring approximation errors.

The relative error is generally a

better measure of accuracy than

the absolute error because it takes

into consideration the size of the

number being approximated.

Definition 1.15 Suppose that p∗ is an approximation to p. The actual error is p − p∗, the absolute error

is |p − p∗|, and the relative error is
|p − p∗|

|p|
, provided that p 	= 0.

Consider the actual, absolute, and relative errors in representing p by p∗ in the following

example.
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18 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Example 2 Determine the actual, absolute, and relative errors when approximating p by p∗ when

(a) p = 0.3000 × 101 and p∗ = 0.3100 × 101;

(b) p = 0.3000 × 10−3 and p∗ = 0.3100 × 10−3;
(c) p = 0.3000 × 104 and p∗ = 0.3100 × 104.

Solution

(a) For p = 0.3000 × 101 and p∗ = 0.3100 × 101, the actual error is -0.1, the

absolute error is 0.1, and the relative error is 0.3333 × 10−1.

(b) For p = 0.3000×10−3 and p∗ = 0.3100×10−3, the actual error is −0.1×10−4,

the absolute error is 0.1 × 10−4, and the relative error is 0.3333 × 10−1.

(c) For p = 0.3000 × 104 and p∗ = 0.3100 × 104, the actual error is −0.1 × 103,

the absolute error is 0.1 × 103, and the relative error is again 0.3333 × 10−1.

This example shows that the same relative error, 0.3333 × 10−1, occurs for widely varying

absolute errors. As a measure of accuracy, the absolute error can be misleading and the

relative error more meaningful because the relative error takes into consideration the size

of the value.

An error bound is a nonnegative number larger than the absolute error. It is sometimes

obtained by the methods of calculus for finding the maximum absolute value of a function.

We hope to find the smallest possible upper bound for the error to obtain an estimate of the

actual error that is as accurate as possible.

We often cannot find an accurate

value for the true error in an

approximation. Instead, we find a

bound for the error, which gives

us a “worst-case” error.

The following definition uses relative error to give a measure of significant digits of

accuracy for an approximation.

Definition 1.16 The number p∗ is said to approximate p to t significant digits (or figures) if t is the largest

nonnegative integer for which

|p − p∗|
|p|

≤ 5 × 10−t .

Table 1.1 illustrates the continuous nature of significant digits by listing, for the various

values of p, the least upper bound of |p − p∗|, denoted max |p − p∗|, when p∗ agrees with

p to four significant digits.

The term significant digits is

often used to loosely describe the

number of decimal digits that

appear to be accurate. The

definition is more precise, and

provides a continuous concept.

Table 1.1
p 0.1 0.5 100 1000 5000 9990 10000

max |p − p∗| 0.00005 0.00025 0.05 0.5 2.5 4.995 5.

Returning to the machine representation of numbers, we see that the floating-point

representation f l(y) for the number y has the relative error

∣

∣

∣

∣

y − f l(y)

y

∣

∣

∣

∣

.

If k decimal digits and chopping are used for the machine representation of

y = 0.d1d2 . . . dkdk+1 . . . × 10n,
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1.2 Round-off Errors and Computer Arithmetic 19

then
∣

∣

∣

∣

y − f l(y)

y

∣

∣

∣

∣

=
∣

∣

∣

∣

0.d1d2 . . . dkdk+1 . . . × 10n − 0.d1d2 . . . dk × 10n

0.d1d2 . . . × 10n

∣

∣

∣

∣

=
∣

∣

∣

∣

0.dk+1dk+2 . . . × 10n−k

0.d1d2 . . . × 10n

∣

∣

∣

∣

=
∣

∣

∣

∣

0.dk+1dk+2 . . .

0.d1d2 . . .

∣

∣

∣

∣

× 10−k .

Since d1 	= 0, the minimal value of the denominator is 0.1. The numerator is bounded above

by 1. As a consequence,

∣

∣

∣

∣

y − f l(y)

y

∣

∣

∣

∣

≤
1

0.1
× 10−k = 10−k+1.

In a similar manner, a bound for the relative error when using k-digit rounding arithmetic

is 0.5 × 10−k+1. (See Exercise 28.)

Note that the bounds for the relative error using k-digit arithmetic are independent of the

number being represented. This result is due to the manner in which the machine numbers

are distributed along the real line. Because of the exponential form of the characteristic,

the same number of decimal machine numbers is used to represent each of the intervals

[0.1, 1], [1, 10], and [10, 100]. In fact, within the limits of the machine, the number of

decimal machine numbers in [10n, 10n+1] is constant for all integers n.

Finite-Digit Arithmetic

In addition to inaccurate representation of numbers, the arithmetic performed in a computer

is not exact. The arithmetic involves manipulating binary digits by various shifting, or

logical, operations. Since the actual mechanics of these operations are not pertinent to this

presentation, we shall devise our own approximation to computer arithmetic. Although our

arithmetic will not give the exact picture, it suffices to explain the problems that occur. (For

an explanation of the manipulations actually involved, the reader is urged to consult more

technically oriented computer science texts, such as [Ma], Computer System Architecture.)

Assume that the floating-point representations f l(x) and f l(y) are given for the real

numbers x and y and that the symbols ⊕, �, ⊗, and ..� represent machine addition, sub-

traction, multiplication, and division operations, respectively. We will assume a finite-digit

arithmetic given by

x ⊕ y = f l( f l(x) + f l(y)), x ⊗ y = f l( f l(x) × f l(y)),

x � y = f l( f l(x) − f l(y)), x ..� y = f l( f l(x) ÷ f l(y)).

This arithmetic corresponds to performing exact arithmetic on the floating-point repre-

sentations of x and y and then converting the exact result to its finite-digit floating-point

representation.

Example 3 Suppose that x = 5
7

and y = 1
3
. Use five-digit chopping for calculating x + y, x − y, x × y,

and x ÷ y.

Solution Note that

x =
5

7
= 0.714285 and y =

1

3
= 0.3

implies that the five-digit chopping values of x and y are

f l(x) = 0.71428 × 100 and f l(y) = 0.33333 × 100.
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Thus,

x ⊕ y = f l( f l(x) + f l(y)) = f l
(

0.71428 × 100 + 0.33333 × 100
)

= f l
(

1.04761 × 100
)

= 0.10476 × 101.

The true value is x + y = 5
7

+ 1
3

= 22
21

, so we have

Absolute Error =
∣

∣

∣

∣

22

21
− 0.10476 × 101

∣

∣

∣

∣

= 0.190 × 10−4

and

Relative Error =
∣

∣

∣

∣

0.190 × 10−4

22/21

∣

∣

∣

∣

= 0.182 × 10−4.

Table 1.2 lists the values of this and the other calculations.

Table 1.2
Operation Result Actual value Absolute error Relative error

x ⊕ y 0.10476 × 101 22/21 0.190 × 10−4 0.182 × 10−4

x � y 0.38095 × 100 8/21 0.238 × 10−5 0.625 × 10−5

x ⊗ y 0.23809 × 100 5/21 0.524 × 10−5 0.220 × 10−4

x ..� y 0.21428 × 101 15/7 0.571 × 10−4 0.267 × 10−4

The maximum relative error for the operations in Example 3 is 0.267 × 10−4, so the

arithmetic produces satisfactory five-digit results. This is not the case in the following

example.

Example 4 Suppose that in addition to x = 5
7

and y = 1
3

we have

u = 0.714251, v = 98765.9, and w = 0.111111 × 10−4,

so that

f l(u) = 0.71425 × 100, f l(v) = 0.98765 × 105, and f l(w) = 0.11111 × 10−4.

Determine the five-digit chopping values of x � u, (x � u) ..� w , (x � u) ⊗ v, and u ⊕ v.

Solution These numbers were chosen to illustrate some problems that can arise with finite-

digit arithmetic. Because x and u are nearly the same, their difference is small. The absolute

error for x � u is

|(x − u) − (x � u)| = |(x − u) − ( f l( f l(x) − f l(u)))|

=
∣

∣

∣

∣

(

5

7
− 0.714251

)

−
(

f l
(

0.71428 × 100 − 0.71425 × 100
))

∣

∣

∣

∣

=
∣

∣0.347143 × 10−4 − f l
(

0.00003 × 100
)
∣

∣ = 0.47143 × 10−5.

This approximation has a small absolute error but a large relative error

∣

∣

∣

∣

0.47143 × 10−5

0.347143 × 10−4

∣

∣

∣

∣

≤ 0.136.
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1.2 Round-off Errors and Computer Arithmetic 21

The subsequent division by the small number w or multiplication by the large number v

magnifies the absolute error without modifying the relative error. The addition of the large

and small numbers u and v produces large absolute error but not large relative error. These

calculations are shown in Table 1.3.

Table 1.3
Operation Result Actual value Absolute error Relative error

x � u 0.30000 × 10−4 0.34714 × 10−4 0.471 × 10−5 0.136

(x � u) ..� w 0.27000 × 101 0.31242 × 101 0.424 0.136

(x � u) ⊗ v 0.29629 × 101 0.34285 × 101 0.465 0.136

u ⊕ v 0.98765 × 105 0.98766 × 105 0.161 × 101 0.163 × 10−4

One of the most common error-producing calculations involves the cancelation of

significant digits due to the subtraction of nearly equal numbers. Suppose two nearly equal

numbers x and y, with x > y, have the k-digit representations

f l(x) = 0.d1d2 . . . dpαp+1αp+2 . . . αk × 10n

and

f l(y) = 0.d1d2 . . . dpβp+1βp+2 . . . βk × 10n.

The floating-point form of x − y is

f l( f l(x) − f l(y)) = 0.σp+1σp+2 . . . σk × 10n−p,

where

0.σp+1σp+2 . . . σk = 0.αp+1αp+2 . . . αk − 0.βp+1βp+2 . . . βk .

The floating-point number used to represent x − y has at most k − p digits of significance.

However, in most calculation devices, x − y will be assigned k digits, with the last p

being either zero or randomly assigned. Any further calculations involving x − y retain the

problem of having only k − p digits of significance, since a chain of calculations is no more

accurate than its weakest portion.

If a finite-digit representation or calculation introduces an error, further enlargement of

the error occurs when dividing by a number with small magnitude (or, equivalently, when

multiplying by a number with large magnitude). Suppose, for example, that the number z

has the finite-digit approximation z + δ, where the error δ is introduced by representation

or by previous calculation. Now divide by ε = 10−n , where n > 0. Then

z

ε
≈ f l

(

f l(z)

f l(ε)

)

= (z + δ) × 10n.

The absolute error in this approximation, |δ| × 10n , is the original absolute error, |δ|,
multiplied by the factor 10n .

Example 5 Let p = 0.54617 and q = 0.54601. Use four-digit arithmetic to approximate p − q and

determine the absolute and relative errors using (a) rounding and (b) chopping.
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22 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Solution The exact value of r = p − q is r = 0.00016.

(a) Suppose the subtraction is performed using four-digit rounding arithmetic. Round-

ing p and q to four digits gives p∗ = 0.5462 and q∗ = 0.5460, respectively, and

r∗ = p∗ − q∗ = 0.0002 is the four-digit approximation to r . Since

|r − r∗|
|r |

=
|0.00016 − 0.0002|

|0.00016|
= 0.25,

the result has only one significant digit, whereas p∗ and q∗ were accurate to four

and five significant digits, respectively.

(b) If chopping is used to obtain the four digits, the four-digit approximations to p, q,

and r are p∗ = 0.5461, q∗ = 0.5460, and r∗ = p∗ − q∗ = 0.0001. This gives

|r − r∗|
|r |

=
|0.00016 − 0.0001|

|0.00016|
= 0.375,

which also results in only one significant digit of accuracy.

The loss of accuracy due to round-off error can often be avoided by a reformulation of

the calculations, as illustrated in the next example.

Illustration The quadratic formula states that the roots of ax2 + bx + c = 0, when a 	= 0, are

x1 =
−b +

√
b2 − 4ac

2a
and x2 =

−b −
√

b2 − 4ac

2a
. (1.1)

Consider this formula applied to the equation x2 + 62.10x + 1 = 0, whose roots are

approximately

x1 = −0.01610723 and x2 = −62.08390.

We will again use four-digit rounding arithmetic in the calculations to determine the root. InThe roots x1 and x2 of a general

quadratic equation are related to

the coefficients by the fact that

x1 + x2 = −
b

a
and x1x2 =

c

a
.

This is a special case of Vièta’s

Formulas for the coefficients of

polynomials.

this equation, b2 is much larger than 4ac, so the numerator in the calculation for x1 involves

the subtraction of nearly equal numbers. Because

√

b2 − 4ac =
√

(62.10)2 − (4.000)(1.000)(1.000)

=
√

3856. − 4.000 =
√

3852. = 62.06,

we have

f l(x1) =
−62.10 + 62.06

2.000
=

−0.04000

2.000
= −0.02000,

a poor approximation to x1 = −0.01611, with the large relative error

| − 0.01611 + 0.02000|
| − 0.01611|

≈ 2.4 × 10−1.

On the other hand, the calculation for x2 involves the addition of the nearly equal

numbers −b and −
√

b2 − 4ac. This presents no problem since

f l(x2) =
−62.10 − 62.06

2.000
=

−124.2

2.000
= −62.10

has the small relative error

| − 62.08 + 62.10|
| − 62.08|

≈ 3.2 × 10−4.
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To obtain a more accurate four-digit rounding approximation for x1, we change the

form of the quadratic formula by rationalizing the numerator:

x1 =
−b +

√
b2 − 4ac

2a

(

−b −
√

b2 − 4ac

−b −
√

b2 − 4ac

)

=
b2 − (b2 − 4ac)

2a(−b −
√

b2 − 4ac)
,

which simplifies to an alternate quadratic formula:

x1 =
−2c

b +
√

b2 − 4ac
. (1.2)

Using Eq. (1.2) gives

f l(x1) =
−2.000

62.10 + 62.06
=

−2.000

124.2
= −0.01610,

which has the small relative error 6.2 × 10−4.

The rationalization technique can also be applied to give the following alternative

quadratic formula for x2:

x2 =
−2c

b −
√

b2 − 4ac
. (1.3)

This is the form to use if b is a negative number. In the illustration, however, the mistaken use

of this formula for x2 would result in not only the subtraction of nearly equal numbers, but

also the division by the small result of this subtraction. The inaccuracy that this combination

produces,

f l(x2) =
−2c

b −
√

b2 − 4ac
=

−2.000

62.10 − 62.06
=

−2.000

0.04000
= −50.00,

has the large relative error 1.9 × 10−1.

• The lesson: Think before you compute!

Nested Arithmetic

Accuracy loss due to round-off error can also be reduced by rearranging calculations, as

shown in the next example.

Example 6 Evaluate f (x) = x3 − 6.1x2 + 3.2x + 1.5 at x = 4.71 using three-digit arithmetic.

Solution Table 1.4 gives the intermediate results in the calculations.

Table 1.4
x x2 x3 6.1x2 3.2x

Exact 4.71 22.1841 104.487111 135.32301 15.072

Three-digit (chopping) 4.71 22.1 104. 134. 15.0

Three-digit (rounding) 4.71 22.2 105. 135. 15.1

To illustrate the calculations, let us look at those involved with finding x3 using three-

digit rounding arithmetic. First we find

x2 = 4.712 = 22.1841 which rounds to 22.2.
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24 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Then we use this value of x2 to find

x3 = x2 · x = 22.2 · 4.71 = 104.562 which rounds to 105.

Also,

6.1x2 = 6.1(22.2) = 135.42 which rounds to 135,

and

3.2x = 3.2(4.71) = 15.072 which rounds to 15.1.

The exact result of the evaluation is

Exact: f (4.71) = 104.487111 − 135.32301 + 15.072 + 1.5 = −14.263899.

Using finite-digit arithmetic, the way in which we add the results can effect the final result.

Suppose that we add left to right. Then for chopping arithmetic we have

Three-digit (chopping): f (4.71) = ((104. − 134.) + 15.0) + 1.5 = −13.5,

and for rounding arithmetic we have

Three-digit (rounding): f (4.71) = ((105. − 135.) + 15.1) + 1.5 = −13.4.

(You should carefully verify these results to be sure that your notion of finite-digit arithmetic

is correct.) Note that the three-digit chopping values simply retain the leading three digits,

with no rounding involved, and differ significantly from the three-digit rounding values.

The relative errors for the three-digit methods are

Chopping:

∣

∣

∣

∣

−14.263899 + 13.5

−14.263899

∣

∣

∣

∣

≈ 0.05, and Rounding:

∣

∣

∣

∣

−14.263899 + 13.4

−14.263899

∣

∣

∣

∣

≈ 0.06.

Illustration As an alternative approach, the polynomial f (x) in Example 6 can be written in a nested

manner as
Remember that chopping (or

rounding) is performed after each

calculation.
f (x) = x3 − 6.1x2 + 3.2x + 1.5 = ((x − 6.1)x + 3.2)x + 1.5.

Using three-digit chopping arithmetic now produces

f (4.71) =((4.71 − 6.1)4.71 + 3.2)4.71 + 1.5 = ((−1.39)(4.71) + 3.2)4.71 + 1.5

=(−6.54 + 3.2)4.71 + 1.5 = (−3.34)4.71 + 1.5 = −15.7 + 1.5 = −14.2.

In a similar manner, we now obtain a three-digit rounding answer of −14.3. The new relative

errors are

Three-digit (chopping):

∣

∣

∣

∣

−14.263899 + 14.2

−14.263899

∣

∣

∣

∣

≈ 0.0045;

Three-digit (rounding):

∣

∣

∣

∣

−14.263899 + 14.3

−14.263899

∣

∣

∣

∣

≈ 0.0025.

Nesting has reduced the relative error for the chopping approximation to less than 10%

of that obtained initially. For the rounding approximation, the improvement has been even

more dramatic; the error in this case has been reduced by more than 95%.
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1.2 Round-off Errors and Computer Arithmetic 25

Polynomials should always be expressed in nested form before performing an evalu-

ation because this form minimizes the number of arithmetic calculations. The decreased

error in the illustration is due to the reduction in computations from four multiplications

and three additions to two multiplications and three additions. One way to reduce round-off

error is to reduce the number of computations.

E X E R C I S E S E T 1.2

1. Compute the absolute error and relative error in approximations of p by p∗.

a. p = π , p∗ = 22/7 b. p = π , p∗ = 3.1416

c. p = e, p∗ = 2.718 d. p =
√

2, p∗ = 1.414

2. Compute the absolute error and relative error in approximations of p by p∗.

a. p = e10, p∗ = 22000 b. p = 10π , p∗ = 1400

c. p = 8!, p∗ = 39900 d. p = 9!, p∗ =
√

18π(9/e)9

3. Suppose p∗ must approximate p with relative error at most 10−3. Find the largest interval in which

p∗ must lie for each value of p.

a. 150 b. 900

c. 1500 d. 90

4. Find the largest interval in which p∗ must lie to approximate p with relative error at most 10−4 for

each value of p.

a. π b. e

c.
√

2 d.
3
√

7

5. Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and (iii)

using three-digit rounding arithmetic. (iv) Compute the relative errors in parts (ii) and (iii).

a.
4

5
+

1

3
b.

4

5
·

1

3

c.

(

1

3
−

3

11

)

+
3

20
d.

(

1

3
+

3

11

)

−
3

20

6. Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error

and relative error with the exact value determined to at least five digits.

a. 133 + 0.921 b. 133 − 0.499

c. (121 − 0.327) − 119 d. (121 − 119) − 0.327

7. Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error

and relative error with the exact value determined to at least five digits.

a.

13

14
− 6

7

2e − 5.4
b. −10π + 6e −

3

62

c.

(

2

9

)

·
(

9

7

)

d.

√
13 +

√
11

√
13 −

√
11

8. Repeat Exercise 7 using four-digit rounding arithmetic.

9. Repeat Exercise 7 using three-digit chopping arithmetic.

10. Repeat Exercise 7 using four-digit chopping arithmetic.

11. The first three nonzero terms of the Maclaurin series for the arctangent function are x − (1/3)x3 +
(1/5)x5. Compute the absolute error and relative error in the following approximations of π using

the polynomial in place of the arctangent:

a. 4

[

arctan

(

1

2

)

+ arctan

(

1

3

)]

b. 16 arctan

(

1

5

)

− 4 arctan

(

1

239

)
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26 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

12. The number e can be defined by e =
∑∞

n=0(1/n!), where n! = n(n −1) · · · 2 ·1 for n 	= 0 and 0! = 1.

Compute the absolute error and relative error in the following approximations of e:

a.

5
∑

n=0

1

n!
b.

10
∑

n=0

1

n!

13. Let

f (x) =
x cos x − sin x

x − sin x
.

a. Find limx→0 f (x).

b. Use four-digit rounding arithmetic to evaluate f (0.1).

c. Replace each trigonometric function with its third Maclaurin polynomial and repeat part (b).

d. The actual value is f (0.1) = −1.99899998. Find the relative error for the values obtained in

parts (b) and (c).

14. Let

f (x) =
ex − e−x

x
.

a. Find limx→0(e
x − e−x )/x .

b. Use three-digit rounding arithmetic to evaluate f (0.1).

c. Replace each exponential function with its third Maclaurin polynomial and repeat part (b).

d. The actual value is f (0.1) = 2.003335000. Find the relative error for the values obtained in

parts (b) and (c).

15. Use four-digit rounding arithmetic and the formulas (1.1), (1.2), and (1.3) to find the most accurate

approximations to the roots of the following quadratic equations. Compute the absolute errors and

relative errors.

a.
1

3
x2 −

123

4
x +

1

6
= 0

b.
1

3
x2 +

123

4
x −

1

6
= 0

c. 1.002x2 − 11.01x + 0.01265 = 0

d. 1.002x2 + 11.01x + 0.01265 = 0

16. Use four-digit rounding arithmetic and the formulas (1.1), (1.2), and (1.3) to find the most accurate

approximations to the roots of the following quadratic equations. Compute the absolute errors and

relative errors.

a. x2 −
√

7x +
√

2 = 0

b. πx2 + 13x + 1 = 0

c. x2 + x − e = 0

d. x2 −
√

35x − 2 = 0

17. Repeat Exercise 15 using four-digit chopping arithmetic.

18. Repeat Exercise 16 using four-digit chopping arithmetic.

19. Use the 64-bit-long real format to find the decimal equivalent of the following floating-point machine

numbers.

a. 0 10000001010 1001001100000000000000000000000000000000000000000000

b. 1 10000001010 1001001100000000000000000000000000000000000000000000

c. 0 01111111111 0101001100000000000000000000000000000000000000000000

d. 0 01111111111 0101001100000000000000000000000000000000000000000001

20. Find the next largest and smallest machine numbers in decimal form for the numbers given in Exer-

cise 19.
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21. Suppose two points (x0, y0) and (x1, y1) are on a straight line with y1 	= y0. Two formulas are available

to find the x-intercept of the line:

x =
x0 y1 − x1 y0

y1 − y0

and x = x0 −
(x1 − x0)y0

y1 − y0

.

a. Show that both formulas are algebraically correct.

b. Use the data (x0, y0) = (1.31, 3.24) and (x1, y1) = (1.93, 4.76) and three-digit rounding arith-

metic to compute the x-intercept both ways. Which method is better, and why?

22. The Taylor polynomial of degree n for f (x) = ex is
∑n

i=0(x i/ i!). Use the Taylor polynomial of degree

nine and three-digit chopping arithmetic to find an approximation to e−5 by each of the following

methods.

a. e−5 ≈
9

∑

i=0

(−5)i

i!
=

9
∑

i=0

(−1)i 5i

i!

b. e−5 =
1

e5
≈

1
∑9

i=0
5i

i!

.

c. An approximate value of e−5 correct to three digits is 6.74 × 10−3. Which formula, (a) or (b),

gives the most accuracy, and why?

23. The two-by-two linear system

ax + by = e,

cx + dy = f,

where a, b, c, d, e, f are given, can be solved for x and y as follows:

set m =
c

a
, provided a 	= 0;

d1 = d − mb;

f1 = f − me;

y =
f1

d1

;

x =
(e − by)

a
.

Solve the following linear systems using four-digit rounding arithmetic.

a. 1.130x − 6.990y = 14.20

1.013x − 6.099y = 14.22

b. 8.110x + 12.20y = −0.1370

−18.11x + 112.2y = −0.1376

24. Repeat Exercise 23 using four-digit chopping arithmetic.

25. a. Show that the polynomial nesting technique described in Example 6 can also be applied to the

evaluation of

f (x) = 1.01e4x − 4.62e3x − 3.11e2x + 12.2ex − 1.99.

b. Use three-digit rounding arithmetic, the assumption that e1.53 = 4.62, and the fact that enx =
(ex )n to evaluate f (1.53) as given in part (a).

c. Redo the calculation in part (b) by first nesting the calculations.

d. Compare the approximations in parts (b) and (c) to the true three-digit result f (1.53) = −7.61.
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APPLIED EXERCISES

26. The opening example to this chapter described a physical experiment involving the temperature of a

gas under pressure. In this application, we were given P = 1.00 atm, V = 0.100 m3, N = 0.00420 mol,

and R = 0.08206. Solving for T in the ideal gas law gives

T =
PV

NR
=

(1.00)(0.100)

(0.00420)(0.08206)
= 290.15 K = 17◦C.

In the laboratory, it was found that T was 15◦C under these conditions, and when the pressure was

doubled and the volume halved, T was 19◦C. Assume that the data are rounded values accurate to the

places given, and show that both laboratory figures are within the bounds of accuracy for the ideal

gas law.

THEORETICAL EXERCISES

27. The binomial coefficient

(

m

k

)

=
m!

k! (m − k)!

describes the number of ways of choosing a subset of k objects from a set of m elements.

a. Suppose decimal machine numbers are of the form

±0.d1d2d3d4 × 10n, with 1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9,

if i = 2, 3, 4 and |n| ≤ 15.

What is the largest value of m for which the binomial coefficient
(

m

k

)

can be computed for all k

by the definition without causing overflow?

b. Show that
(

m

k

)

can also be computed by

(

m

k

)

=
(m

k

)

(

m − 1

k − 1

)

· · ·
(

m − k + 1

1

)

.

c. What is the largest value of m for which the binomial coefficient
(

m

3

)

can be computed by the

formula in part (b) without causing overflow?

d. Use the equation in (b) and four-digit chopping arithmetic to compute the number of possible

five-card hands in a 52-card deck. Compute the actual and relative errors.

28. Suppose that f l(y) is a k-digit rounding approximation to y. Show that

∣

∣

∣

∣

y − f l(y)

y

∣

∣

∣

∣

≤ 0.5 × 10−k+1.

[Hint: If dk+1 < 5, then f l(y) = 0.d1d2 . . . dk ×10n . If dk+1 ≥ 5, then f l(y) = 0.d1d2 . . . dk ×10n +
10n−k .]

29. Let f ∈ C[a, b] be a function whose derivative exists on (a, b). Suppose f is to be evaluated at x0 in

(a, b), but instead of computing the actual value f (x0), the approximate value, f̃ (x0), is the actual

value of f at x0 + ε; that is, f̃ (x0) = f (x0 + ε).

a. Use the Mean Value Theorem 1.8 to estimate the absolute error | f (x0)− f̃ (x0)| and the relative

error | f (x0) − f̃ (x0)|/| f (x0)|, assuming f (x0) 	= 0.

b. If ε = 5 × 10−6 and x0 = 1, find bounds for the absolute and relative errors for

i. f (x) = ex

ii. f (x) = sin x

c. Repeat part (b) with ε = (5 × 10−6)x0 and x0 = 10.
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DISCUSSION QUESTIONS

1. Discuss the difference between the arithmetic performed by a computer and traditional arithmetic.

Why is it so important to recognize the difference?

2. Provide several real-life examples of catastrophic errors that have occurred from the use of finite

digital arithmetic and explain what went wrong.

3. Discuss the various different ways to round numbers.

4. Discuss the difference between a number written in standard notation and one that is written in

normalized decimal floating-point form. Provide several examples.

1.3 Algorithms and Convergence

Throughout the text, we will be examining approximation procedures, called algorithms,

involving sequences of calculations. An algorithm is a procedure that describes, in an

unambiguous manner, a finite sequence of steps to be performed in a specified order. The

object of the algorithm is to implement a procedure to solve a problem or approximate a

solution to the problem.
The use of an algorithm is as old

as formal mathematics, but the

name derives from the Arabic

mathematician Muhammad

ibn-Mŝâ al-Khwarârizmî (c.

780–850). The Latin translation

of his works begins with the

words “Dixit Algorismi,”

meaning “al-Khwarârizmî says.”

We use a pseudocode to describe the algorithms. This pseudocode specifies the form

of the input to be supplied and the form of the desired output. Not all numerical procedures

give satisfactory output for arbitrarily chosen input. As a consequence, a stopping technique

independent of the numerical technique is incorporated into each algorithm to avoid infinite

loops.

Two punctuation symbols are used in the algorithms:

• A period (.) indicates the termination of a step.

• A semicolon (;) separates tasks within a step.

Indentation is used to indicate that groups of statements are to be treated as a single entity.

Looping techniques in the algorithms are either counter-controlled, such as

For i = 1, 2, . . . , n

Set xi = a + i · h

or condition-controlled, such as

While i < N do Steps 3–6.

To allow for conditional execution, we use the standard

If . . . then or If . . . then

else

constructions.

The steps in the algorithms follow the rules of structured program construction. They

have been arranged so that there should be minimal difficulty translating pseudocode into

any programming language suitable for scientific applications.
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The algorithms are liberally laced with comments. These are written in italics and

contained within parentheses to distinguish them from the algorithmic statements.

NOTE: When the termination of certain nested steps is difficult to determine, we will

use a comment such as (End Step 14) to the right of or below the terminating statement.

See, for example, the comment on step 5 in Example 1.

Illustration The following algorithm computes x1 + x2 + · · · + xN =
N

∑

i=1

xi , given N and the numbers

x1, x2, . . . , xN .

INPUT N , x1, x2, . . . , xn .

OUTPUT SUM =
∑N

i=1 xi .

Step 1 Set SUM = 0. (Initialize accumulator.)

Step 2 For i = 1, 2, . . . , N do

set SUM = SUM + xi . (Add the next term.)

Step 3 OUTPUT (SUM);

STOP.

Example 1 The N th Taylor polynomial for f (x) = ln x expanded about x0 = 1 is

PN (x) =
N

∑

i=1

(−1)i+1

i
(x − 1)i ,

and the value of ln 1.5 to eight decimal places is 0.40546511. Construct an algorithm to

determine the minimal value of N required for

| ln 1.5 − PN (1.5)| < 10−5

without using the Taylor polynomial remainder term.

Solution From calculus, we know that if
∑∞

n=1 an is an alternating series with limit A

whose terms decrease in magnitude, then A and the N th partial sum AN =
∑N

n=1 an differ

by less than the magnitude of the (N + 1)st term; that is,

|A − AN | ≤ |aN+1|.

The following algorithm uses this bound.

INPUT value x , tolerance TOL, maximum number of iterations M .

OUTPUT degree N of the polynomial or a message of failure.

Step 1 Set N = 1;

y = x − 1;

SUM = 0;

POWER = y;

TERM = y;

SIGN = −1. (Used to implement alternation of signs.)

Step 2 While N ≤ M do Steps 3–5.

Step 3 Set SIGN = −SIGN; (Alternate the signs.)

SUM = SUM + SIGN · TERM; (Accumulate the terms.)
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POWER = POWER · y ;

TERM = POWER/(N + 1). (Calculate the next term.)

Step 4 If |TERM | < TOL then (Test for accuracy.)

OUTPUT (N );

STOP. (The procedure was successful.)

Step 5 Set N = N + 1. (Prepare for the next iteration. (End Step 2))

Step 6 OUTPUT (‘Method Failed’); (The procedure was unsuccessful.)

STOP.

The input for our problem is x = 1.5, TOL = 10−5, and perhaps M = 15. This choice

of M provides an upper bound for the number of calculations we are willing to perform,

recognizing that the algorithm is likely to fail if this bound is exceeded. Whether the output

is a value for N or the failure message depends on the precision of the computational

device.

Characterizing Algorithms

We will be considering a variety of approximation problems throughout the text, and in each

case we need to determine approximation methods that produce dependably accurate results

for a wide class of problems. Because of the differing ways in which the approximation

methods are derived, we need a variety of conditions to categorize their accuracy. Not all

of these conditions will be appropriate for any particular problem.

One criterion we will impose on an algorithm whenever possible is that small changes

in the initial data produce correspondingly small changes in the final results. An algorithm

that satisfies this property is called stable; otherwise, it is unstable. Some algorithms are

stable only for certain choices of initial data and are called conditionally stable. We will

characterize the stability properties of algorithms whenever possible.

The word stable has the same

root as the words stand and

standard. In mathematics, the

term stable applied to a problem

indicates that a small change in

initial data or conditions does not

result in a dramatic change in the

solution to the problem.

To further consider the subject of round-off error growth and its connection to algorithm

stability, suppose an error with magnitude E0 > 0 is introduced at some stage in the

calculations and that the magnitude of the error after n subsequent operations is denoted by

En . The two cases that arise most often in practice are defined as follows.

Definition 1.17 Suppose that E0 > 0 denotes an error introduced at some stage in the calculations and En

represents the magnitude of the error after n subsequent operations.

• If En ≈ CnE0, where C is a constant independent of n, then the growth of error is

said to be linear.

• If En ≈ Cn E0, for some C > 1, then the growth of error is called exponential.

Linear growth of error is usually unavoidable, and when C and E0 are small, the results

are generally acceptable. Exponential growth of error should be avoided because the term Cn

becomes large for even relatively small values of n. This leads to unacceptable inaccuracies,

regardless of the size of E0. As a consequence, an algorithm that exhibits linear growth of

error is stable, whereas an algorithm exhibiting exponential error growth is unstable. (See

Figure 1.10.)
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Figure 1.10

En
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Unstable exponential error growth

En 5 CnE0

Stable linear error growth

En 5 CnE0
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Illustration For any constants c1 and c2,

pn = c1

(

1

3

)n

+ c23n, (1.4)

is a solution to the recursive equation

pn =
10

3
pn−1 − pn−2, for n = 2, 3, . . . .

This can be seen by noting that

10

3
pn−1 − pn−2 =

10

3

[

c1

(

1

3

)n−1

+ c23n−1

]

−

[

c1

(

1

3

)n−2

+ c23n−2

]

= c1

(

1

3

)n−2 [

10

3
·

1

3
− 1

]

+ c23n−2

[

10

3
· 3 − 1

]

= c1

(

1

3

)n−2 (

1

9

)

+ c23n−2(9) = c1

(

1

3

)n

+ c23n = pn.

Suppose that we are given p0 = 1 and p1 = 1
3
. Using these values and Eq. (1.4) we can

determine unique values for the constants as c1 = 1 and c2 = 0. So, pn =
(

1
3

)n
for all n.

If five-digit rounding arithmetic is used to compute the terms of the sequence given by

this equation, then p̂0 = 1.0000 and p̂1 = 0.33333, which requires modifying the constants

to ĉ1 = 1.0000 and ĉ2 = −0.12500 × 10−5. The sequence { p̂n}∞n=0 generated is then given

by

p̂n = 1.0000

(

1

3

)n

− 0.12500 × 10−5(3)n,

which has round-off error,

pn − p̂n = 0.12500 × 10−5(3n).
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This procedure is unstable because the error grows exponentially with n, which is reflected

in the extreme inaccuracies after the first few terms, as shown in Table 1.5.

Table 1.5
n Computed p̂n Correct pn Relative error

0 0.10000 × 101 0.10000 × 101

1 0.33333 × 100 0.33333 × 100

2 0.11110 × 100 0.11111 × 100 9 × 10−5

3 0.37000 × 10−1 0.37037 × 10−1 1 × 10−3

4 0.12230 × 10−1 0.12346 × 10−1 9 × 10−3

5 0.37660 × 10−2 0.41152 × 10−2 8 × 10−2

6 0.32300 × 10−3 0.13717 × 10−2 8 × 10−1

7 −0.26893 × 10−2 0.45725 × 10−3 7 × 100

8 −0.92872 × 10−2 0.15242 × 10−3 6 × 101

Now consider this recursive equation:

pn = 2pn−1 − pn−2, for n = 2, 3, . . . .

It has the solution pn = c1 + c2n for any constants c1 and c2 because

2pn−1 − pn−2 = 2(c1 + c2(n − 1)) − (c1 + c2(n − 2))

= c1(2 − 1) + c2(2n − 2 − n + 2) = c1 + c2n = pn.

If we are given p0 = 1 and p1 = 1
3
, then constants in this equation are uniquely

determined to be c1 = 1 and c2 = − 2
3
. This implies that pn = 1 − 2

3
n.

If five-digit rounding arithmetic is used to compute the terms of the sequence given

by this equation, then p̂0 = 1.0000 and p̂1 = 0.33333. As a consequence, the five-digit

rounding constants are ĉ1 = 1.0000 and ĉ2 = −0.66667. Thus,

p̂n = 1.0000 − 0.66667n,

which has round-off error

pn − p̂n =
(

0.66667 −
2

3

)

n.

This procedure is stable because the error grows linearly with n, which is reflected in the

approximations shown in Table 1.6.

Table 1.6
n Computed p̂n Correct pn Relative error

0 0.10000 × 101 0.10000 × 101

1 0.33333 × 100 0.33333 × 100

2 −0.33330 × 100 −0.33333 × 100 9 × 10−5

3 −0.10000 × 101 −0.10000 × 101 0

4 −0.16667 × 101 −0.16667 × 101 0

5 −0.23334 × 101 −0.23333 × 101 4 × 10−5

6 −0.30000 × 101 −0.30000 × 101 0

7 −0.36667 × 101 −0.36667 × 101 0

8 −0.43334 × 101 −0.43333 × 101 2 × 10−5
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The effects of round-off error can be reduced by using high-order-digit arithmetic such

as the double- or multiple-precision option available on most computers. Disadvantages in

using double-precision arithmetic are that it takes more computation time and the growth

of round-off error is not entirely eliminated.

One approach to estimating round-off error is to use interval arithmetic (that is, to

retain the largest and smallest possible values at each step) so that, in the end, we obtain an

interval that contains the true value. Unfortunately, a very small interval may be needed for

reasonable implementation.

Rates of Convergence

Since iterative techniques involving sequences are often used, this section concludes with a

brief discussion of some terminology used to describe the rate at which convergence occurs.

In general, we would like the technique to converge as rapidly as possible. The following

definition is used to compare the convergence rates of sequences.

Definition 1.18 Suppose {βn}∞n=1 is a sequence known to converge to zero and {αn}∞n=1 converges to a number

α. If a positive constant K exists with

|αn − α| ≤ K |βn|, for large n,

then we say that {αn}∞n=1 converges to α with rate, or order, of convergence O(βn). (This

expression is read “big oh of βn”.) It is indicated by writing αn = α + O(βn).

Although Definition 1.18 permits {αn}∞n=1 to be compared with an arbitrary sequence

{βn}∞n=1, in nearly every situation we use

βn =
1

n p
,

for some number p > 0. We are generally interested in the largest value of p with αn =
α + O(1/n p).

Example 2 Suppose that, for n ≥ 1,

αn =
n + 1

n2
and α̂n =

n + 3

n3
.

Both limn→∞ αn = 0 and limn→∞ α̂n = 0, but the sequence {α̂n} converges to this limit

much faster than the sequence {αn}. Using five-digit rounding arithmetic, we have the values

shown in Table 1.7. Determine rates of convergence for these two sequences.

Table 1.7
n 1 2 3 4 5 6 7

αn 2.00000 0.75000 0.44444 0.31250 0.24000 0.19444 0.16327

α̂n 4.00000 0.62500 0.22222 0.10938 0.064000 0.041667 0.029155

There are numerous other ways

of describing the growth of

sequences and functions, some of

which require bounds both above

and below the sequence or

function under consideration.

Any good book that analyzes

algorithms, for example, [CLRS],

will include this information.

Solution Define the sequences βn = 1/n and β̂n = 1/n2. Then

|αn − 0| =
n + 1

n2
≤

n + n

n2
= 2 ·

1

n
= 2βn
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and

|α̂n − 0| =
n + 3

n3
≤

n + 3n

n3
= 4 ·

1

n2
= 4β̂n.

Hence, the rate of convergence of {αn} to zero is similar to the convergence of {1/n} to zero,

whereas {α̂n} converges to zero at a rate similar to the more rapidly convergent sequence

{1/n2}. We express this by writing

αn = 0 + O

(

1

n

)

and α̂n = 0 + O

(

1

n2

)

.

We also use the O (big oh) notation to describe the rate at which functions converge.

Definition 1.19 Suppose that limh→0 G(h) = 0 and limh→0 F(h) = L . If a positive constant K exists with

|F(h) − L| ≤ K |G(h)|, for sufficiently small h,

then we write F(h) = L + O(G(h)).

The functions we use for comparison generally have the form G(h) = h p, where

p > 0. We are interested in the largest value of p for which F(h) = L + O(h p).

Example 3 Use the third Taylor polynomial about h = 0 to show that cos h +
1

2
h2 = 1 + O(h4).

Solution In Example 3(b) of Section 1.1, we found that this polynomial is

cos h = 1 −
1

2
h2 +

1

24
h4 cos ξ̃ (h),

for some number ξ̃ (h) between zero and h. This implies that

cos h +
1

2
h2 = 1 +

1

24
h4 cos ξ̃ (h).

Hence,
∣

∣

∣

∣

(

cos h +
1

2
h2

)

− 1

∣

∣

∣

∣

=
∣

∣

∣

∣

1

24
cos ξ̃ (h)

∣

∣

∣

∣

h4 ≤
1

24
h4,

so as h → 0, cos h + 1
2
h2 converges to its limit, 1, about as fast as h4 converges to 0. That

is,

cos h +
1

2
h2 = 1 + O(h4).

E X E R C I S E S E T 1.3

1. Use three-digit chopping arithmetic to compute the following sums. For each part, which method is

more accurate, and why?

a.
∑10

i=1(1/ i2) first by 1

1
+ 1

4
+ · · · + 1

100
and then by 1

100
+ 1

81
+ · · · + 1

1
.

b.
∑10

i=1(1/ i3) first by 1

1
+ 1

8
+ 1

27
+ · · · + 1

1000
and then by 1

1000
+ 1

729
+ · · · + 1

1
.

2. The number e is defined by e =
∑∞

n=0(1/n!), where n! = n(n − 1) · · · 2 · 1 for n 	= 0 and 0! = 1.

Use four-digit chopping arithmetic to compute the following approximations to e and determine the

absolute and relative errors.
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a. e ≈
5

∑

n=0

1

n!
b. e ≈

5
∑

j=0

1

(5 − j)!

c. e ≈
10

∑

n=0

1

n!
d. e ≈

10
∑

j=0

1

(10 − j)!

3. The Maclaurin series for the arctangent function converges for −1 < x ≤ 1 and is given by

arctan x = lim
n→∞

Pn(x) = lim
n→∞

n
∑

i=1

(−1)i+1 x2i−1

2i − 1
.

a. Use the fact that tan π/4 = 1 to determine the number of n terms of the series that need to be

summed to ensure that |4Pn(1) − π | < 10−3.

b. The C++ programming language requires the value of π to be within 10−10. How many terms

of the series would we need to sum to obtain this degree of accuracy?

4. Exercise 3 details a rather inefficient means of obtaining an approximation to π . The method can

be improved substantially by observing that π/4 = arctan 1

2
+ arctan 1

3
and evaluating the series

for the arctangent at 1

2
and at 1

3
. Determine the number of terms that must be summed to ensure an

approximation to π to within 10−3.

5. Another formula for computing π can be deduced from the identity π/4 = 4 arctan 1

5
− arctan 1

239
.

Determine the number of terms that must be summed to ensure an approximation to π to within 10−3.

6. Find the rates of convergence of the following sequences as n → ∞.

a. lim
n→∞

sin
1

n
= 0 b. lim

n→∞
sin

1

n2
= 0

c. lim
n→∞

(

sin
1

n

)2

= 0
d. lim

n→∞
[ln(n + 1) − ln(n)] = 0

7. Find the rates of convergence of the following functions as h → 0.

a. lim
h→0

sin h

h
= 1 b. lim

h→0

1 − cos h

h
= 0

c. lim
h→0

sin h − h cos h

h
= 0 d. lim

h→0

1 − eh

h
= −1

THEORETICAL EXERCISES

8. Suppose that 0 < q < p and that αn = α + O
(

n−p
)

.

a. Show that αn = α + O
(

n−q
)

.

b. Make a table listing 1/n, 1/n2, 1/n3, and 1/n4 for n = 5, 10, 100, and 1000 and discuss the

varying rates of convergence of these sequences as n becomes large.

9. Suppose that 0 < q < p and that F(h) = L + O (h p).

a. Show that F(h) = L + O (hq).

b. Make a table listing h, h2, h3, and h4 for h = 0.5, 0.1, 0.01, and 0.001 and discuss the varying

rates of convergence of these powers of h as h approaches zero.

10. Suppose that as x approaches zero,

F1(x) = L1 + O(xα) and F2(x) = L2 + O(xβ).

Let c1 and c2 be nonzero constants and define

F(x) = c1 F1(x) + c2 F2(x) and G(x) = F1(c1x) + F2(c2x).

Show that if γ = minimum {α, β}, then, as x approaches zero,

a. F(x) = c1 L1 + c2 L2 + O(xγ )

b. G(x) = L1 + L2 + O(xγ ).
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11. The sequence {Fn} described by F0 = 1, F1 = 1, and Fn+2 = Fn + Fn+1, if n ≥ 0, is called

a Fibonacci sequence. Its terms occur naturally in many botanical species, particularly those with

petals or scales arranged in the form of a logarithmic spiral. Consider the sequence {xn}, where

xn = Fn+1/Fn . Assuming that limn→∞ xn = x exists, show that x = (1 +
√

5)/2. This number is

called the golden ratio.

12. Show that the Fibonacci sequence also satisfies the equation

Fn ≡ F̃n =
1

√
5

[(

1 +
√

5

2

)n

−

(

1 −
√

5

2

)n]

.

13. Describe the output of the following algorithm. How does this algorithm compare to the illustration

on page 32?

INPUT n, x1, x2, . . . , xn .

OUTPUT SUM.

Step 1 Set SUM = x1.

Step 2 For i = 2, 3, . . . , n do Step 3.

Step 3 SUM = SUM + xi .

Step 4 OUTPUT SUM;

STOP.

14. Compare the following three algorithms. When is the algorithm of part 1a correct.?

a. INPUT n, x1, x2, . . . , xn .

OUTPUT PRODUCT.

Step 1 Set PRODUCT = 0.

Step 2 For i = 1, 2, . . . , n do

Set PRODUCT = PRODUCT * xi .

Step 3 OUTPUT PRODUCT;

STOP.

b. INPUT n, x1, x2, . . . , xn .

OUTPUT PRODUCT.

Step 1 Set PRODUCT = 1.

Step 2 For i = 1, 2, . . . , n do

Set PRODUCT = PRODUCT * xi .

Step 3 OUTPUT PRODUCT;

STOP.

c. INPUT n, x1, x2, . . . , xn .

OUTPUT PRODUCT.

Step 1 Set PRODUCT = 1.

Step 2 For i = 1, 2, . . . , n do

if xi = 0 then set PRODUCT = 0;

OUTPUT PRODUCT;

STOP

else set PRODUCT = PRODUCT * xi .

Step 3 OUTPUT PRODUCT;

STOP.

15. a. How many multiplications and additions are required to determine a sum of the form

n
∑

i=1

i
∑

j=1

ai b j ?

b. Modify the sum in part (a) to an equivalent form that reduces the number of computations.
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