

VBA FOR MODELERS

DEVELOPING DECISION

SUPPORT SYSTEMS WITH

MICROSOFT
®
OFFICE EXCEL

®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

VBA FOR MODELERS
DEVELOPING DECISION
SUPPORT SYSTEMS WITH

MICROSOFT® OFFICE EXCEL®

FIFTH EDITION

S. Christian Albright
Kelley School of Business, Indiana University

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial

review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous

editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

VBA for Modelers: Developing Decision

Support Systems with Microsoft® Office

Excel®, Fifth Edition

S. Christian Albright

Vice President, General Manager Science,

Math, and Quantitative Business: Balraj Kalsi

Product Director: Joe Sabatino

Product Manager: Aaron Arnsparger

Associate Content Developer: Brad Sullender

Manufacturing Planner: Ron Montgomery

Marketing Manager: Heather Mooney

Art and Cover Direction, Production

Management, and Composition:

Lumina Datamatics, Inc.

Cover Image: © Awstok/Shutterstock

Intellectual Property

Analyst: Christina Ciaramella

Project Manager: Betsy Hathaway

Unless otherwise noted, all items

© Cengage Learning

© 2016, 2012 Cengage Learning

WCN: 02-22200-208

ALL RIGHTS RESERVED. No part of this work covered by the copyright

herein may be reproduced, transmitted, stored, or used in any form or by

any means graphic, electronic, or mechanical, including but not limited to

photocopying, recording, scanning, digitizing, taping, Web distribution,

information networks, or information storage and retrieval systems,

except as permitted under Section 107 or 108 of the 1976 United States

Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2014958175

ISBN: 978-1-285-86961-2

Cengage Learning

20 Channel Center Street

Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions

with employees residing in nearly 40 different countries and sales in more

than 125 countries around the world. Find your local representative at

www.cengage.com.

Cengage Learning products are represented in Canada by

Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our

preferred online store www.cengagebrain.com

Printed in the United States of America

Print Number: 01 Print Year: 2015

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To my wonderful wife, Mary—she is my best friend and constant companion.
To our talented son, Sam, his equally talented wife, Lindsay, and our two amazing
grandsons, Teddy and Archer. And to Bryn, our dear Welsh corgi who still just
loves to play ball.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

About the Author

Chris Albright got his B.S. degree in Mathematics from Stanford in 1968 and his
Ph.D. degree in Operations Research from Stanford in 1972. Until his retirement
in 2011, he taught in the Operations & Decision Technologies Department in
the Kelley School of Business at Indiana University. His teaching included courses
in management science, computer simulation, and statistics to all levels of busi-
ness students: undergraduates, MBAs, and doctoral students. He has published
over 20 articles in leading operations research journals in the area of applied
probability and he has authored several books, including Practical Management
Science, Data Analysis and Decision Making, Data Analysis for Managers, Spread-
sheet Modeling and Applications, and VBA for Modelers. He jointly developed
StatTools, a statistical add-in for Excel, with the Palisade Corporation. In “retire-
ment,” he continues to revise his books, he works as a consultant for Palisade,
and he has developed a commercial product, Excel Now!, an Excel tutorial.

On the personal side, Chris has been married to his wonderful wife Mary for
43 years. They have a special family in Philadelphia: their son Sam, his wife Lindsay,
and their two sons, Teddy and Archer. Chris has many interests outside the aca-
demic area. They include activities with his family (especially traveling with Mary),
going to cultural events at Indiana University, power walking, and reading. And
although he earns his livelihood from statistics and management science, his real
passion is for playing classical music on the piano.

S. Christian Albright

vi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents

Preface xvi

PART I VBA Fundamentals 1

1 Introduction to VBA Development in Excel 3

1.1 Introduction 3
1.2 VBA in Excel 2007 and Later Versions 4
1.3 Example Applications 5
1.4 Decision Support Systems 7
1.5 Required Background 7
1.6 Visual Basic Versus VBA 8
1.7 Some Basic Terminology 9
1.8 Summary 9

2 The Excel Object Model 10

2.1 Introduction 10
2.2 Objects, Properties, Methods, and Events 10
2.3 Collections as Objects 11
2.4 The Hierarchy of Objects 12
2.5 Object Models in General 13
2.6 Summary 17

3 The Visual Basic Editor 18

3.1 Introduction 18
3.2 Important Features of the VBE 18
3.3 The Object Browser 22
3.4 The Immediate and Watch Windows 23
3.5 A First Program 24
3.6 Intellisense 29
3.7 Color Coding and Case 30
3.8 Finding Subs in the VBE 31
3.9 Summary 33

vii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4 Recording Macros 35

4.1 Introduction 35
4.2 How to Record a Macro 35
4.3 Changes from Excel 2007 to Later Versions 37
4.4 Recorded Macro Examples 37
4.5 Summary 47

5 Getting Started with VBA 49

5.1 Introduction 49
5.2 Subroutines 49
5.3 Declaring Variables and Constants 50
5.4 Built-in Constants 58
5.5 Input Boxes and Message Boxes 59
5.6 Message Boxes with Yes and No Buttons 61
5.7 Using Excel Functions in VBA 63
5.8 Comments 64
5.9 Indenting 65
5.10 Strings 66
5.11 Specifying Objects, Properties, and Methods 70
5.12 With Construction 73
5.13 Other Useful VBA Tips 74
5.14 Good Programming Practices 76
5.15 Debugging 78
5.16 Summary 85

6 Working with Ranges 89

6.1 Introduction 89
6.2 Exercise 89
6.3 Important Properties and Methods of Ranges 91
6.4 Referencing Ranges with VBA 94
6.5 Examples of Ranges with VBA 97
6.6 Range Names and Their Scope 111
6.7 Summary 114

7 Control Logic and Loops 117

7.1 Introduction 117
7.2 Exercise 117
7.3 If Constructions 120
7.4 Case Constructions 126
7.5 For Loops 129
7.6 For Each Loops 136
7.7 Do Loops 138
7.8 Summary 143

viii Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8 Working with Other Excel Objects 149

8.1 Introduction 149
8.2 Exercise 149
8.3 Collections and Members of Collections 151
8.4 Examples of Workbooks in VBA 153
8.5 Examples of Worksheets in VBA 157
8.6 Examples of Charts in VBA 163
8.7 Summary 174

9 Arrays 177

9.1 Introduction 177
9.2 Exercise 177
9.3 The Need for Arrays 179
9.4 Rules for Working with Arrays 180
9.5 Examples of Arrays in VBA 183
9.6 Array Functions 199
9.7 Summary 199

10 More on Variables and Subroutines 204

10.1 Introduction 204
10.2 Exercise 204
10.3 Scope of Variables and Subroutines 207
10.4 Modularizing Programs 209
10.5 Passing Arguments 213
10.6 Function Subroutines 219
10.7 The Workbook_Open Event Handler 225
10.8 Summary 226

11 User Forms 231

11.1 Introduction 231
11.2 Exercise 231
11.3 Designing User Forms 234
11.4 Setting Properties of Controls 238
11.5 Creating a User Form Template 242
11.6 Writing Event Handlers 243
11.7 Looping Through the Controls on a User Form 254
11.8 Working with List Boxes 255
11.9 Modal and Modeless Forms 256
11.10 Working with Excel Controls 258
11.11 Summary 262

Contents ix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12 Error Handling 268

12.1 Introduction 268
12.2 Error Handling with On Error Statement 268
12.3 Handling Inappropriate User Inputs 270
12.4 Summary 272

13 Working with Files and Folders 275

13.1 Introduction 275
13.2 Exercise 275
13.3 Dialog Boxes for File Operations 277
13.4 The FileSystemObject Object 283
13.5 A File Renaming Example 286
13.6 Working with Text Files 289
13.7 Summary 293

14 Importing Data into Excel from a Database 295

14.1 Introduction 295
14.2 Exercise 295
14.3 A Brief Introduction to Relational Databases 297
14.4 A Brief Introduction to SQL 302
14.5 ActiveX Data Objects (ADO) 306
14.6 Discussion of the Sales Orders Exercise 311
14.7 Summary 315

15 Working with Pivot Tables and Tables 317

15.1 Introduction 317
15.2 Working with Pivot Tables Manually 317
15.3 Working with Pivot Tables Using VBA 327
15.4 An Example 329
15.5 PowerPivot and the Data Model 335
15.6 Working with Excel Tables Manually 337
15.7 Working with Excel Tables with VBA 340
15.8 Summary 344

16 Working with Ribbons, Toolbars, and Menus 346

16.1 Introduction 346
16.2 Customizing Ribbons 347
16.3 Using RibbonX and XML to Customize Ribbons 348
16.4 Using RibbonX to Customize the QAT 354
16.5 CommandBar and Related Office Objects 356
16.6 A Grading Program Example 357
16.7 Summary 358

x Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17 Automating Solver and Other Applications 360

17.1 Introduction 360
17.2 Exercise 361
17.3 Automating Solver with VBA 363
17.4 Possible Solver Problems 373
17.5 Programming with Risk Solver Platform 375
17.6 Automating @RISK with VBA 378
17.7 Automating Other Office Applications with VBA 383
17.8 Summary 389

18 User-Defined Types, Enumerations, Collections,

and Classes 393

18.1 Introduction 393
18.2 User-Defined Types 393
18.3 Enumerations 395
18.4 Collections 396
18.5 Classes 399
18.6 Summary 406

PART II VBA Management Science Applications 409

19 Basic Ideas for Application Development with VBA 411

19.1 Introduction 411
19.2 Guidelines for Application Development 411
19.3 A Car Loan Application 416
19.4 Summary 435

20 A Blending Application 437

20.1 Introduction 437
20.2 Functionality of the Application 437
20.3 Running the Application 438
20.4 Setting Up the Excel Sheets 445
20.5 Getting Started with the VBA 445
20.6 The User Forms 447
20.7 The Module 451
20.8 Summary 452

Contents xi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21 A Product Mix Application 454

21.1 Introduction 454
21.2 Functionality of the Application 455
21.3 Running the Application 455
21.4 Setting Up the Excel Sheets 458
21.5 Getting Started with the VBA 458
21.6 The User Form 459
21.7 The Module 461
21.8 Summary 471

22 A Worker Scheduling Application 475

22.1 Introduction 475
22.2 Functionality of the Application 475
22.3 Running the Application 476
22.4 Setting Up the Excel Sheets 479
22.5 Getting Started with the VBA 480
22.6 The User Form 481
22.7 The Module 484
22.8 Summary 486

23 A Production-Planning Application 488

23.1 Introduction 488
23.2 Functionality of the Application 488
23.3 Running the Application 489
23.4 Setting Up the Excel Sheets 496
23.5 Getting Started with the VBA 498
23.6 The User Forms 499
23.7 The Module 504
23.8 Summary 511

24 A Transportation Application 513

24.1 Introduction 513
24.2 Functionality of the Application 514
24.3 Running the Application 514
24.4 Setting Up the Access Database 516
24.5 Setting Up the Excel Sheets 519
24.6 Getting Started with the VBA 519
24.7 The User Form 521
24.8 The Module 523
24.9 Summary 531

xii Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

25 A Stock-Trading Simulation Application 534

25.1 Introduction 534
25.2 Functionality of the Application 535
25.3 Running the Application 535
25.4 Setting Up the Excel Sheets 538
25.5 Getting Started with the VBA 540
25.6 The Module 541
25.7 Summary 546

26 A Capital Budgeting Application 548

26.1 Introduction 548
26.2 Functionality of the Application 549
26.3 Running the Application 549
26.4 Setting Up the Excel Sheets 551
26.5 Getting Started with the VBA 553
26.6 The User Form 554
26.7 The Module 555
26.8 Summary 560

27 A Regression Application 562

27.1 Introduction 562
27.2 Functionality of the Application 562
27.3 Running the Application 563
27.4 Setting Up the Excel Sheets 565
27.5 Getting Started with the VBA 566
27.6 The User Form 567
27.7 The Module 569
27.8 Summary 574

28 An Exponential Utility Application 576

28.1 Introduction 576
28.2 Functionality of the Application 577
28.3 Running the Application 577
28.4 Setting Up the Excel Sheets 578
28.5 Getting Started with the VBA 582
28.6 The User Form 582
28.7 The Module 585
28.8 Summary 589

Contents xiii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

29 A Queueing Simulation Application 590

29.1 Introduction 590
29.2 Functionality of the Application 591
29.3 Running the Application 591
29.4 Setting Up the Excel Sheets 593
29.5 Getting Started with the VBA 593
29.6 Structure of a Queueing Simulation 594
29.7 The Module 596
29.8 Summary 606

30 An Option-Pricing Application 608

30.1 Introduction 608
30.2 Functionality of the Application 609
30.3 Running the Application 609
30.4 Setting Up the Excel Sheets 612
30.5 Getting Started with the VBA 615
30.6 The User Form 616
30.7 The Module 621
30.8 Summary 632

31 An Application for Finding Betas of Stocks 634

31.1 Introduction 634
31.2 Functionality of the Application 634
31.3 Running the Application 635
31.4 Setting Up the Excel Sheets 638
31.5 Getting Started with the VBA 639
31.6 The User Form 640
31.7 The Module 644
31.8 Summary 651

32 A Portfolio Optimization Application 653

32.1 Introduction 653
32.2 Functionality of the Application 654
32.3 Running the Application 654
32.4 Web Queries in Excel 659
32.5 Setting Up the Excel Sheets 661
32.6 Getting Started with the VBA 662
32.7 The User Forms 663
32.8 The Module 667
32.9 Summary 678

xiv Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

33 A Data Envelopment Analysis Application 680

33.1 Introduction 680
33.2 Functionality of the Application 680
33.3 Running the Application 681
33.4 Setting Up the Excel Sheets and the Text File 682
33.5 Getting Started with the VBA 684
33.6 Getting Data from a Text File 685
33.7 The Module 686
33.8 Summary 698

34 An AHP Application for Choosing a Job

You can access chapter 34 at our website, www.CengageBrain.com

35 A Poker Simulation Application

You can access chapter 35 at our website, www.CengageBrain.com

Index 700

Contents xv

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

I wrote VBA for Modelers for students and professionals who want to create deci-
sion support systems (DSSs) using Microsoft Excel–based spreadsheet models. The
book does not assume any prior programming experience. It contains two parts.
Part I covers the essentials of VBA (Visual Basic for Applications) programming,
and Part II provides many applications with their associated programming code.
This part assumes that readers are either familiar with spreadsheet modeling or are
taking a concurrent course in management science or operations research. There
are many excellent books available for VBA programming, many others covering
decision support systems, and still others for spreadsheet modeling. However, I
have not found a book that attempts to unify these subjects in a practical way.
VBA for Modelers is designed for this purpose, and I hope you will find it to be an
important resource and reference in your own work.

Why This Book?

The original impetus for this book began about 20 years ago. Wayne Winston
and I were experimenting with the spreadsheet approach to teaching management
as we were writing the first edition of our Practical Management Science (PMS)
book. Because I have always had an interest in computer programming, I decided
to learn VBA, the relatively new macro language for Excel, and use it to a limited
extent in my undergraduate management science modeling course. My intent was
to teach the students how to wrap a given spreadsheet model, such as a product
mix model, into an application with a “front end” and a “back end” by using
VBA. The front end would enable a user to provide inputs to the model, usually
through one or more dialog boxes, and the back end would present the user with
a nontechnical report of the results. I found it to be an exciting addition to the
usual modeling course, and my students overwhelmingly agreed.

The primary problem with teaching this type of course was the lack of an
appropriate VBA textbook. Although there are many good VBA trade books
available, they usually go into much more technical VBA details than I have time
to cover, and their objective is usually to teach VBA programming as an end in
itself. I expect that many adopters of our Practical Management Science book
will decide to use parts of VBA for Modelers to supplement their management sci-
ence courses, just as I have been doing. For readers who have already taken a
management science course, there is more than enough material in this book to
fill an entire elective course or to be used for self-study.

However, even for readers with no background or interest in management
science, the first part of this book has plenty of value. We are seeing an increasing

xvi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

number of our business students and graduates express interest in automating
Excel with macros. In short, they want to become Excel “power users.” After
the first edition of this book appeared, I taught a purely elective MBA course cov-
ering the first part of the book. To my surprise and delight, it regularly attracted
about 40 MBA students per year. Yes, it attracted MBA students, not computer
science majors! (Since I have retired from teaching, the VBA course is still being
taught, and it continues to attract these types of audiences.). The students see real
value in knowing how to program for Excel. And it is amazing and gratifying to
see how far these students can progress in a short 7-week course. Many find pro-
gramming, especially for Excel, to be as addictive as I find it.

Objectives of the Book

VBA for Modelers shows how the power of spreadsheet modeling can be
extended to the masses. Through VBA, complex management science models
can be made accessible to nontechnical users by providing them with simplified
input screens and output reports. The book illustrates, in complete detail, how
such applications can be developed for a wide variety of business problems. In
writing the book, I have always concerned myself with the following questions:
How much will readers be able to do on their own? Is it enough for readers to
see the completed applications, marvel at how powerful they are, and possibly
take a look at the code that runs in the background? Or should they be taken to
the point where they can develop their own applications, code and all? I suspect
this depends on the audience, but I know I can get students to the point where
they can develop modest but useful applications on their own and, importantly,
experience the thrill of programming success.

With these thoughts in mind, I have written this book so that it can be used
at several levels. For readers who want to learn VBA from scratch and then apply
it, I have provided a “VBA primer” in Part I of the book. It is admittedly not as
complete as some of the thick Excel VBA books available, but I believe it covers
the basics of VBA quite adequately. Importantly, it covers coding methods for
working with Excel ranges in Chapter 6 and uses these methods extensively in
later chapters, so that readers will not have to use trial and error or wade through
online help, as I had to do when I was learning VBA. Readers can then proceed to
the applications in Chapters 19 through 35 and apply their skills. In contrast, there
are probably many readers who do not have time to learn all of the details, but they
can still use the applications in Part II of the book for demonstration purposes.
Indeed, the applications have been developed for generality. For example, the
transportation model in Chapter 24 is perfectly general and can be used to solve
any transportation model by supplying the appropriate input data.

Approach

I like to teach (and learn) through examples. I have found that I can learn a pro-
gramming language only if I have a strong motivation to learn it. I suspect that

Preface xvii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

most of you are the same. The applications in the latter chapters are based on
many interesting management science models. They provide the motivation for
you to learn the material. The examples illustrate that this book is not about pro-
gramming for the sake of programming. Instead, it is about developing useful
applications for business. You probably already realize that Excel modeling skills
make you more valuable in the workplace. This book will help you develop VBA
skills that make you much more valuable.

Contents of the Book

The book is written in two parts. Part I, Chapters 1–18, is a VBA primer for read-
ers with little or no programming experience in VBA (or any other language).
Although all of these chapters are geared to VBA, some are more about general
programming concepts, whereas others deal with the unique aspects of program-
ming for Excel. Specifically, Chapters 7, 9, and 10 discuss control logic (If-Then-
Else constructions), loops, arrays, and subroutines, topics that are common to all
programming languages. In contrast, Chapters 6 and 8 explain how to work with
some of the most common Excel objects (ranges, workbooks, worksheets, and
charts) in VBA. In addition, several chapters discuss aspects of VBA that can be
used with Excel and any other applications (Access, Word, PowerPoint, and so
on) that use VBA as their programming language. Specifically, Chapter 3 explains
the Visual Basic Editor (VBE), Chapter 4 illustrates how to record macros,
Chapter 11 explains how to build user forms (dialog boxes), and Chapter 12
discusses the important topic of error handling.

The material in Part I is reasonably complete, but it is available, in greater
detail and with a somewhat different emphasis, in several other books. The
unique aspect of this book is Part II, Chapters 19–35. (Due to length, the
last two chapters, Chapter 34, An AHP Application for Choosing a Job, and
Chapter 35, A Poker Simulation Application, are available online only. You can
find them at www.CengageBrain.com.) Each chapter in this part discusses a specific
application. Most of these are optimization and simulation applications, and many
are quite general. For example, Chapter 21 discusses a general product mix applica-
tion, Chapter 23 discusses a general production scheduling application, Chapter 24
discusses a general transportation application, Chapter 25 discusses a stock-trading
simulation, Chapter 29 discusses a multiple-server queue simulation, Chapter 30
discusses a general application for pricing European and American options, and
Chapter 32 discusses a general portfolio optimization application. (Many of the
underlying models for these applications are discussed in Practical Management
Science, but I have attempted to make these applications stand-alone here.)

The applications can be used as they stand to solve real problems, or they
can be used as examples of VBA application development. All of the steps in
the development of these applications are explained, and all of the VBA source
code is included. Using an analogy to a car, you can simply get in and drive, or
you can open the hood and see how everything works.

xviii Preface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 19 gets the process started in a “gentle” way. It provides a general
introduction to application development, with an important list of guidelines. It
then illustrates these guidelines in a car loan application. This application should
be within the grasp of most readers, even if they are not yet great programmers.
By tackling this application first, readers get to develop a simple model, with
dialog boxes, reports, and charts, and then tie everything together. This car loan
application illustrates an important concept that I stress throughout the book.
Specifically, applications that really do something are often long and have a lot of
details. But this does not mean that they are difficult. With perseverance—a word
I use frequently—readers can fill in the details one step at a time and ultimately
experience the thrill of getting a program to work correctly.

Virtually all management science applications require input data. A very
important issue for VBA application development is how to get the required
input data into the spreadsheet model. I illustrate a number of possibilities in
Part II. If only a small amount of data is required, dialog boxes work well. These
are used for data input in many of the applications. However, there are many
times when the data requirements are much too large for dialog boxes. In these
cases, the data are usually stored in some type of database. I illustrate some com-
mon possibilities. In Chapter 21, the input data for a product mix model are
stored in a separate worksheet. In Chapter 31, the stock price data for finding
the betas of stocks are stored in a separate Excel workbook. In Chapter 33, the
data for a DEA model are stored in a text (.txt) file. In Chapter 24, the data for a
transportation model are stored in an Access database (.mdb) file. Finally, in Chap-
ter 32, the stock price data required for a portfolio optimization model are located
on a Web site and are imported into Excel, at runtime. In each case, I explain the
VBA code that is necessary to import the data into the Excel application.

New to the Fifth Edition

The impetus for writing the fifth edition was the release of Excel 2013. In terms
of VBA, there aren’t many changes from Excel 2010 to Excel 2013 (or even from
Excel 2007 to Excel 2013), but I used the opportunity to incorporate changes
that were made in Excel 2013, as well as to modify a lot of the material
throughout the book.

● Programmers can never let well enough alone. We are forever tinkering with
our code, not just to make it work better, but often to make it more elegant
and easier to understand. So users of previous editions will see minor changes
to much of the code throughout the book.

● The biggest change, which has nothing to do with the version of Excel, is the
way information is passed between modules and user forms. In previous edi-
tions, I did this with global variables, a practice frowned upon by many pro-
fessional programmers. In this edition, I pass the required information
through arguments to “ShowDialog” functions in the user forms. This new
method is explained in detail in Chapter 11 and is then used in later chapters
where user forms appear.

Preface xix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Chapter 15 contains a brief discussion of the new PowerPivot tool introduced
in Excel 2013. This tool can actually be automated with VBA, but because of
its advanced nature, I don’t discuss the details. Maybe this will appear in the
next edition of the book, by which time Excel’s online help will hopefully be
improved.

How to Use the Book

I have already discussed several approaches to using this book, depending on how
much you want to learn and how much time you have. For readers with very little
or no computer programming background who want to learn the fundamentals
of VBA, Chapters 1–12 should be covered first, in approximately that order.
(I should point out that it is practically impossible to avoid “later” programming
concepts while covering “early” ones. For example, I admit to using a few If state-
ments and loops in early chapters, before discussing them formally in Chapter 7.
I don’t believe this should cause problems. I use plenty of comments, and you
can always look ahead if you need to.) After covering VBA fundamentals in the
first 12 chapters, the next six optional chapters can be covered in practically any
order.

Chapter 19 should be covered next. Beyond that, the applications in the
remaining chapters can be covered in practically any order, depending on your
interests. However, some of the details in certain applications will not make much
sense without the appropriate training in the management science models. For
example, Chapter 34 discusses an AHP (Analytical Hierarchy Process) application
for choosing a job. The VBA code is fairly straightforward, but it will not make
much sense unless you have some knowledge of AHP. I assume that the knowl-
edge of the models comes from a separate source, such as Practical Management
Science; I cover it only briefly here.

Finally, readers can simply use the Excel application files to solve problems.
Indeed, the applications have been written specifically for nontechnical end users,
so that readers at all levels should have no difficulty opening the application files
in Part II of the book and using them appropriately. In short, readers can decide
how much of the material “under the hood” is worth their time.

Premium Web Site Content

The companion Web site for this book can be accessed at www.cengagebrain
.com. There you will have access to all of the Excel (.xlsx and .xlsm) and other
files mentioned in the chapters, including those in the exercises. The Excel files
require Excel 97 or a more recent version, but they are realistically geared to
Excel 2007 and later versions. Many of the files from Chapter 17 and later chapters
“reference” Excel’s Solver. They will not work unless the Solver add-in is installed
and loaded. Chapters 14 and 24 uses Microsoft’s ActiveX Data Object (ADO)

xx Preface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

model to import the data from an Access database into Excel. This will work only
in Excel 2000 or a more recent version. Finally, Chapter 13 uses the Office File-
Dialog object. This works only in Excel XP (2002) or a more recent version.

The book is also supported by a Web site at www.kelley.iu.edu/albrightbooks.
The Web site contains errata and other useful information, including information
about my other books.

Acknowledgments

I would like to thank all of my colleagues at Cengage Learning. Foremost among
them are my current editor, Aaron Arnsbarger, and my former editors, Curt
Hinrichs and Charles McCormick. The original idea was to develop a short VBA
manual to accompany our Practical Management Science book, but Curt
persuaded me to write an entire book. Given the success of the first four
editions, I appreciate Curt’s insistence. I am also grateful to many of the profes-
sionals who worked behind the scenes to make this book a success:

● Brad Sullender, Content Developer; Heather Mooney, Marketing Manager;
Kristina Mose-Libon, Art Director; and Sharib Asrar as the Project Manager
at Lumina Datamatics.

Next, I would like to thank the reviewers of past editions of the book.
Thanks go to

● Gerald Aase, Northern Illinois University; Ravi Ahuja, University of Florida;
Grant Costner, University of Oregon; R. Kim Craft, Rollins College; Lynette
Molstad Gorder, Dakota State University; and Jim Hightower, California State
University-Fullerton; Don Byrkett, Miami University; Kostis Christodoulou,
London School of Economics; Charles Franz, University of Missouri; Larry
LeBlanc, Vanderbilt University; Jerry May, University of Pittsburgh; Jim Morris,
University of Wisconsin; and Tom Schriber, University of Michigan.

Finally, I want to thank my wife, Mary. She continues to support my book-
writing activities, even when it requires me to work evenings and weekends
in front of a computer. I also want to thank our Welsh corgi Bryn, who faith-
fully accompanies her daddy when he goes upstairs to do his work. She doesn’t
add much technical assistance, but she definitely adds a lot of motivational
assistance.

S. Christian Albright
(e-mail at albright@indiana.edu,

Web site at www.kelley.iu.edu/albrightbooks)
Bloomington, Indiana

January 2015

Preface xxi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Part I

VBA Fundamentals
This part of the book is for readers who need an introduction to programming in
general and Visual Basic for Applications (VBA) for Excel in particular. It dis-
cusses programming topics that are common to practically all programming lan-
guages, including variable types and declarations, control logic, looping, arrays,
subroutines, and error handling. It also discusses many topics that are specific to
VBA and its use with Excel, including the Excel object model; recording macros;
working with ranges, workbooks, worksheets, charts, and other Excel objects;
developing user forms (dialog boxes); and automating other applications, includ-
ing Word, Outlook, Excel’s Solver add-in, and Palisade’s @RISK add-in, with
VBA code.

Many of the chapters in Part I present a business-related exercise immediately
after the introductory section. The objective of each such exercise is to motivate
you to work through the details of the chapter, knowing that many of these
details will be required to solve the exercise. The finished files are included in the
online materials, but I urge you to try the exercises on your own, before looking
at the solutions.

The chapters in this part should be read in approximately the order they are
presented, at least up through Chapter 12. Programming is a skill that builds
upon itself. Although it is not always possible to avoid referring to a concept
from a later chapter in an earlier chapter, I have attempted to refrain from doing
this as much as possible. The one small exception is in Chapters 6 (on ranges)
and 7 (on control logic and loops). It is almost impossible to do any interesting
programming in Excel without knowing about ranges, and it is almost impossible
to do any interesting programming in general without knowing about control
logic and loops. I compromised by putting the chapter on ranges first and using
some simple control logic and loops in it. I don’t believe this should cause any
problems.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Introduction to VBA Development

in Excel

1.1 Introduction

My books Practical Management Science (PMS) and Business Analytics: Data
Analysis and Decision Making (DADM), both co-authored with Wayne Winston,
illustrate how to solve a wide variety of business problems by developing appro-
priate Excel models. If you are familiar with this modeling process, you probably
do not need to be convinced of the power and applicability of Excel. You realize
that Excel modeling skills will make you a valuable employee in the workplace.
This book takes the process one giant step farther. It teaches you how to develop
applications in Excel by using Excel’s programming language, Visual Basic for
Applications (VBA).

In many Excel-modeling books, you learn how to model a particular business
problem. You enter given inputs in a worksheet, you relate them with appropriate
formulas, and you eventually calculate required outputs. You might also optimize
a particular output with Solver, and you might create one or more charts to
show outputs graphically. You do all of this through the Excel interface, using its
ribbons (as of Excel 2007), menus, and toolbars, entering formulas into its cells,
using the chart tools, using the Solver dialog box, and so on. If you are conscien-
tious, you document your work so that other people in your company can under-
stand your completed model. For example, you clearly indicate the input cells so
that other users will know which cells they should use for their own inputs and
which cells they should leave alone.

Now suppose that your position in a company is to develop applications for
other less-technical people in the organization to use. Part of your job is still to
develop spreadsheet models, but the details of these models might be incom-
prehensible to many users. These users might realize that they have, say, a
product mix problem, where they will have to supply certain inputs, and then
some computer magic will eventually determine a mix of products that optimizes
company profit. However, the part in between is beyond their capabilities. Your
job, therefore, is to develop a user-friendly application with a model (possibly
hidden from the user) surrounded by a “front end” and a “back end.” The front
end will present the user with dialog boxes or some other means for enabling
them to define their problem. Here they will be asked to specify input values
and possibly other information. Your application will take this information, build
the appropriate model, optimize it if necessary, and eventually present the back
end to the user—a nontechnical report of the results, possibly with accompanying
charts.

1

3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This application development is possible with VBA, as I will demonstrate in
this book. I make no claim that it is easy or that it can be done quickly, but I do
claim that it is within the realm of possibility for people like yourself, not just for
professional programmers. It requires a logical mind, a willingness to experiment
and take full advantage of online help, plenty of practice, and, above all, persever-
ance. Even professional programmers seldom accomplish their tasks without
difficulty and plenty of errors; this is the nature of programming. However, they
learn from their errors (and their colleagues), and they refuse to quit until they
get their programs to work properly. Computer programming is essentially a
process of overcoming one small hurdle after another. This is where perseverance
is so important. But if you are not easily discouraged, and if you love the feeling
of accomplishment that comes from getting something to work, you will love the
challenge of application development described in the book.

1.2 VBA in Excel 2007 and Later Versions

As you are probably aware, Excel went through a major face lift in 2007. The
look of Excel, especially its menus and toolbars, is now much different than in
Excel 2003 and earlier. Unfortunately, some users have not converted to Excel
2007 or a later version, so book authors, including myself, are in the uncom-
fortable position of having to write simultaneously for several audiences. Fortu-
nately, not much about VBA changed in the transition from 2003 to 2007 or
from 2007 to 2010 or from 2010 to 2013. I will try to point out the differences
as necessary throughout the book, hopefully without interrupting the flow too
much.

Perhaps the main difference is in the file extensions you will see. In Excel
2003 and earlier, all Excel files (except for add-ins, not covered here) ended in
.xls. It didn’t matter whether they contained VBA code or not; they were still .xls
files. In Excel 2007 and later versions, there are two new extensions. Files without
VBA code now have .xlsx extensions, whereas files with VBA code must use .xlsm
extensions. If you try to save a file with VBA code as an .xlsx file, you won’t be
allowed to do so. There is one exception: you can save your new files in the old
Excel 2003 format, which is still an option (with Save As), in which case they will
have .xls extensions. Why would you do this? The probable reason is that you
want to share a file you created in Excel 2007 or a later version with a friend
who still uses Excel 2003. Of course, if your file includes features new to Excel
2007 or a later version, your friend won’t be able to see them.

I have been using Excel 2007, 2010, and now 2013 since their original
releases, and I personally think they are great improvements over earlier versions,
at least in most respects. So I will provide my example files in .xlsx and .xlsm for-
mats. If you are using Excel 2003, you will be able to open these if you first
install a free Office Compatibility Pack from Microsoft (just search the Web for
it). Without this compatibility pack, Excel 2003 users cannot read files in the new
.xlsx or .xlsm formats (although users of Excel 2007 and later versions can always
read files in the old .xls format).

4 Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The fortunate part is that VBA has changed very little. I will usually not
include new features of Excel 2007 or later versions in my example files that
Excel 2003 users (even those with the compatibility pack) could not see. And in
the few cases where I need to do so, I will make it clear that these examples are
for users of Excel 2007 or later versions only.

1.3 Example Applications

If you have used my PMS or DADM books, you probably understand what
a spreadsheet model is. However, you might not understand what I mean by
spreadsheet applications with front ends and back ends. In other words, you
might not understand what this book intends to teach you. The best way to find
out is to run some of the applications that will be explained in Part II of the
book. At this point, you can become the nontechnical user by opening any of the
following files that accompany this book: Product Mix.xlsm, Scheduling.xlsm,
Stock Options.xlsm, and Transportation.xlsm. Simply open any of these files and
follow instructions. It should be easy. After all, the purpose of writing these appli-
cations is to make it easy for a nontechnical user to run them and get results they
can understand. Now step back and imagine what must be happening in the back-
ground to enable these applications to do what they do. This is what you will be
learning in the book. By running a few applications, you will become anxious
to learn how to do it yourself. These sample applications illustrate just how pow-
erful a tool VBA for Excel can be.

Security Settings and Trusted Locations

You might encounter annoying messages when you try to open these applica-
tions. Microsoft realizes that viruses can be carried in VBA code, so it tries to
protect users. First, it sets a macro security level to High by default. This level dis-
allows any VBA macros to run. Obviously, this is not good when you are trying
to learn VBA programming. The fix is easy.

● For users of Excel 2010 and 2013, open Excel, click the File button, then
Options, then the Trust Center tab, then Trust Center Settings, then the
Macro Settings tab, and check the “Disable all macros with notification”
option.

● For users of Excel 2007, it is the same as for Excel 2010 and 2013 except
that you click the Office button, not the File button. (The Office button
was replaced by the File button in 2010.)

● For users of Excel 2003 or earlier, open Excel, select the Tools → Macro →
Security menu item, and select Medium.

● You should need to do this only once. However, even with this macro security
setting, you are always asked whether you want to enable macros when you open
a file that contains VBA code. Of course, you should typically enable macros.
Otherwise, you will be safe from viruses, but none of the VBA code will run!

Introduction to VBA Development in Excel 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

There is another option, at least in Excel 2007 and later versions, which
avoids the security settings altogether. If you find that most of the Excel files
with VBA code are in a particular folder on your hard drive, you can add this
folder to the list of trusted locations on your computer. To do this, a one-time
task on a given computer, go to the Trust Center Settings, as explained in the
first bullet above, then Trusted Locations, then “Add new location,” and
browse for the folder you want to add. (In the resulting dialog box, you will
probably want to check the “Subfolders of this location are also trusted”
option.) From then on, any .xlsm files in this folder (or its subfolders) will
open without any warning about enabling macros.

I will make one final comment about enabling macros that pertains to
Excel 2007 or later versions only. If you open a file that contains macros, that
is, an .xlsm file, and it isn’t in a trusted location, you sometimes see the message
in Figure 1.1 and you sometimes instead see the button in Figure 1.2 (right
above the formula bar). Thanks to John Walkenbach, a fellow VBA author,
I finally learned the pattern. If the VB editor (discussed in Chapter 3) is already
open when you open the file, you will see the message in Figure 1.1. If it isn’t
open, you will see the button in Figure 1.2. Why did Microsoft do it this way?
I have no idea.

Figure 1.1 Enable Macro Message with VB Editor Open

Figure 1.2 Enable Macro Button with VB Editor Not Open

6 Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.4 Decision Support Systems

In many companies, programmers provide applications called decision support
systems (DSSs). These are applications, based on Excel or some other package,
that help managers make better decisions. They can vary from very simple to
very complex, but they usually provide some type of user-friendly interface so
that a manager can experiment with various inputs or decision variables to see
their effect on important output variables such as profit or cost. Much of what
you will be learning, especially in Part II of the book, is how to create Excel-
based DSSs. In fact, if you ran the applications in the previous section, you should
already understand what decision support means. For example, the Transporta-
tion application helps a manager plan the optimal shipping of a product in a logis-
tics network, and the Stock Options application helps a financial analyst price
various types of financial options. The value that you, the programmer, provide
by developing these applications is that other people in your company can then
run them—easily—to make better decisions.

1.5 Required Background

Readers of this book probably vary widely in their programming experience. At
one extreme, many of you have probably never programmed in VBA or any
other language. At the other extreme, a few of you have probably programmed
in Visual Basic but have never used it to automate Excel and build Excel applica-
tions. In the middle, some of you have probably had some programming experi-
ence in another language such as C or Java but have never learned VBA. This
book is intended to appeal to all such audiences. Therefore, a simplified answer
to the question, “What programming background do I need?” is “None.” You
need only a willingness to learn and experiment.

If you ran the applications discussed in Section 1.2, you are probably anxious
to get started developing similar applications. If you already know the fundamen-
tals of VBA for Excel, you can jump ahead to Part II of the book. But most of
you will have to learn how to walk before you can run. Therefore, the chapters
in Part I go through the basics of the VBA language, especially as it applies to
Excel. The coverage of this basic material will provide you with enough explana-
tions and examples of VBA’s important features to enable you to understand the
applications in Part II—and to do some Excel development on your own.

If you want more detailed guidance in VBA for Excel, you can learn from
Microsoft’s online help or the many user groups on the Web. Indeed, this is per-
haps the best way to learn, especially in the middle of a development project. If
you need to know one specific detail to overcome a hurdle in the program you
are writing, you can look it up quickly in online help or do an online search for
it. A good way to do this will be demonstrated shortly.

Part II of the book does presume some modeling ability and general business
background. For example, if you ran the Product Mix application, you
probably realize that it develops and optimizes a product mix model, a classic

Introduction to VBA Development in Excel 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

linear programming model. One (but not the only) step in developing this appli-
cation is to develop a product mix model exactly as in Chapter 3 of PMS. As
another example, if you ran the Stock Options application, you realize the need
to understand option pricing, explained briefly in the second simulation chapter
of PMS. Many of the applications in this book are based on examples (product
mix, scheduling, transportation, and so on) from PMS or DADM. You can refer
to these books as necessary.

1.6 Visual Basic Versus VBA

Before going any further, I want to clarify one common misconception. Visual
Basic (VB) is not the same as VBA. VB is a software development language
that you can buy and run separately, without the need for Excel or Office. Actu-
ally, there are several versions of VB available. The most recent is called
VB.NET, which comes with Microsoft’s Visual Studio software development
suite. (The .NET version of VB has many enhancements to the VB language.)
Before VB.NET, there was VB6, still in use in thousands of applications.
In contrast, VBA comes with Office. If you own Microsoft Office, you own
VBA. The VB language is very similar to VBA, but it is not the same. The
main difference is that VBA is the language you need to manipulate Excel, as
you will do here.

You can think of it as follows. The VBA language consists of a “backbone”
programming language with typical programming elements you find in all pro-
gramming languages: looping, logical If-Then-Else constructions, arrays, subrou-
tines, variable types, and others. In this respect, VBA and VB are essentially
identical. However, the “A” in VBA means that any application software package,
such as Excel, Access, Word, or even a non-Microsoft software package, can
“expose” its object model to VBA, so that VBA can manipulate it programmati-
cally. In short, VBA can be used to develop applications for any of these software
packages. This book teaches you how to do so for Excel.

Excel’s objects are discussed in depth in later chapters, but a few typical
Excel objects you will recognize immediately are ranges, worksheets, work-
books, and charts. VBA for Excel knows about these Excel objects, and it
enables you to manipulate them with code. For example, you can change the
font of a cell, name a range, add or delete a worksheet, open a workbook, and
change the title of a chart. Part of learning VBA for Excel is learning the VB
backbone language, the elements that have nothing to do with Excel specifi-
cally. But another part, the more challenging part, involves learning how to
manipulate Excel’s objects in code. That is, it involves learning how to write
computer programs to do what you do every day through the familiar Excel
interface. If you ever take a course in VB, you will learn the backbone elements
of VBA, but you will not learn how to manipulate objects in Excel. This
requires VBA, and you will learn it here.

By the way, there are also VBA for Access, VBA for Word, VBA for Power-
Point, VBA for Outlook, and others. The difference between them is that each

8 Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

has its own specific objects. To list just a few, Access has tables, queries, and
forms; Word has paragraphs and footnotes; PowerPoint has slides; and Outlook
has mail. Each version of VBA shares the same VB backbone language, but each
requires you to learn how to manipulate the objects in the specific application.
There is certainly a learning curve in moving, say, from VBA for Excel to VBA
for Word, but it is not nearly as difficult as if they were totally separate languages.
In fact, the power of VBA, as well as the relative ease of programming in it, has
prompted many third-party software developers to license VBA from Microsoft
so that they can use VBA as the programming language for their applications.
One example is Palisade, the developer of the @RISK and PrecisionTree add-ins
for Excel, as will be discussed briefly in Chapter 17. In short, once you know
VBA, you know a lot about what is happening in the programming world—and
you can very possibly use this knowledge to obtain a valuable job in business.

1.7 Some Basic Terminology

Before proceeding, it is useful to clarify some very basic and important terminol-
ogy that will be used throughout the book. First, whenever you program in any
language, your basic building blocks are lines of code, short for programming
code. Any line of code is intended to accomplish something, and it must obey
the rules of syntax for the programming language being used. This book is all
about coding in VBA.

Typically, a set of logically related lines of code that accomplishes a specific
task is called a subroutine, a procedure, or a macro. In fact, one of the first key-
words you will learn in VBA is Sub. This keyword begins all subroutines. The
terms subroutine, procedure, and macro are essentially equivalent, although pro-
grammers tend to use the terms subroutine and procedure, whereas spreadsheet
users tend to use the term macro. I tend to refer to any of these as a sub.

Finally, the term program is typically used to refer to all of the subs in an
application. When you explore the more complex applications in Part II of the
book, you will see that they often include many subs, where each sub is intended
to perform one specific task in the overall program. (Chapter 10 discusses why
this division of a program into multiple subs makes a lot of sense.)

1.8 Summary

VBA is the programming language of choice for an increasingly wide range of
application developers. The main reason for this is that VBA uses the familiar
Visual Basic programming language and then adapts it to many Microsoft and
even non-Microsoft application software packages, including Excel. In addition,
VBA is a relatively easy programming language to master. This makes it accessible
to a large number of nonprofessional programmers in the business world—
including you. By learning how to program in VBA, you will definitely enhance
your value in the workplace.

Introduction to VBA Development in Excel 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Excel Object Model

2.1 Introduction

This chapter introduces the Excel object model—the concept behind it and how
it is implemented. Even if you have programmed in another language, this will
probably be new material, even a new way of thinking, for you. However, with-
out understanding Excel objects, you will not be able to proceed very far with
VBA for Excel. This chapter provides just enough information to get you started.
Later chapters focus on many of the most important Excel objects and how they
can be manipulated with VBA code.

2.2 Objects, Properties, Methods, and Events

Consider the many things you see in the everyday world. To name a few, there
are cars, houses, computers, people, and so on. These are all examples of objects.
For example, let’s focus on a car. A car has attributes, and there are things you
can do to (or with) a car. Some of its attributes are its weight, its horsepower, its
color, and its number of doors. Some of the things you can do to (or with) a car
are drive it, park it, accelerate it, crash it, and sell it. In VBA, the attributes of an
object are called properties: the size property, the horsepower property, the color
property, the number of doors property, and so on. In addition, each property
has a value for any particular car. For example, a particular car might be white
and it might have four doors. In contrast, the things you can do to (or with) an
object are called methods: the drive method, the park method, the accelerate
method, the crash method, the sell method, and so on. Methods can also have
qualifiers, called arguments, that indicate how a method is performed. For exam-
ple, an argument of the crash method might be speed—how fast the car was
going when it crashed.

The following analogy to parts of speech is useful. Objects correspond to
nouns, properties correspond to adjectives, methods correspond to verbs, and
arguments of methods correspond to adverbs. You might want to keep this anal-
ogy in mind as the discussion proceeds.

Now let’s move from cars to Excel. Imagine all of the things—objects—you
work with in Excel. Some of the most common are ranges, worksheets, charts,
and workbooks. (A workbook is really just an Excel file.) Each of these is an
object in the Excel object model. For example, consider the single-cell range B5.

2

10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This cell is a Range object.1 Like a car, it has properties. It has a Value property:
the value (either text or number) displayed in the cell. It has a HorizontalAlignment

property: left-, center-, or right-aligned. It has a Formula property: the formula
(if any) in the cell. These are just a few of the many properties of a range.

A Range object also has methods. For example, you can copy a range, so
Copy is a method of a Range object. You can probably guess the argument of
the Copy method: the Destination argument (the paste range). Another range
method is the ClearContents method, which is equivalent to selecting the range
and pressing the Delete key. It deletes the contents of the range, but it does not
change the formatting. If you want to clear the formatting as well, there is also a
Clear method. Neither the ClearContents method nor the Clear method has any
arguments.

Learning the various objects in Excel, along with their properties and meth-
ods, is a lot like learning vocabulary in English—especially if English is not your
native language. You learn a little at a time and generally broaden your vocabulary
through practice and experience. Some objects, properties, and methods are natu-
rally used most often, and you will learn quickly. Others you will never need, and
you will probably remain unaware that they even exist. However, there are many
times when you will need to use a particular object or one of its properties or
methods that you have not yet learned. Fortunately, there is excellent online help
available—a type of dictionary—for learning about objects, properties, and meth-
ods. It is called the Object Browser and is discussed in the next chapter.

There is one other important feature of objects: events. Some Excel objects
have events that they can respond to. A good example is the Workbook object
and its Open event. This event happens—we say it fires—when the workbook is
opened in Excel. In fact, you might not realize it, but the Windows world is full
of events that fire constantly. Every time you click or double-click a button, press
a key, move your mouse over some region, or perform a number of other actions,
various events fire. Programmers have the option of responding to events by writ-
ing event handlers. An event handler is a section of code that runs whenever the
associated event fires. In later chapters, particularly Chapter 11, you will learn
how to write your own event handlers. For example, it is often useful to write an
event handler for the Open event of a Workbook object. Whenever the workbook
is opened in Excel, the event handler then runs automatically. It could be used,
for example, to ensure that the user sees a certain worksheet when the workbook
opens.

2.3 Collections as Objects

Continuing the car analogy, imagine that you enter a used car lot. Each car in the
lot is a particular car object, but it also makes sense to consider the collection of all

1From here on, “proper” case, such as Range or HorizontalAlignment, will be used for objects, properties,

and methods. This is the convention used in VBA. Also, they appear in this book in a different font.

The Excel Object Model 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

cars in the lot as an object. This is called a Collection object. Clearly, the collection
of cars is not conceptually the same as an individual car. Rather, it is an object
that includes all of the individual car objects.

Collection objects also have properties and methods, but they are not the
same as the properties and methods of the objects they contain. Generally, there
are many fewer properties and methods for collections. The two most common
are the Count property and the Add method. The Count property indicates the
number of objects in the collection (the number of cars in the lot). The Add

method adds a new object to a collection (a new car joins the lot).
It is easy to spot collections and the objects they contain in the Excel object

model. Collection objects are plural, whereas a typical object contained in a collec-
tion is singular. A good example involves worksheets in a given workbook. The
Worksheets collection (note the plural) is the collection of all worksheets in the
workbook. Any one of these worksheets is a Worksheet object (note the singular).
Again, these must be treated differently. You can count worksheets in the Work-

sheets collection, or you can add another worksheet to the collection. In contrast,
typical properties of a Worksheet object are its Name (the name on the sheet tab)
and Visible (True or False) properties, and a typical method of a Worksheet object
is the Delete method. (Note that this Delete method reduces the Count of the
Worksheets collection by one.)

The main exception to this plural/singular characterization is the Range

object. There is no “Ranges” collection object. A Range object cannot really be
considered singular or plural; it is essentially some of each. A Range object can
be a single cell, a rectangular range, a union of several rectangular ranges, an
entire column, or an entire row. Range objects are probably the most difficult to
master in all of their varied forms. This is unfortunate because they are the most
frequently used objects in Excel. Think of your own experience in Excel, and you
will realize that you are almost always doing something with ranges. An entire
chapter, Chapter 6, is devoted to Range objects so that you can master some of
the techniques for manipulating these important objects.

2.4 The Hierarchy of Objects

Returning one last time to cars, what is the status of a car’s hood, a car’s trunk,
or a car’s set of wheels? These are also objects, with their own properties and
methods. In fact, the set of wheels is a collection object that contains individual
wheel objects. The point, however, is that there is a natural hierarchy, as illus-
trated in Figure 2.1. The Cars collection is at the top of the hierarchy. It contains
a set of individual cars. The notation Cars (Car) indicates that the collection object
is called Cars and that each member of this collection is a Car object. Each car
“contains” a number of objects: a Wheels collection of individual Wheel objects,
a Trunk object, a Hood object, and others not shown. Each of these can have its
own properties and methods. Also, some can contain objects farther down the
hierarchy. For example, the figure indicates that an object down the hierarchy
from Hood is the HoodOrnament object. Note that each of the rectangles in this

12 Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

figure represents an object. Each object has properties and methods that could be
shown emanating from its rectangle, but this would greatly complicate the figure.

The same situation occurs in Excel. The full diagram of the Excel object model
appears in Figure 2.2. (This is the Excel 2003 version; versions for Excel 2007 or
later are only slightly different.2) This figure shows how all objects, including collec-
tion objects, are arranged in a hierarchy. At the top of the hierarchy is the Application

object. This refers to Excel itself. One object (of several) one step down from Appli-

cation is the Workbooks collection, the collection of all open Workbook objects. This
diagram is admittedly quite complex. All you need to realize at this point is that
Excel has a very rich object model—a lot of objects; fortunately, you will need only
a relatively small subset of this object model for most of your applications. This rela-
tively small subset is the topic of later chapters.

2.5 Object Models in General

Although the Excel object model is used in this book, you should now have some
understanding of what it would take to use VBA for other applications such as
Word, Access, or even non-Microsoft products. In short, you would need to
learn its object model. You can think of each application “plugging in” its object
model to the underlying VB language. Indeed, third-party software developers
who want to license VBA from Microsoft need to create an object model appro-
priate for their application. Programmers can then use VBA to manipulate the
objects in this model. This is a powerful idea, and it is the reason why VBA is
the programming language of choice for so many developers—regardless of
whether they are working in Excel or any other application.

Figures 2.3 and 2.4 illustrate two other object models. (Again, these are the
Office 2003 versions.) The object model in Figure 2.3 is for Word. A few of these
objects are probably familiar, such as Sentence, Paragraph, and Footnote. If you

Figure 2.1 Object Model for Cars

2For example, if you perform a Web search for “Excel 2013 object model diagram,” you will see a

number of such diagrams.

The Excel Object Model 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 2.2 Excel Object Model

14 Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

were learning VBA for Word, you would need to learn the most common elements
of this object model. Figure 2.4 shows part (about 40%) of the object model for
Microsoft Office as a whole. You might wonder why Office has a separate object
model from Excel or Word. The reason is that Office is an integrated suite, where
all of its programs—Excel, Word, PowerPoint, Outlook, and the rest—share a
number of features. For example, they all have menus and toolbars, referred to
collectively as the CommandBars collection in the object model. Therefore, if you

Figure 2.3 Word Object Model

The Excel Object Model 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 2.4 Part of Office Object Model

16 Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

want to use VBA to manipulate toolbars or menus in Excel, as many programmers
do, you have to learn part of the Office object model. But then this same knowl-
edge would enable you to manipulate menus and toolbars in Word, PowerPoint,
and the others. (Actually, menus and toolbars were replaced for the most part by
ribbons in Excel 2007 and later versions, but the CommandBar object is
still present. This topic is discussed in Chapter 16.)

The Excel object model continues to evolve as new versions of Excel are
released. Sometimes new objects, properties, or methods are added. Other times,
some are dropped from the official object model but still continue to work, for
backward compatibility. Occasionally, some are dropped completely, so that pro-
grams written in an earlier version no longer work. Fortunately, these are the rare
exceptions. If you are working in Excel 2007 or later versions and are interested
in seeing the types of changes that have been made, open the Visual Basic Editor
(Alt+F11 from Excel), press the F1 key for help, and search for “object model
changes.” Although the list is fairly long, not much in terms of VBA code has
changed since this book was originally written for Excel 2003.

2.6 Summary

This chapter has introduced the concept of an object model, and it has briefly
introduced the Excel object model that is the focus of the rest of the book. If
you have never programmed in an object-oriented environment, you can look
forward to a whole new experience. However, the more you do it, the more nat-
ural it becomes. It is certainly the dominant theme in today’s programming
world, so if you want to be part of this world, you have to start thinking in
terms of objects. You will get plenty of chances to do so throughout the book.

The Excel Object Model 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Visual Basic Editor

3.1 Introduction

At this point, you might be asking where VBA lives. I claimed in Chapter 1 that if

you own Excel, you also own VBA, but many of you have probably never seen it.

You do your VBA work in the Visual Basic Editor (VBE), which you can access
easily from Excel by pressing the Alt+F11 key combination. The VBE provides

a very user-friendly environment for writing your VBA programs. This chapter

walks you through the VBE and shows you its most important features. It also
helps you write your first VBA program. By the way, you might also hear the

term Integrated Development Environment (IDE). This is a general term for

an environment where you do your programming, regardless of the programming
language. The VBE is the IDE for programming with VBA in Excel.

3.2 Important Features of the VBE

To understand this section most easily, you should follow along at your computer.
Open Excel and press Alt+F11 to get into the VBE.1 It should look something

like Figure 3.1, although the configuration you see might be somewhat different. By

the time this discussion is completed, you will be able to make your screen look like
that in Figure 3.1 or change it according to your own preferences. This is your pro-

gramming workspace, and you have a lot of control over how it appears. This chapter

provides some guidance, but the best way to learn is by experimenting.
The large blank pane on the right is the Code window. This is where you

write your code. (If any of the windows discussed here are not visible on your

screen, you can select the View menu from the VBE and then select the window
you want to make visible.) The rest of the VBE consists of the top menu, one or

more toolbars, and one or more optional windows. Let’s start with the windows.

3

1 In Excel 2003 and earlier, the Tools →Macro → Visual Basic Editor menu item also gets you into the

VBE, but Alt+F11 is quicker. In Excel 2007 and later versions, you should first make theDeveloper ribbon

visible. To do this in Excel 2007, click the Office button and then Excel Options. Under the Popular tab,

select the third option at the top: Show Developer tab in the Ribbon. In Excel 2010 and later versions,

right-click any ribbon and select Customize the Ribbon. Then check the Developer item in the right pane.

You need to do this only once. The Developer tab is a must for programmers. Among other things, you

can get to the VBE by clicking on its Visual Basic button, but again, Alt+F11 is quicker.

18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Project Explorer window, repeated in Figure 3.2, shows an Explorer-
type list of all open projects. (Your list will probably be different from the one
shown here. It depends on the files you have open and the add-ins that are
loaded.) For example, the active project shown here has the generic name VBA-

Project and corresponds to the workbook Book2—that is, the file Book2.xlsx.2

Below a given project, the Project Explorer window shows its “elements.” In the
Microsoft Excel Objects folder, these elements include any worksheets or chart
sheets in the Excel file and an element called ThisWorkbook, which refers to the
workbook itself. There can also be folders for modules (for VBA code), user
forms (for dialog boxes), and references (for links to other libraries of code you
need), depending on whether you have any of these in your project. Modules,
user forms, and references are discussed in detail in later chapters.

Figure 3.1 Visual Basic Editor (VBE)

2For our purposes, there is no difference between a project and a workbook. However, VBA allows

them to have separate names: VBAProject and Book2, for example. If you save Book2 as
Practice.xlsm, say, the project name will still be VBAProject. Admittedly, it is somewhat confusing,

but just think of projects as Excel files.

The Visual Basic Editor 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Properties window, shown in Figure 3.3, lists a set of properties. This list
depends on what is currently selected. For example, the property list in Figure 3.3
is relevant for the project itself. It indicates a single property only—the project’s
name. Therefore, if you want to change the name of the project from the generic
VBAProject to something more meaningful, such as MyFirstProgram, this is the
place to do it. Chapter 11 discusses the use of the Properties window in much more
detail. At this point, you don’t really need the Properties window, so you can close
it by clicking on its close button (the upper right X).

The VBE also has at least three toolbars that are very useful: Standard, Edit,
and Debug. They appear in Figures 3.4, 3.5, and 3.6, where some of the most
useful buttons are indicated. (If any of these toolbars are not visible on your

Figure 3.2 Project Explorer Window

Figure 3.3 Properties Window

20 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

computer, you can make them visible through the View menu.) From the
Standard toolbar, you can run, pause, or stop a program you have written. You can
also display the Project or Properties window (if it is hidden), and you can display
the Object Browser or the Control Toolbox (more about these later). From the
Edit toolbar, you can perform useful editing tasks, such as indenting or outdenting
(the opposite of indenting), and you can comment or uncomment blocks of code,
as is discussed later. Finally, although the Debug toolbar will probably not mean
much at this point, it is invaluable when you need to debug your programs—as
you will undoubtedly need to do. It is discussed in more detail in Chapter 5. For
future reference, here are a few menu items of particular importance.

● You usually need at least one module in a project. This is where you will typ-
ically store your code. To insert a module, use the Insert → Module menu
item. If you ever have a module you do not need, highlight the module in
the Project Explorer window and use the File → Remove Module menu
item. (Answer No to whether you want to export the module.)

Figure 3.4 Standard Toolbar

Run a program

Pause a program

Stop a program

Show Control Toolbox

Show Object Browser

Show Properties Window

Show Project Window

Figure 3.5 Edit Toolbar

Indent a block

Outdent a block

Uncomment a block

Comment a block

Set a Break

Figure 3.6 Debug Toolbar

Step into Step over
Step out

Toggle breakpoint Quick watch

The Visual Basic Editor 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Chapter 11 explains how to build your own dialog boxes. VBA calls these
user forms. To insert a new user form into a project, use the Insert → User
Form menu item. You can delete an unwanted user form in the same way
you delete a module.

● Under the Insert menu, there is also a Class Module item. You can usually
ignore this. It is more advanced, but it is discussed briefly in Chapter 18.

● The Tools → Options menu item allows you to change the look and feel of the
VBE in a variety of ways. You should probably leave the default settings alone—
with one important exception. Try it now. Select Tools → Options, and make
sure the Require Variable Declarations box under the Editor tab is checked.
The effect of this is explained in Chapter 5. You might also want to uncheck the
Auto Syntax Check box, as I always do. If it is checked, the editor beeps at you
each time you make a syntax error in a line of code and then press Enter. This can
be annoying. Even if this box is unchecked, the editor will still warn you about a
syntax error by coloring the offending line red.

● If you ever want to password-protect your project so that other people can-
not see your code, use the Tools → VBA Properties menu item and click
the Protection tab. This gives you a chance to enter a password. (Just don’t
forget it, or you will not be able to see your own code.)

● If you click the familiar Save button (or use the File → Save menu item), this
saves the project currently highlighted in the Project Explorer window. It saves
your code and anything in the underlying Excel workbook. (It is all saved in
the .xlsm file.) You can achieve the same objective by switching back to Excel
and saving in the usual way from there. (Note, however, that in Excel 2007
and later versions, if your file started as an .xlsx file without any VBA code,
you will have to save it as an .xlsm file once it contains code.)

3.3 The Object Browser

VBA’s Object Browser is a wonderful online help tool. To get to it, open the VBE
and click the Object Browser button on the Standard toolbar (see Figure 3.4). If you
prefer keyboard shortcuts, you can press the F2 key. Either way, this opens the win-
dow shown in Figure 3.7. At the top left, there is a dropdown list of libraries that
you can get help on. Our main interest is in the Excel library, the VBA library, and,
to a lesser extent, the Office library. The Excel library provides help on all of the
objects and their properties and methods in the Excel object model. The VBA library
provides help on the VBA elements that are common to all applications that can use
VBA: Excel, Access, Word, and others. The Office library provides help on objects
common to all Office programs, such as CommandBars objects (menus and toolbars).

For now, select the Excel library. In the bottom left pane, you see a list of
all objects in the Excel object model, and in the right pane, you see a list of all
properties and methods for any object selected in the left pane. A property is des-
ignated by a hand icon, and a method is designated by a green rectangular icon.
A few objects, such as the Workbook object, also have events they can respond to.
An event is designated by a lightning icon.

22 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To get help on any of these items, select it and then click the question mark
button at the top. It is too early in our VBA discussion to be asking for online
help, but you should not forget about the Object Browser. It can be invaluable
as you develop your projects. I use it constantly, and you should too. Of course,
you can get similar help by performing online searches for specific items, but the
Object Browser stores everything in one place.

3.4 The Immediate and Watch Windows

There are two other windows in the VBE that you should be aware of: the
Immediate and Watch windows. Each can be opened through the View menu
or the Debug toolbar. (The Immediate window can also be opened quickly with
the Ctrl+g key combination.) The Immediate window, shown in Figure 3.8, is use-
ful for issuing one-line VBA commands. If you type a command and press Enter,
the command takes effect immediately. For example, the first line in Figure 3.8
selects the range A1:B10 of the Data worksheet (assuming there is a Data work-
sheet in the active workbook). If you type this, press Enter, and switch back to
Excel, you will see that the range A1:B10 has been selected. If you precede the
command by a question mark, you can get an immediate answer to a question.
For example, if you type the second line in the figure, which asks for the address
of the range named MyData, and then press Enter, you immediately get the answer
on the third line.

Figure 3.7 Object Browser

The Visual Basic Editor 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Many programmers send information to the Immediate window through
their code. If you see the command Debug.Print, followed by something to be
printed, the programmer is asking for this to be printed to the Immediate win-
dow. This is not a permanent copy of the printed information. It is usually a
quick check to see whether a program is working properly.

The Watch window is used for debugging. Programs typically include several
variables that change value as the program runs. If the program does not appear
to be working as it should, you can put a watch on one or more key variables to
see how they change as the program progresses. Debugging in this way is dis-
cussed in some detail in Chapter 5.

3.5 A First Program

Although you do not yet know much about VBA programming, you know
enough to write a simple program and run it. Besides, sooner or later you will
have to stop reading and do some programming on your own. Now is a good
time to get started. Although the example in this section is very simple, there are
a few details you probably won’t understand completely, at least not yet. Don’t
worry. Later chapters will clarify the details. For now, just follow the directions
and realize the thrill of getting a program to work.

This example is based on a simple data set in the file First Program.xlsx.
It shows sales of a company by region and by month for a 3-year period. (See
Figure 3.9, where some rows have been hidden. The range B2:G37 has the
range name SalesRange.) Your boss wants you to write a program that scans the
sales of each region and, for each, displays a message that indicates the number of
months that sales in that region are above a user-selected value such as $150,000.
To do this, go through the following steps. (In case you get stuck, the finished
version is stored in the file First Program Finished.xlsm.)

1. Open the file. Get into Excel and open the First Program.xlsx file. Because
it is going to contain VBA code, save it as First Program.xlsm.

2. Get into the VBE. Press Alt+F11 to open the VBE. Make sure the Project
Explorer Window is visible. If it isn’t, open it with the View→ Project Explorer
menu item.

Figure 3.8 Immediate Window

24 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Add a module. In the Project Explorer window, make sure the First
Program.xlsm project is highlighted (select it if necessary), and use the
Insert → Module menu item to add a module to this project. This module
is automatically named Module1, and it will hold your VBA code.

4. Start a sub. Click anywhere in the Code window, type Sub CountHighSales,
and press Enter. You should immediately see the following code. You have
started a program called CountHighSales. (Any other descriptive name could
be used instead of CountHighSales, but it shouldn’t contain any spaces.)
The keyword Sub informs VBA that you want to write a subroutine (also
called a procedure or a macro), so it adds empty parentheses next to the
name CountHighSales and adds the keywords End Sub at the bottom—two
necessary elements of any subroutine. The rest of your code will be placed
between the Sub and End Sub lines. Chapters 5 and 10 discuss subroutines
in more detail, but for now, just think of a subroutine as a section of code
that performs a particular task. For this simple example, there is only one
subroutine.

Sub CountHighSales()
End Sub

5. Type the code. Type the code exactly as shown below between the Sub and
End Sub lines. It is important to indent properly for readability. To indent as
shown, press the Tab key. Also, note that there is no word wrap in the VBE.
To finish a line and go to the next line, you need to press the Enter key.
Other than this, the Code window is much like a word processor. You will
note that keywords such as Sub and End Sub are automatically colored blue
by the VBE. This is a great feature for helping you program. Also, spaces are
often inserted for you to make your code more readable. For example, if you

Figure 3.9 Sales by Region and Month

1

2

3

4

5

6

7

31

32

33

34

35

36

37

A B C D E F G

Month Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Jan-08 144770 111200 163140 118110 105010 167350

Feb-08 155180 155100 129850 133940 140880 104110

Mar-08 86230 162310 142950 131490 150160 158720

Apr-08 148800 165160 123840 141050 175870 108100

May-08 157140 130300 114990 128220 147790 167470

Jun-08 126150 163240 149360 152240 167320 181070

Jun-10 124320 148410 162310 186440 147200 146200

Jul-10 135100 131520 151780 153920 121200 141430

Aug-10 150790 151970 168800 144170 140360 139990

Sep-10 93740 168100 142040 126440 113500 130500

Oct-10 124160 148560 120190 155600 132590 155510

Nov-10 109840 189790 127460 135160 149470 163330

Dec-10 127100 108640 145300 127920 151130 122900

The Visual Basic Editor 25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

type nHigh=nHigh+1, the editor will automatically insert spaces on either side
of the equals and plus signs.

Sub CountHighSales()
Dim i As Integer
Dim j As Integer
Dim nHigh As Integer
Dim cutoff As Currency

cutoff = InputBox("What sales value do you want to check for?")
For j = 1 To 6

nHigh = 0
For i = 1 To 36

If wsData.Range("Sales").Cells(i, j) >= cutoff Then _
nHigh = nHigh + 1

Next i
MsgBox "For region " & j & ", sales were above " & Format(cutoff, "$0,000") _

& " on " & nHigh & " of the 36 months."
Next j

End Sub

6. Avoid syntax errors. Two special characters in this code are the ampersand,
&, and the underscore, _. Make sure each ampersand has a space on either
side of it, and make sure each line-ending underscore has a space before it.
(These spaces are not added automatically for you.) There are other syntax
errors you could make, but these are the most likely in this short subrou-
tine. Be sure to check your spelling carefully and fix any errors before
proceeding.

7. Run the program from the VBE. Your program is now finished. The next
step is to run it. There are several ways to do so, two of which are demon-
strated here. For the first method, make sure the cursor is anywhere within
your subroutine and select the Run → Run Sub/UserForm menu item.
(Alternatively, click the “green triangle” button on the Standard toolbar, or
press the F5 key.) If all goes well, you should see the input box in Figure
3.10, where you can enter a value such as 150000. The program will then
search for all values greater than or equal to $150,000 in the data set. Next,
you will see a series of message boxes such as the one in Figure 3.11. Each
message box tells you how many months the sales in some region are above
the sales cutoff value you entered. This is exactly what you wanted the pro-
gram to do.

8. Run the program with a button. The run method in the previous step
is fine for you, the programmer, but your users won’t want to get into the
VBE to run the program. They probably don’t even want to see the VBE.
They will instead want to run the program directly from the Excel worksheet
that contains the data. You can make this easy for them. First, switch back to
Excel (click the Excel button on the taskbar of your screen). Then click the
Insert dropdown list on the Developer ribbon (see footnote 1 of this chapter
for how to make the Developer tab visible), click the upper left “button”
control, and drag a rectangular button somewhere on your worksheet, as

26 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

shown in Figure 3.12.3 You will immediately be asked to assign a macro to this
button. This is because the only purpose of a button is to run a macro. You
should assign the CountHighSales macro you just wrote. Then you can type a
more meaningful caption on the button itself. (Again, see Figure 3.12 for a
possible caption.) At this point, the button is “selected”—there is a dotted bor-
der around it. To deselect it, just click anywhere else on the worksheet. Now
your button is ready to go. To run your program, just click the button.

9. Save the file. In case you haven’t done so already, save the file under the orig-
inal (or a new) name. This will save your code and the button you created.
Again, make sure you save it with the .xlsm extension.

A note on saving. You have undoubtedly been told to save frequently in all of your
computer-related courses. Frequent saving is at least as important in a programming
environment. After all the effort you expend to get a program working correctly, you
don’t want that sinking feeling when your unsaved work is wiped out by a sudden
power outage or some other problem. So I will say it, too—save, save, save!

3 In Excel 2003 and earlier, the button control is on the Forms toolbar, which you can make visible

by right-clicking any toolbar and checking the Forms option. Although buttons are ready-made for
running macros, Excel shapes can also be used. Give it a try. From the Insert menu, select and then

drag a shape such as a rectangle. Then right-click, and you will see an Assign Macro menu item.

Figure 3.10 InputBox for Sales Cutoff Value

Figure 3.11 MessageBox for Region 2

The Visual Basic Editor 27

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Troubleshooting

What if you get an error message when you run your program? First, read your
program carefully and make sure the code is exactly like the code shown here.
Again, the underscores at the ends of the If and MsgBox lines must be preceded
by a space. (Their purpose is to extend long lines of code to the next line.) Also,
the ampersand (&) characters in the MsgBox line should have a space on either
side of them. If you have any lines colored red, this is a sure sign you have typed
something incorrectly. (This is another feature of the VBE that helps program-
mers. Red lines signify syntax errors.) In any case, if you get some version of the
dialog box in Figure 3.13, click the End button. This stops a program with bugs
and lets you fix any errors. Alternatively, click the Debug button, and you will
see a line of code in yellow. This line is typically the offending line, or close to it.
(Again, debugging is discussed in some detail in Chapter 5.)

If your typing is correct and you still get an error, check steps 7 and 8. If you
are using step 7 to run the program, make sure your cursor is somewhere inside
the subroutine. If you are using the button method in step 8, make sure you
have assigned the CountHighSales macro to the button. (Right-click the button

Figure 3.13 A Typical Error Dialog Box

Figure 3.12 Button on the Worksheet

1

2

3

4

5

6

7

8

9

35

36

37

A B C D E F G H I J K L

Month Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Jan‐08 144770 111200 163140 118110 105010 167350

Feb‐08 155180 155100 129850 133940 140880 104110

Mar‐08 86230 162310 142950 131490 150160 158720

Apr‐08 148800 165160 123840 141050 175870 108100

May‐08 157140 130300 114990 128220 147790 167470

Jun‐08 126150 163240 149360 152240 167320 181070

Jul‐08 174010 183360 122120 149730 134220 135530

Aug‐08 171780 130050 124130 134510 175590 122230

Oct‐10 124160 148560 120190 155600 132590 155510

Nov‐10 109840 189790 127460 135160 149470 163330

Dec‐10 127100 108640 145300 127920 151130 122900

Count High Sales Values

28 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and select the Assign Macro menu item.) There are not too many things that can
go wrong with this small program, so you should eventually get it to work.
Remember, perseverance is the key.

Brief Analysis of the Program

I could not expect you to write this program without my help at this point. But
you can probably understand the gist of it. The four lines after the Sub line
declare variables that are used later on. The next line displays an InputBox (see
Figure 3.12) that asks for a user’s input. The section starting with For j = 1 To 6

and ending with Next j is a loop that performs a similar task for each sales region.
As you will learn in Chapter 7, loops are among the most powerful tools in a pro-
grammer’s arsenal. For example, if there were 600 regions rather than 6, the only
required change would be to change 6 to 600 in the For j = 1 To 6 line. Compu-
ters are excellent at performing repetitive tasks.

Within the loop on regions, there is another loop on months, starting with
For i = 1 To 36 and ending with Next i. Within this loop there is an If statement
that checks whether the sales value for the region in that month is at least as large
as the cutoff value. If it is, the variable nHigh is increased by 1. Once this inner loop
has been completed, the results for the region are reported in a MessageBox.

Again, the details might be unclear at this point, but you can probably under-
stand the overall logic of the program. And if you typed everything correctly and
ran the program as instructed, you now know the thrill of getting a program to
work as planned. I hope you experience this feeling frequently as you work
through this book.

3.6 Intellisense

A lot of things are advertised to be the best thing since sliced bread. Well, one of
the features of the VBE really is. It is called Intellisense. As you were writing the
program in the previous section, you undoubtedly noticed how the editor gave
you hints and tried to complete certain words for you. You see Intellisense in
the following situations:

● Every time you type the first line of a sub and then press Enter, Intellisense
adds the End Sub line automatically for you.4

● Whenever you start declaring a variable in a Dim statement, Intellisense helps
you with the variable type. For example, if you type Dim nHigh As In, it will

4There are many other VBA constructs that are bracketed with a beginning line and an ending line:
If and End If, For and Next, Do and Loop, and others. You might imagine that if VBA is smart enough
to add End Sub for you after you type the Sub line, it is smart enough to add an End If line after an If

line, a Next line after a For line, and so on. However, it isn’t that smart, at least not yet. My guess is
that Microsoft simply hasn’t gotten around to it yet. Interestingly, the Visual Studio editor for .NET

is that smart. It even indents automatically for you.

The Visual Basic Editor 29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

guess that you want In to be Integer. All you have to do at this point is press
the Tab key, and Integer will appear.

● Intellisense helps you with properties and methods of objects. For example, if
you type Range("A1:C10"). (including the period), you will see all of the prop-
erties and methods of a Range object. At this point you can scroll through
the list and choose the one you want.

● Intellisense helps you with arguments of methods. For example, if you type
Range("A1:C10").Copy and then a space, you will see all of the arguments
(actually, only one) of the Copy method. (Any arguments shown in square
brackets in this list are optional. All others are required.)

● Intellisense helps you with hard-to-remember constants. For example, if you
type Range("A1").End(, you will see that there are four constants to choose
from: xlDown, xlUp, xlToRight, and xlToLeft. (This corresponds to pressing
the End key and then one of the arrow keys in Excel. You will learn more
about it in Chapter 6.)

● Sometimes you create fairly long variable names like productCost or firstCusto-
mer. Then you need to use them repeatedly in your code. If you start typing
one of them, like firs, and then press Ctrl+Space, you will get a list of all vari-
ables that start with these letters, and you can choose the one you want. In
fact, if there is only one variable that starts with these letters, it will be
inserted automatically. This can save a lot of typing—and typing errors.

In short, Intellisense is instant online help. It doesn’t necessarily help you
with the logic of your program, but it speeds up your typing, and it helps ensure
that you get the syntax and spelling correct. After you get used to Intellisense,
you will find that it is absolutely indispensable.

3.7 Color Coding and Case

Another feature of the VBE that enhances readability and helps you get your
code correct is color coding.

● All keywords, such as Sub, End, For, and many others, are automatically col-
ored blue.

● All comments (discussed in Chapter 5) are colored green.
● All of the rest of your code is colored black.
● If you make a syntax error in a line of code and then press Enter, the offend-

ing line is colored red. This is a warning that you should fix the line before
proceeding.

Besides coloring, the editor corrects case for you.

● All keywords start with a capital letter. Therefore, if you type sub and press
Enter, the editor changes it to Sub.

● If you declare a variable with the spelling unitCost and then type it as UNIT-

Cost later on in the program, the editor automatically changes it to unitCost.

30 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(Whatever spelling you use in the Dim statement is the one used subsequently,
even if it is something weird like uNitCost.) Actually, case doesn’t matter at all
to VBA—it treats unitCost the same as uNitCost or any other variation, but
the editor at least promotes consistency.

3.8 Finding Subs in the VBE

For the next few chapters, each of your programs will consist of a single sub, so
when you select the file’s module in the VBE’s Project Explorer, your sub will
appear in the Code window. However, in the programs in Part II of the book,
there are multiple subs, and not all of them are in modules. In this case, it can be
tedious to locate them in the Code window. Fortunately, the VBE provides tools
to make this easy.

To follow along, open the Car Loan.xlsm file from Chapter 19. It not only
has multiple subs in its module, but it has code in other locations, including code
behind user forms (discussed in Chapter 11). The point is that it has multiple
subs in various places. For now, double-click Module1 in the Project Explorer.
You will see the MainProgram sub in the Code window. Now click the right drop-
down arrow above the Code window. (See Figure 3.14.) You will see a list of all
subs in Module1. To go quickly to any of them, just select the one you want.

Next, right-click the first form, frmInputs, in the Project Explorer and select
View Code. This shows the code behind this form. (Again, all of this is explained
in Chapter 11.) Now click the left dropdown arrow above the Code window.
(See Figure 3.15.) You will see a list of all the controls on the form. Any of
these can have associated code that responds to its events. For example, select

Figure 3.14 List of Subs in a Module

Source: Microsoft Corporation

The Visual Basic Editor 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

