
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

Buy. Rent. Access.

Access student data � les and other study

tools on cengagebrain.com.

For detailed instructions visit

http://s-solutions.cengage.com/ctdownloads/

Store your Data Files on a USB drive for maximum ef� ciency in

organizing and working with the � les.

Macintosh users should use a program to expand WinZip or PKZip archives.

Ask your instructor or lab coordinator for assistance.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

Understanding Operating
Systems

Eighth Edition

Ann McIver McHoes

Ida M. Flynn

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

© 2018 Cengage Learning®

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced or distributed in any form or by any means,
except as permitted by U.S. copyright law, without the prior written
 permission of the copyright owner.

Library of Congress Control Number: 2016962900

ISBN: 978-1-305-67425-7

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Unless otherwise noted all items © Cengage Learning.

Cengage Learning is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com.

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our preferred
online store www.cengagebrain.com

Understanding Operating Systems,

Eighth Edition

Ann McIver McHoes & Ida M. Flynn

Senior Product Manager: Kathleen McMahon

Product Team Leader: Kristin McNary

Associate Product Manager: Kate Mason

Associate Content Development

 Manager: Alyssa Pratt

Production Director: Patty Stephan

Senior Content Project Manager: Jennifer

 Feltri-George

Manufacturing Planner: Julio Esperas

Art Director/Cover Design: Diana Graham

Production Service/Composition: SPi Global

Cover Photos: sumkin/Shutterstock.com

Printed in the United States of America

Print Number: 01 Print Year: 2017

For product information and technology assistance, contact us at

Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to

permissionrequest@cengage.com

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

Dedicated to two inspiring colleagues:

Ida Moretti Flynn, award-winning teacher and a wonderful friend;

her love for teaching lives on.

Bob Kleinmann, superb editor and soul mate – not in that order.

 AMM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

iv

Contents

Part One Operating Systems Concepts 1

Chapter 1 Introducing Operating Systems 3

What Is an Operating System? 4

Operating System Software 4

Main Memory Management 6

Processor Management 7

Device Management 8

File Management 9

Network Management 9

User Interface 10

Cooperation Issues 11

Cloud Computing 12

An Evolution of Computing Hardware 13

Types of Operating Systems 14

Timeline of Operating Systems Development 17

1940s 17

1950s 18

1960s 19

1970s 19

1980s 20

1990s 20

2000s 20

2010s 21

Role of the Software Designer 22

Conclusion 23

Key Terms 23

To Explore More 25

Exercises 25

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

v

C
o
n
te

n
ts

Chapter 2 Early Memory Management Systems 29

Single-User Contiguous Scheme 30

Fixed Partitions 31

Dynamic Partitions 34

Best-Fit and First-Fit Allocation 36

Deallocation 41

Case 1: Joining Two Free Blocks 41

Case 2: Joining Three Free Blocks 42

Case 3: Deallocating an Isolated Block 43

Relocatable Dynamic Partitions 45

A Machine-Level Look at Relocation 45

The Essential Role of Registers 47

The Benefits of Compaction 49

Conclusion 49

Key Terms 50

To Explore More 51

Exercises 51

Chapter 3 Memory Management Includes Virtual Memory 59

Paged Memory Allocation 60

Page Displacement 62

Pages Versus Page Frames 65

Demand Paging Memory Allocation 67

Page Replacement Policies and Concepts 71

First-In First-Out 72

Least Recently Used 74

Clock Replacement Variation 75

Bit Shifting Variation 75

The Mechanics of Paging 76

The Importance of the Working Set 78

Segmented Memory Allocation 81

Segmented/Demand Paged Memory Allocation 84

Virtual Memory 87

Cache Memory 89

Conclusion 93

Key Terms 94

To Explore More 96

Exercises 96

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

vi

C
o
n
te

n
ts

Chapter 4 Processor Management 103

Definitions 104

About Multi-Core Technologies 106

Scheduling Submanagers 107

Process Scheduler 108

Job and Process States 111

Thread States 112

Control Blocks 113

Control Blocks and Queuing 113

Scheduling Policies and Algorithms 116

Scheduling Algorithms 117

First-Come, First-Served 117

Shortest Job Next 119

Priority Scheduling 121

Shortest Remaining Time 121

Round Robin 124

Multiple-Level Queues 126

Earliest Deadline First 128

Managing Interrupts 130

Conclusion 131

Key Terms 132

To Explore More 135

Exercises 135

Chapter 5 Process Synchronization 141

Consequences of Poor Synchronization 142

Modeling Deadlocks with Directed Graphs 143

Several Examples of a Deadlock 144

Necessary Conditions for Deadlock 150

Understanding Directed Graphs 151

Strategies for Handling Deadlocks 153

Prevention 154

Avoidance 156

Detection 158

Recovery 160

Starvation 161

Conclusion 164

Key Terms 164

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

vii

 C
o
n
te

n
ts

To Explore More 166

Exercises 166

Chapter 6 Concurrent Processes 171

What Is Parallel Processing? 172

Levels of Multiprocessing 174

Introduction to Multi-Core Processors 174

Typical Multiprocessing Configurations 175

Master/Slave Configuration 175

Loosely Coupled Configuration 176

Symmetric Configuration 177

Process Synchronization Software 178

Test-and-Set 179

WAIT and SIGNAL 180

Semaphores 180

Process Cooperation 183

Producers and Consumers 183

Readers and Writers 186

Concurrent Programming 187

Amdahl’s Law 188

Order of Operations 189

Applications of Concurrent Programming 191

Threads and Concurrent Programming 196

Two Concurrent Programming Languages 197

Ada Language 197

Java 198

Conclusion 200

Key Terms 201

To Explore More 202

Exercises 202

Chapter 7 Device Management 207

Types of Devices 208

Management of I/O Requests 209

I/O Devices in the Cloud 211

Sequential Access Storage Media 211

Direct Access Storage Devices 214

Magnetic Disk Storage 214

Access Times 216

Optical Disc Storage 225

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

viii

C
o
n
te

n
ts

CD and DVD Technology 227

Blu-ray Disc Technology 229

Solid State Storage 229

Flash Memory Storage 229

Solid State Drives 230

Components of the I/O Subsystem 231

Communication Among Devices 235

RAID 237

Level Zero 239

Level One 241

Level Two 241

Level Three 242

Level Four 243

Level Five 243

Level Six 243

Nested RAID Levels 244

Conclusion 245

Key Terms 246

To Explore More 249

Exercises 249

Chapter 8 File Management 255

The File Manager 256

File Management in the Cloud 257

Definitions 257

Interacting with the File Manager 259

Typical Volume Configuration 260

Introducing Subdirectories 262

File-Naming Conventions 263

File Organization 266

Record Format 266

Physical File Organization 267

Physical Storage Allocation 270

Contiguous Storage 271

Noncontiguous Storage 272

Indexed Storage 273

Access Methods 275

Sequential Access 276

Direct Access 276

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

ix

C
o
n
te

n
ts

Levels in a File Management System 277

Access Control Verification Module 280

Access Control Matrix 280

Access Control Lists 281

Capability Lists 282

Data Compression 283

Text Compression 283

Image and Sound Compression 284

Conclusion 285

Key Terms 285

To Explore More 287

Exercises 287

Chapter 9 Network Organization Concepts 293

Definitions and Concepts 294

Network Topologies 296

Star 296

Ring 297

Bus 298

Tree 300

Hybrid 300

Network Types 301

Personal Area Network 301

Local Area Network 302

Metropolitan Area Network 303

Wide Area Network 303

Wireless Local Area Network 303

Software Design Issues 304

Addressing Conventions 305

Routing Strategies 305

Connection Models 307

Conflict Resolution 310

Transport Protocol Standards 314

OSI Reference Model 314

TCP/IP Model 318

Conclusion 320

Key Terms 321

To Explore More 322

Exercises 322

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

x

C
o
n
te

n
ts

Chapter 10 Management of Network Functions 325

Comparison of Two Networking Systems 326

NOS Development 329

Important NOS Features 329

Major NOS Functions 330

DO/S Development 331

Memory Management 332

Process Management 333

Device Management 339

File Management 342

Network Management 345

Conclusion 348

Key Terms 348

To Explore More 349

Exercises 349

Chapter 11 Security and Ethics 353

Role of the Operating System in Security 354

System Survivability 354

Levels of Protection 355

Backup and Recovery 356

Security Breaches 356

Unintentional Data Modifications 356

Intentional System Attacks 357

System Protection 364

Antivirus Software 365

Firewalls 366

Authentication Protocols 367

Encryption 369

Password Management 370

Password Construction 371

Typical Password Attacks 372

Password Alternatives 372

Password Salting 374

Social Engineering 374

Ethics 375

Conclusion 377

Key Terms 378

To Explore More 379

Exercises 380
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

xi

C
o
n
te

n
ts

Chapter 12 System Management 383

Evaluating an Operating System 384

Cooperation Among Components 384

Role of Memory Management 385

Role of Processor Management 385

Role of Device Management 386

Role of File Management 388

Role of Network Management 389

Measuring System Performance 390

Measurement Tools 391

Feedback Loops 393

Patch Management 395

Patching Fundamentals 397

Software to Manage Deployment 399

Timing the Patch Cycle 399

System Monitoring 400

Conclusion 403

Key Terms 403

To Explore More 404

Exercises 404

Part Two Operating Systems in Practice 409

Chapter 13 UNIX Operating Systems 411

Brief History 412

The Evolution of UNIX 414

Design Goals 415

Memory Management 416

Process Management 418

Process Table Versus User Table 419

Process Synchronization 420

Device Management 423

Device Classifications 424

Device Drivers 425

File Management 426

File Naming Conventions 427

Directory Listings 429

Data Structures 431

User Interfaces 432
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

xii

C
o
n
te

n
ts

Script Files 434

Redirection 434

Pipes 436

Filters 437

Additional Commands 438

Conclusion 441

Key Terms 441

To Explore More 442

Exercises 442

Chapter 14 Windows Operating Systems 445

Brief History 446

Design Goals 447

Extensibility 447

Portability 448

Reliability 449

Compatibility 450

Performance 450

Memory Management 451

User Mode Features 452

Virtual Memory Implementation 453

Processor Management 456

Device Management 457

File Management 462

Network Management 465

Security Management 466

Security Concerns 466

Security Terminology 468

User Interfaces 469

Menu-Driven Interface 469

Command-Line Interface 471

Conclusion 474

Key Terms 474

To Explore More 475

Exercises 476

Chapter 15 Linux Operating Systems 479

Brief History 480

Design Goals 482

Memory Management 484Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

xiii

 C
o
n
te

n
ts

Processor Management 487

Process Table Organization 487

Process Synchronization 488

Process Management 488

Device Management 490

Device Classifications 490

Device Drivers 491

Device Classes 492

File Management 494

File Organization 494

Filename Conventions 494

Updates and New Versions 496

User Interfaces 497

System Monitor 498

System Logs 499

File Listings 500

Conclusion 502

Key Terms 502

To Explore More 503

Exercises 503

Chapter 16 Android Operating Systems 507

Brief History 508

Design Goals 511

Memory Management 511

Processor Management 513

Manifest, Activity, Task, and Intent 513

Activity States 514

Device Management 517

Screen Requirements 517

Battery Management 519

File Management 520

Security Management 521

Permissions 521

Device Access Security 522

Encryption Options 524

Bring Your Own Devices 524

User Interface 525

Touch Screen Controls 526

User Interface Elements 526

Conclusion 528Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

xiv

C
o
n
te

n
ts

Key Terms 529

To Explore More 530

Exercises 530

Appendix

Appendix A Algorithms 533

Appendix B ACM Code of Ethics and 539

Professional Conduct

Glossary 543

Bibliography 571

Index 577

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

xv

Is this book for you? In these pages, we explain a very technical subject in a not-

so-technical manner, putting the concepts of operating systems into words that many

 readers can quickly grasp.

For those who are new to the subject, this text demonstrates what operating systems

are, what they do, how they do it, how their performance can be evaluated, and how

they compare with each other. Throughout the textbook we describe the overall function

of many unseen parts of the operating system and lead readers to additional resources

where they can find more detailed information, if they so desire.

For readers with more technical backgrounds, this text introduces the subject concisely,

describing the complexities of operating systems without going into intricate detail. One

might say this book leaves off where other operating system textbooks begin.

To do so, we’ve made some assumptions about our audiences. First, we assume the

readers have some familiarity with computing systems. Second, we assume they have a

working knowledge of how to use an operating system and how it interacts with them.

We recommend (although we don’t require) that readers be familiar with at least one

operating system. In the few places where, in previous editions, we used pseudocode

to illustrate the inner workings of the operating systems, that code can be found in the

Appendix. By moving these algorithms out of individual chapters, we have simplified

our explanations of some complex events.

Although it is more difficult to understand how operating systems work than to memo-

rize the details of a single operating system, gaining this understanding is a longer-lasting

achievement, paying off in the long run because it allows one to adapt as technology

changes—as, inevitably, it does.

Therefore, regardless of the level of expertise that the reader brings to the subject, the

purpose of this book is to give computer users a solid background in the basics of oper-

ating systems, their functions and goals, and how they interact and interrelate.

Preface

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

xvi

Structure and Features

The organization of this book addresses a recurring problem with textbooks about

technologies that continue to change—constant advances in evolving subject matter

can make textbooks immediately outdated. To address this problem, our material is

divided into two parts: first, the concepts, which do not change quickly, and second,

the specifics of operating systems, which change dramatically over the course of years

and even months. Our goal is to give readers the ability to apply their knowledge year

after year, realizing that, although a command, or series of commands, used by one

operating system may be different from another, the goals are the same and the func-

tions of competing operating systems are also the same. It is for that reason, that we

have structured this book in two parts.

Part One (the first 12 chapters) describes the concepts of operating systems by concen-

trating on several “managers” in turn, and then describing how these managers work

together. In addition, Part One introduces network organization concepts, security,

ethics, and system management.

Part Two examines actual operating systems: how they apply the theories presented in

Part One and how they compare with each other.

Chapter 1 gives a brief introduction to the subject. The Memory Manager, described in

Chapters 2 and 3, is the simplest component of the operating system to explain, and has

been historically tied to the advances from one operating system to the next. We explain

the role of the Processor (CPU) Manager in Chapters 4, 5, and 6, first discussing simple

systems and then expanding the topic to include multiprocessing systems. By the time we

reach the Device Manager in Chapter 7 and the File Manager in Chapter 8, readers will

have been introduced to many key concepts found in every operating system. Chapters

9 and 10 introduce basic concepts related to networking. Chapters 11 and 12 discuss

security, ethics, and system management, including some of the tradeoffs that operating

systems designers consider when attempting to satisfy the needs of their user population.

In Part Two we explore four operating systems in the order of their first release: UNIX,

Windows, Linux, and Android. Here, each chapter includes a discussion describing how

that operating system applies the concepts discussed in Part One. Again, we must stress

that this is a general discussion—an in-depth examination of an operating system would

require details based on its current standard version, which can’t be done in a textbook.

We strongly suggest that readers use our discussion as a guide—a base to work from—

when comparing the advantages and disadvantages of a specific operating system, and

supplement our work with current academic research, which is readily available online.

Each chapter includes learning objectives, key terms, research topics, exercises, and a

spotlight on industry experts who have left their mark in computer science. For techni-

cally oriented readers, the exercises at the end of each chapter include some problems

P
re

fa
ce

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

xvii

for advanced students. Please note that these advanced exercises assume knowledge of

matters not presented in the book, but they’re good for anyone who enjoys a challenge.

We expect some readers who are new to the subject will cheerfully pass them by.

The text concludes with several reference aids. Within each chapter, important terms

are listed at its conclusion as key terms. The Windows chapter also includes a table that

briefly lists all acronyms or abbreviations used in that chapter. An extensive end-of-book

Glossary includes brief reader-friendly definitions for hundreds of terms used in these

pages; note that this glossary is specific to the way these terms are used in this textbook.

The Bibliography can guide the reader to basic research on the subject. Finally, the

Appendix features pseudocode algorithms referenced in several chapters, and a section

of the ACM Code of Ethics.

In an attempt to bring the concepts closer to home, throughout the book we’ve added

real-life examples to illustrate abstract concepts. However, let no one confuse our con-

versational style with our considerable respect for the subject matter. The subject of

operating systems is a complex one and it cannot be covered completely in these few

pages. Therefore, in this textbook we do not attempt to give an in-depth treatise of

operating systems theory and applications. This is an overall view.

Not included in this text is a detailed discussion of databases and data structures, except

as they are used to resolve process synchronization problems, or the work of specific

operating systems. This is because these structures only tangentially relate to operating

systems and are frequently the subject of other courses. We suggest that readers begin

by learning the basics as presented in the following pages and pursue these complex

subjects in their future studies.

Changes to this Edition

This edition has been thoroughly updated and features many improvements over previ-

ous editions:

• Renewed emphasis on the role of the talented people who designed and wrote oper-

ating systems, as well as their design decisions, which can affect how the resulting

system works.

• Added more screenshots from a variety of operating systems, including Macintosh

OS (which runs UNIX), Windows, Android phone and tablet, and Linux.

• Expanded our discussions of cloud computing and cloud storage.

• Revised networking discussions to reflect emerging designs and technology.

• Retained an emphasis on student understanding and original thinking in the exer-

cises, rather than on memorization or cut-and-paste facts. This is because our

book’s answer key is often available online shortly after publication, so in these

pages we have routinely asked students to use their own words to explain concepts.

P
re

fa
ce

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

xviii

• Expanded cross-references from Part Two to the concepts taught in Part One to

help students link specific system features with the concepts discussed in the begin-

ning chapters.

• Added emphasis on available command-mode options in each operating system for

readers who want to explore their system more directly, without using the menus.

• Included online resources for more information about many of the highly technical

subjects introduced in this text. Please remember that in the field of computer science,

online links go bad frequently, but by providing these links to our readers, they will

have a good starting place from which they can search for more current info.

• Updated artwork and references to the expanding influence of wireless technology.

• Removed examples in assembly language, which is not widely studied in introduc-

tory classes, and replaced them with pseudocode and prose descriptions.

Numerous other changes throughout the text include editorial clarifications, expanded

captions, and improved illustrations.

A Note for Instructors

The following supplements are available when this text is used in a classroom setting.

All supplements can be downloaded from the Instructor Companion Site. Simply search

for this text at sso.cengage.com. An instructor login is required.

Instructor’s Manual. The Instructor’s Manual that accompanies this textbook includes

additional instructional material to assist in class preparation, including Sample Syllabi,

Chapter Outlines, Technical Notes, Lecture Notes, Quick Quizzes, Teaching Tips, and

Discussion Topics.

Test Bank. Cengage Testing Powered by Cognero is a flexible, online system that allows

you to:

• author, edit, and manage test bank content from multiple Cengage solutions;

• create multiple test versions in an instant;

• deliver tests from your LMS, your classroom, or wherever you want.

PowerPoint Presentations. This book comes with Microsoft PowerPoint slides for each

chapter. These are included as a teaching aid for classroom presentations, either to make

available to students on the network for chapter review, or to be printed for classroom

distribution. Instructors can add their own slides for additional topics that they wish

to introduce to the class.

Solutions. Selected solutions to Exercises are provided.

P
re

fa
ce

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

xix

Order of Presentation

We have built this text with a modular construction to accommodate several alternative

sequences, depending on the instructor’s preference.

• For example, the syllabus can follow the chapters as listed from Chapter 1 through

Chapter 12 to present the core concepts that all operating systems have in common.

Using this path, students will learn about the management of memory, processors,

devices, files, and networks, in that order.

• An alternative path might begin with Chapter 1, move next to processor manage-

ment in Chapters 4 through 6, then to memory management in Chapters 2 and 3,

touch on systems security and management in Chapters 11 and 12, and finally move

to device and file management in Chapters 7 and 8. Because networking is often the

subject of another course, instructors may choose to bypass Chapters 9 and 10, or

include them for a more thorough treatment of operating systems.

We hope you find our discussion of ethics helpful in Chapter 11, which is here in

response to requests by university adopters of the text who asked us to include this

subject, even though it is sometimes the subject of a separate course.

When teaching one or more operating systems from Part Two, keep in mind that we

structured each of these four chapters the same way we presented concepts in the

first 12 chapters. That is, they discuss the management of memory, processors, files,

devices, networks, and systems, in that order, with a special section demonstrating

the user interfaces for each operating system. To illustrate the use of graphical user

interfaces in UNIX systems, we include screenshots from the Macintosh OS X oper-

ating system.

By including the Android operating system, which is specifically designed for use in a

mobile environment using phones and tablets, we are able to explore the challenges

unique to these computing situations.

Acknowledgments

Our gratitude goes to all of our friends and colleagues who were so generous with their

encouragement, advice, and support over the two decades of this publication. Special

thanks go to Bob Kleinmann, Eleanor Irwin, and Roger Flynn for their assistance.

As always, thanks to those at Cengage, Brooks/Cole, and PWS Publishing who have

made significant contributions to all eight editions of this text, especially Alyssa Pratt,

Kallie Swanson, Mike Sugarman, and Mary Thomas Stone.

P
re

fa
ce

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

xx

And to the many students and instructors who have sent helpful comments and suggestions since publication

of our first edition in 1991, we thank you. Please keep them coming.

Ann McIver McHoes, mchoesa@duq.edu

Ida Moretti Flynn (1945–2004)

P
re

fa
ce

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

1

This text explores the core mechanisms of operating systems, which manage a comput-

ing system’s hardware and software. That includes its memory, processing capability,

devices, files, and networks—and how to do all of this in an appropriate and secure

fashion. Here, in Part One, we present an overview of an operating system’s essentials.

• Chapter 1 introduces the subject of operating systems.

• Chapters 2 and 3 discuss the management of main memory resources.

• Chapters 4 through 6 cover single processor and multiprocessor management.

• Chapter 7 concentrates on managing available devices without conflicts.

• Chapter 8 is devoted to the management of files, including those that hold sys-

tem instructions as well as your data.

• Chapters 9 and 10 briefly review operating systems for networks.

• Chapter 11 discusses system security.

• Chapter 12 explores system management.

In Part Two (Chapters 13 through 16), we look at four specific operating systems and

how they apply the overall concepts presented in the first 12 chapters.

Throughout our discussion of this very technical subject, we try to include definitions

of terms that might be unfamiliar, but it isn’t always possible to describe a function and

define the technical terms while keeping the explanation clear. Therefore, we’ve put the

key terms with definitions at the end of each chapter, as well as in the glossary at the

end of the text. Items listed in the Key Terms are shown in boldface the first time they

are mentioned significantly.

Operating Systems
Concepts

Part One

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

2

P
a
rt
 O

n
e
 |
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

C
o
n
ce

p
ts

Throughout this book we keep our descriptions and examples as simple as possible to

introduce the system’s complexities without getting bogged down in technical detail.

Therefore, remember that for almost every topic explained in the following pages,

there’s much more information that’s readily available for study. Our goal is to intro-

duce the subject and to encourage our readers to independently pursue topics of special

interest. Enjoy.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

3

“I think there is a world market for maybe

five computers.”
—Attributed to Thomas J. Watson (1874–1956; chairman of IBM 1949–1956)

Learning Objectives

After completing this chapter, you should be able to describe:

• How operating systems have evolved through the decades

• The basic role of an operating system

• How operating system software manages it subsystems

• The role of computer system hardware on the development of its operating system

• How operations systems are adapted to serve batch, interactive, real-time, hybrid,

and embedded systems

• How operating systems designers envision their role and plan their work

Chapter 1 Introducing Operating
Systems

OPERATING SYSTEM

Software Components
Developed

Hardware Components
Developed

Operating Systems
Developed

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

4

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

To understand an operating system is to begin to understand the workings of an entire

computer system, because the operating system software manages each and every piece

of hardware and software. In the pages that follow, we explore what operating systems

are, how they work, what they do, and why.

This chapter briefly describes the workings of operating systems on the simplest scale.

The following chapters explore each component in more depth, and show how its func-

tion relates to the other parts of the operating system. In other words, we see how the

pieces work together harmoniously to keep the computer system working smoothly.

What Is an Operating System?

A computer system typically consists of software (programs) and hardware (the tangible

machine and its electronic components). The operating system is the most important

software— it’s the portion of the computing system that manages all of the hardware

and all of the other software. To be specific, the operating system software controls

every file, every device, every section of main memory, and every moment of process-

ing time. It controls who can use the system and how. In short, the operating system

is the boss.

Therefore, each time the user sends a command, the operating system must make sure

that the command is executed; or, if it’s not executed, it must arrange for the user to

get a message explaining the error. This doesn’t necessarily mean that the operating

system executes the command or sends the error message, but it does control the parts

of the system that do.

Operating System Software

The pyramid shown in Figure 1.1 is an abstract representation of the operating system in

its simplest form, and demonstrates how its major components typically work together.

At the base of the pyramid are the four essential managers of every major operating

system: Memory Manager, Processor Manager, Device Manager, and File Manager.

These managers, and their interactions, are discussed in detail in Chapters 1 through 8

of this book. Each manager works closely with the other managers as each one performs

its unique role. At the top of the pyramid is the User Interface, which allows the user to

issue commands to the operating system. Because this component has specific elements,

in both form and function, it is often very different from one operating system to the

next—sometimes even between different versions of the same operating system.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

5

O
p
e
ra

tin
g
 S

yste
m

 S
o
ftw

a
re

Regardless of the size or configuration of the system, the four managers, illustrated in

Figure 1.2, must, at a minimum, perform the following tasks while collectively keeping

the system working smoothly:

• Monitor the system’s resources

• Enforce the policies that determine what component gets what resources, when, and

how much

• Allocate the resources when appropriate

• Deallocate the resources when appropriate

User Interface

Device Manager

File Manager

Memory Manager

Processor Manager

(figure 1.1)

This pyramid represents

an operating system on

a stand-alone computer

unconnected to a network.

It shows the four subsys-

tem managers and the

User Interface.

File

Manager

Processor

Manager
Memory

Manager

Device

Manager

(figure 1.2)

Each manager at the base

of the pyramid takes

responsibility for its

own tasks while working

harmoniously with every

other manager.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

6

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

For example, the Memory Manager must keep track of the status of the computer

system’s main memory space, allocate the correct amount of it to incoming processes,

and deallocate that space when appropriate—all while enforcing the policies that were

established by the designers of the operating system.

An additional management task, networking, has not always been an integral part of

operating systems. Today the vast majority of major operating systems incorporate a

Network Manager, see Figure 1.3, to coordinate the services required for multiple sys-

tems to work cohesively together. For example, the Network Manager must coordinate

the workings of the networked resources, which might include shared access to memory

space, processors, printers, databases, monitors, applications, and more. This can be a

complex balancing act as the number of resources increases, as it often does.

(figure 1.3)

The Windows 10 Task

Manager displays a

 snapshot of the system's

CPU, main memory, disk,

and network activity.

Main Memory Management

The Memory Manager (the subject of Chapters 2 and 3) is in charge of main memory,

widely known as RAM (short for random access memory). The Memory Manager

checks the validity of each request for memory space, and if it is a legal request, allocates

a portion of memory that isn’t already in use. If the memory space becomes fragmented,

this manager might use policies established by the operating system’s designers to real-

locate memory to make more useable space available for other jobs that are waiting.

Finally, when the job or process is finished, the Memory Manager deallocates its allotted

memory space.

A key feature of RAM chips—the hardware that comprises computer memory—is that

they depend on the constant flow of electricity to hold data. If the power fails or is

turned off, the contents of RAM is wiped clean. This is one reason why computer system
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

7

O
p
e
ra

tin
g
 S

yste
m

 S
o
ftw

a
re

designers attempt to build elegant shutdown procedures, so that the contents of RAM

can be stored on a nonvolatile device, such as a hard drive, before the main memory

chips lose power during computer shutdown.

A critical responsibility of the Memory Manager is to protect all of the space in main

memory, particularly the space occupied by the operating system itself—it can’t allow

any part of the operating system to be accidentally or intentionally altered because that

would lead to instability or a system crash.

Another kind of memory that’s critical when the computer is powered on is read-only

memory (often shortened to ROM), shown in Figure 1.4. This ROM chip holds soft-

ware called firmware: the programming code that is used to start the computer and

perform other necessary tasks. To put it in simplest form, it describes, in prescribed

steps, when and how to load each piece of the operating system after the power is turned

on, up to the point that the computer is ready for use. The contents of the ROM chip

are nonvolatile, meaning that they are not erased when the power is turned off, unlike

the contents of RAM.

4
RAM stands for
random access
memory and is
the computer's
main memory. It's
sometimes called
“primary storage”
to distinguish it
from “secondary
storage,” where
data is stored on
hard drives or
other devices.

(figure 1.4)

A computer’s relatively

small ROM chip contains

the firmware (unchanging

software) that prescribes

the system’s initialization

every time the system’s

power is turned on.

Processor Management

The Processor Manager (discussed in Chapters 4 through 6) decides how to allocate

the central processing unit (CPU); an important function of the Processor Manager is

to keep track of the status of each job, process, thread, and so on. We will discuss all

of these in the chapters that follow, but for this overview, let’s limit our discussion to a

process and define it as a program’s “instance of execution.” A simple example could

be a request to solve a mathematical equation: This would be a single job consisting of

several processes, with each process performing a part of the overall equation.

The Processor Manager is required to monitor the computer’s CPU to see if it’s busy

executing a process or sitting idle as it waits for some other command to finish execu-

tion. Generally, systems are more efficient when their CPUs are kept busy. The Processor
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

8

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

Manager handles each process’s transition, from one state of execution to another, as it

moves from the starting queue, through the running state, and, finally, to the finish line

(where it then tends to the next process). Therefore, this manager can be compared to a

traffic controller. When the process is finished, or when the maximum amount of com-

putation time has expired, the Processor Manager reclaims the CPU so it can allocate

it to the next waiting process. If the computer has multiple CPUs, as with a multicore

system, the Process Manager’s responsibilities are greatly complicated.

Device Management

The Device Manager (the subject of Chapter 7) is responsible for connecting with every

device that’s available on the system, and for choosing the most efficient way to allocate

each of these printers, ports, disk drives, and more, based on the device scheduling poli-

cies selected by the designers of the operating system.

Good device management requires that this part of the operating system uniquely iden-

tify each device, start its operation when appropriate, monitor its progress, and, finally,

deallocate the device to make the operating system available to the next waiting process.

This isn’t as easy as it sounds because of the exceptionally wide range of devices that

can be attached to any system, such as the system shown in Figure 1.5.

4
A flash memory
device is an
example of
secondary storage
because it doesn't
lose data when its
power is turned
off. Still, some
operating systems
allow users to
plug in such a
device to improve
the performance of
main memory.

(figure 1.5)

This computer, running

the Windows 10 operating

system, has device drivers

loaded for all of the print-

ing devices shown here.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

9

O
p
e
ra

tin
g
 S

yste
m

 S
o
ftw

a
re

For example, let’s say you’re adding a printer to your system. There are several kinds

of printers commonly available (laser, inkjet, inkless thermal, etc.) and they’re made

by manufacturers that number in the hundreds or thousands. To complicate things,

some devices can be shared, while some can be used by only one user or one job at a

time. Designing an operating system to manage such a wide range of printers (as well

as monitors, keyboards, pointing devices, disk drives, cameras, scanners, and so on) is a

daunting task. To do so, each device has its own software, called a device driver, which

contains the detailed instructions required by the operating system to start that device,

allocate it to a job, use the device correctly, and deallocate it when it’s appropriate.

File Management

The File Manager (described in Chapter 8), keeps track of every file in the system,

including data files, program files, utilities, compilers, applications, and so on. By fol-

lowing the access policies determined by the system designers, the File Manager enforces

restrictions on who has access to which files. Many operating systems allow authorized

individuals to change these permissions and restrictions. The File Manager also controls

the range of actions that each user is allowed to perform on the files after they access

them. For example, one user might have read-only access to a critical database, while the

systems administrator might hold read-and-write access with the authority to create and

delete files in the same database. Access control is a key part of good file management

and is tightly coupled with system security software.

When the File Manager allocates space on a secondary storage device, such as a hard

drive, flash drive, archival device, and so on, it must do so knowing the technical

requirements of that device. For example, if it needs to store an archival copy of a large

file, it needs to know if the device stores it more efficiently as one large block or in sev-

eral smaller pieces that are linked through an index. This information is also necessary

for the file to be correctly retrieved later. Later, if this large file must be modified after

it has been stored, the File Manager must be capable of making those modifications as

accurately and efficiently as possible.

Network Management

Operating systems with networking capability have a fifth essential manager called the

Network Manager (the subject of Chapters 9 and 10) that provides a convenient way for

authorized users to share resources. To do so, this manager must take overall responsi-

bility for every aspect of network connectivity, including the requirements of the avail-

able devices as well as files, memory space, CPU capacity, transmission connections,

and types of encryption (if necessary). Networks with many available resources require

management of a vast range of alternative elements, which enormously complicates the

tasks required to add network management capabilities.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

10

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

Networks can range from a small wireless system that connects a game system to

the Internet; to a private network for a small business; to one that connects multiple

 computer systems, devices, and mobile phones to the Internet. Regardless of the size

and complexity of the network, these operating systems must be prepared to properly

manage the available memory, CPUs, devices, and files.

User Interface

The user interface—the portion of the operating system that users interact with

directly—is one of the most unique and most recognizable components of an operating

system. Two primary types are the graphical user interface (GUI), shown in Figure 1.6,

and the command line interface. The GUI relies on input from a pointing device, such

as a mouse or the touch of your finger. Specific menu options, desktops, and formats

often vary widely from one operating system to another, and, sometimes, from one

version to another.

The alternative to a GUI is a command line interface, which responds to specific com-

mands typed on a keyboard and displayed on the monitor, as shown in Figure 1.7. These

interfaces accept typed commands, and offer skilled users powerful additional control

because, typically, the commands can be linked together (concatenated) to perform

complex tasks with a single multifunctional command that would require many mouse

clicks to duplicate using a graphical interface.

While a command structure offers powerful functionality, it has strict requirements

for every command: Each must be typed accurately, each must be formed in the cor-

rect syntax, and combinations of commands must be assembled correctly. In addition,

users need to know how to recover gracefully from any errors they encounter. These

command line interfaces were once standard for operating systems and are still favored

by power users, but have largely been supplemented with simple, forgiving, graphical

user interfaces.

(figure 1.6)

An example of the

 graphical user interface

(GUI) for the Ubuntu Linux

operating system.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

11

O
p
e
ra

tin
g
 S

yste
m

 S
o
ftw

a
re

Cooperation Issues

None of the elements of an operating system can perform its individual tasks in

 isolation—each must also work harmoniously with every other manager. To illustrate

this using a very simplified example, let’s follow the steps as someone chooses a menu

option to open a program. The following series of major steps are typical of the discrete

actions that would occur in fractions of a second as a result of this choice:

 1. The Device Manager receives the electrical impulse caused by a click of

the mouse, decodes the command by calculating the location of the cursor,

and sends that information through the User Interface, which identifies the

requested command. Immediately, it sends the command to the Processor

Manager.

 2. The Processor Manager then sends an acknowledgment message (such as

“waiting” or “loading”) to be displayed on the monitor so that the user knows

that the command has been sent successfully.

 3. The Processor Manager determines whether the user request requires that a file

(in this case a program file) be retrieved from storage, or whether it is already

in memory.

 4. If the program is in secondary storage (perhaps on a disk), the File Manager

calculates its exact location on the disk and passes this information to the

Device Manager, which retrieves the program and sends it to the Memory

Manager.

 5. If necessary, the Memory Manager finds space for the program file in main

memory and records its exact location. Once the program file is in memory,

this manager keeps track of its location in memory.

 6. When the CPU is ready to run it, the program begins execution via the Proces-

sor Manager. When the program has finished executing, the Processor Man-

ager relays this information to the other managers.

(figure 1.7)

This is the Linux command

line user interface show-

ing a partial list of valid

commands for this operat-

ing system. Many menu-

driven operating systems

also support a command-

line interface similar to

this one.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

12

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

 7. The Processor Manager reassigns the CPU to the next program waiting in line.

If the file was modified, the File Manager and Device Manager cooperate to

store the results in secondary storage. If the file was not modified, there’s no

need to change the stored version of it.

 8. The Memory Manager releases the program’s space in main memory and gets

ready to make it available to the next program that requires memory.

 9. Finally, the User Interface displays the results and gets ready to take the next

command.

Although this is a vastly oversimplified demonstration of a very fast and complex operation,

it illustrates the incredible precision required for an operating system to work smoothly.

The complications increase greatly when networking capability is added. Although we’ll be

discussing each manager in isolation for much of this text, remember that no single manager

could perform its tasks without the active cooperation of every other manager.

Cloud Computing

One might wonder how cloud computing changes the role of operating systems. In

simplest terms, cloud computing is the practice of using Internet-connected resources

to perform processing, storage, or other operations, as shown in Figure 1.8. Generally,

(figure 1.8)

A map showing a few of the numerous system resources that can be connected via the cloud. Cloud-

connected devices can be located anywhere in the world if they can access the network.

The cloud

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

13

A
n
 E

vo
lu

tio
n
 o

f C
o
m

p
u
tin

g
 H

a
rd

w
a
re

cloud computing allows operating systems to accommodate remote access to system

resources, and provides increased security for these transactions. However, at its roots,

the operating system still maintains responsibility for managing all local resources, and

coordinating data transfer to and from the cloud. Also, the operating system that is

managing the far-away resources is responsible for the allocation and deallocation of

all its resources, this time, on a massive scale. Companies, organizations, and individu-

als are moving a wide variety of resources to the cloud, including data management,

file storage, applications, processing, printing, security, and so on. One can expect this

trend to continue. But regardless of where the resource is located—in the box, under

the desk, or on the cloud—the role of the operating system is the same: to access those

resources and manage the entire system as efficiently as possible.

An Evolution of Computing Hardware

To appreciate the role of the operating system (which is software), it may help to under-

stand the computer system’s hardware, which is the tangible, physical machine and its

electronic components, including memory chips, the central processing unit (CPU), the

input/output devices, and the storage devices.

• Main memory (RAM) is where the data and instructions must reside to be

processed.

• The central processing unit (CPU) is the “brains” of the computer. It has the cir-

cuitry to control the interpretation and execution of instructions. All storage refer-

ences, data manipulations, and input/output operations are initiated or performed

by the CPU.

• Devices, sometimes called I/O devices for input/output devices, include every periph-

eral unit attached to the computer system, from printers and monitors to magnetic

disks, optical disc drives, flash memory, keyboards, and so on.

A few of the operating systems that can be used on a variety of platforms are shown

in Table 1.1.

Platform Operating System

Laptops, desktops Linux, Mac OS X, UNIX, Windows

Mainframe computers Linux, UNIX, Windows, IBM z/OS

Supercomputers Linux, UNIX

Telephones, tablets Android, iOS, Windows

Workstations, servers Linux, Mac OS X Server, UNIX, Windows

(table 1.1)

 A brief list of platforms,

and a few of the operating

systems designed to run

on them, listed here in

alphabetical order.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

14

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

In 1965, Intel executive Gordon Moore observed that each new processor chip contained

roughly twice as much capacity as its predecessor (number of components per integrated

function), and that each chip was released within 18–24 months of the previous chip.

His original paper included a graph (shown in Figure 1.9) predicting that the trend

would cause computing power to rise exponentially over relatively brief periods of time,

and it has. Now known as Moore’s Law, the trend has continued and is still remark-

ably accurate. Moore’s Law is often cited by industry observers when making their chip

capacity forecasts.

0

1
9
5
9

L
o
g

2
 o

f
th

e
 n

u
m

b
e
r

o
f

co
m

p
o
n
e
n
ts

 p
e
r

in
te

g
ra

te
d
 f

u
n
ct

io
n

1
9
6
0

1
9
6
1

1
9
6
2

1
9
6
3

1
9
6
4

1
9
6
5

1
9
6
6

1
9
6
7

1
9
6
8

1
9
6
9

1
9
7
0

1
9
7
1

1
9
7
2

1
9
7
3

1
9
7
4

1
9
7
5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

Year

Number of components per integrated

function for minimum cost per component

extrapolated vs time.

(figure 1.9)

Gordon Moore’s 1965

paper included the

 prediction that the number

of transistors incorporated

in a chip will approximately

double every 24 months

(Moore, 1965).

Courtesy of Intel

Corporation.

Types of Operating Systems

Operating systems fall into several general categories distinguished by the speed of their

response, and the method used to enter data into the system. The five categories are

batch, interactive, real-time, hybrid, and embedded systems.

Batch systems feature jobs that are entered as a whole, and in sequence. That is, only

one job can be entered at a time, and once a job begins processing, then no other job

can start processing until the resident job is finished. These systems date from early

computers, when each job consisted of a stack of cards—or reels of magnetic tape—for

input, and were entered into the system as a unit, called a batch. The efficiency of a

batch system is measured in throughput which is the number of jobs completed in a

given amount of time (usually measured in minutes, hours, or days.)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

15

T
yp

e
s o

f O
p
e
ra

tin
g
 S

yste
m

s

Interactive systems allow multiple jobs to begin processing, and return results to users

with better response times than batch systems; but interactive systems are slower than

the real-time systems that we will talk about next. Early versions of these operating

systems allowed each user to interact directly with the computer system via commands

entered from a typewriter-like terminal. The operating system used complex algorithms

to share processing power (often with a single processor) among the jobs awaiting

processing. Interactive systems offered huge improvements in responsiveness with turn-

around times in seconds or minutes, instead of the hours or days of batch-only systems.

Hybrid systems, widely used today, are a combination of batch and interactive. They

appear to be interactive because individual users can enter multiple jobs or processes into

the system and get fast responses, but these systems also accept and run batch programs

in the background when the interactive load is light. A hybrid system takes advantage of

the free time between high-demand usage of the system and low-demand times.

Real-time systems are used in time-critical environments where reliability and deadlines

are critical. This time limit need not be ultra-fast, though it often is; however, system

response time must meet the deadline because there are significant consequences for not

doing so. They also need to provide contingencies to fail gracefully—that is, preserving

as much of the system’s capabilities and data as possible, throughout system failure, to

facilitate recovery. Examples of real-time systems are those used for spacecraft, airport

traffic control, fly-by-wire aircraft, critical industrial processes, and medical systems, to

name a few. There are two types of real-time systems, depending on the consequences

of missing the deadline: hard and soft systems.

• Hard real-time systems risk total system failure if the predicted deadline is missed.

• Soft real-time systems suffer performance degradation, but not total system failure,

as a consequence of a missed deadline.

Although it’s theoretically possible to convert a general-purpose operating system

into a real-time system by merely establishing a deadline, the need to be extremely

 predictable is not part of the design criteria for most operating systems; so they can’t

provide the guaranteed response times and graceful failure that real-time performance

requires. Therefore, most embedded systems (described in the following paragraphs)

and real-time environments require operating systems that are specially designed to

meet real-time needs.

Networks allow users to manipulate resources that may be located over a wide geo-

graphical area. Network operating systems were originally similar to single-processor

operating systems in that each machine ran its own local operating system and served

its own local user group. Now, network operating systems make up a special class of

software that allows users to perform their tasks using few, if any, local resources. One

example of this phenomenon is cloud computing.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

16

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

As shown in Figure 1.10, wireless networking capability is a standard feature in many

computing devices: cell phones, tablets, and other handheld Web browsers.

Internet

(figure 1.10)

An example of a simple

network. The server is

 connected by a cable

to the router, and the

 remaining devices connect

to it wirelessly.

4
One example of
software available
to help developers
build an
embedded system
is Windows
Embedded
Automotive.

An embedded system is a computer that is physically placed inside the products that it

operates to add very specific features and capabilities. For example, embedded systems

can be found in automobiles, digital music players, elevators, and pacemakers, to name

a few.

Operating systems for embedded computers are very different from those for general

computer systems. Each one is designed to perform a set of specific programs, which

are not interchangeable among systems. This permits the designers to make the oper-

ating system more lean and efficient to take best advantage of the computer’s limited

resources, typically with slower CPUs and smaller memory resources.

Before a general-purpose operating system, such as Linux, UNIX, or Windows, can be

used in an embedded system, the system designers must select which operating system

components are required in that particular environment and which are not. The final

version of this operating system generally includes redundant safety features, and only

the necessary elements; any unneeded features or functions are dropped. Therefore,

operating systems with a small kernel (the core portion of the software) and other func-

tions that can be mixed and matched to meet the embedded system requirements have

potential in this market.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

17

T
im

e
lin

e
 o

f O
p
e
ra

tin
g
 S

yste
m

s D
e
ve

lo
p
m

e
n
t

Grace Murray Hopper

Grace Hopper developed one of the world's first compilers: intermediate programs

that translate human-readable instructions into zeros and ones (the language of

the target computer). She then went on to write compiler-based programming

languages. A mathematician, she joined the U.S. Navy Reserves in 1943. She

was assigned to work on computer systems at Harvard, where she did ground-

breaking work, which included her development

of the widely adopted COBOL language. In 1969,

the annual Data Processing Management Associa-

tion awarded Hopper its “Man of the Year Award,”

and in 1973, she became the first woman of any

nationality, and the first person from the United

States, to be made a Distinguished Fellow of the

British Computer Society. She retired from the

Navy as Rear Admiral Hopper.

National Medal of Technology and Innovation (1991): “For

her pioneering accomplishments in the development of

computer programming languages that simplified com-

puter technology and opened the door to a significantly

larger universe of users.”

Timeline of Operating Systems Development

The evolution of early operating system software parallels the evolution of the computer

hardware it was designed to control.

1940s

To run programs on early computers, the programmers would reserve the entire machine

for the entire time they estimated it would take for the system to execute their program.

Then, the computer would sit idle between reservations.

Many things could go wrong with these early computers. For example, when Harvard’s

Mark I computer stopped working one day in 1945, technicians investigating the cause

discovered that a flying moth had worked its way inside Relay 70 in Panel F and short-

circuited it. The researcher, Grace Murray Hopper, duly placed the dead insect in the

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

18

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

system log, as shown in Figure 1.11, noting, “First actual case of bug being found.” The

incident spawned the industry-wide use of the word “bug” to indicate that a system is

not working correctly, and the term is still commonly used today.

(figure 1.11)

Dr. Grace Hopper’s

research journal included

the first computer bug.

Taped to the page are the

remains of a moth that

became trapped in the

computer’s relays, causing

the system to crash.

[Photo © 2002 IEEE]

1950s

Mid-century improvements included professional computer operators (instead of indi-

vidual programmers) who were assigned to maximize the computer’s operation and

schedule the incoming jobs as efficiently as possible. Hardware improvements included:

• faster speeds of input/output devices, such as storage drives and disks systems;

• the practice of grouping records into blocks before they were stored or retrieved in

order to use more of the available storage area in the devices;

• the introduction of a control unit to manage data flow in spite of the speed discrep-

ancy between the slow I/O devices and the faster CPU.

During this time, programs were still assigned to the processor one-at-a-time in

sequence. The next step toward better use of the system’s resources was the move to

shared processing.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

19

T
im

e
lin

e
 o

f O
p
e
ra

tin
g
 S

yste
m

s D
e
ve

lo
p
m

e
n
t

1960s

Computers in the mid-1960s were designed with faster CPUs, but they still had

problems interacting directly with the relatively slow printers and other I/O

devices. The solution was called multiprogramming, which introduced the concept

of loading many programs at one time and allowing them to share the attention

of the single CPU.

One mechanism developed to help implement multiprogramming was the introduction

of the concept of the interrupt, whereby the CPU was notified of events needing

 operating systems services. For example, when a program issued a print command,

called input/output (I/O) command, it generated an interrupt, which signaled the release

of the CPU from one job so it could begin execution of the next job. This was called

 passive multiprogramming because the operating system didn’t control the interrupts,

but, instead, waited for each job to end on its own. This was less than ideal because if

a job was CPU-bound, meaning that it performed a great deal of nonstop in-memory

processing before issuing an interrupt, it could monopolize the CPU for a long time

while all other jobs waited, even if they were more important.

To counteract this effect, computer scientists designed active multiprogramming, which

allowed the operating system a more active role. Each program was initially allowed

to use only a preset slice of CPU time. When time expired, the job was interrupted by

the operating system so another job could begin its execution. The interrupted job then

had to wait until it was allowed to resume execution at some later time. Soon, this idea,

called time slicing, became common in many interactive systems.

1970s

During this decade, computers were built with faster CPUs, creating an even greater

disparity between their rapid processing speed and slower I/O device times. How-

ever, schemes to increase CPU use were limited by the small and expensive physi-

cal capacity of the main memory. For example, the first Cray supercomputer was

installed at Los Alamos National Laboratory in 1976 and had only 8 megabytes

(MB) of main memory, a mere fraction of what can be found in many computing

devices today.

A solution to this physical limitation was the development of virtual memory, which

allowed only a portion of multiple programs to reside in memory at the same time. In

other words, a virtual memory system could divide each program into parts, keeping

them in secondary storage and bringing each part into memory only as it was needed.

Virtual memory soon became standard in operating systems of all sizes, and paved the

way toward a much better use of the CPU.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

20

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

1980s

Computer hardware during this time became more flexible, with logical functions that

were built on easily replaceable circuit boards. And because it had become cheaper to

create these circuit boards, more operating system functions were made part of the

hardware itself, giving rise to a new concept—firmware, a word used to indicate that

a program is permanently held in read-only memory (ROM), as opposed to being held

in secondary storage.

The evolution of personal computers and high-speed communications sparked the move

to networked systems and distributed processing, enabling users in remote locations to

share hardware and software resources. These systems required a new kind of operat-

ing system—one capable of managing multiple sets of subsystem managers, as well as

hardware that might reside half a world away.

1990s

The overwhelming demand for Internet capability in the mid-1990s sparked the prolif-

eration of networking capability. The World Wide Web was first proposed in a paper

by Tim Berners-Lee (http://info.cern.ch/Proposal.html); his original concept is shown in

Figure 1.12. Based on this research, he designed the first Web server and browser, mak-

ing it available to the general public in 1991. While his innovations sparked increased

connectivity, it also increased demand for tighter security to protect system assets from

Internet threats.

The decade also introduced a proliferation of multimedia applications demanding more

power, flexibility, and device compatibility for most operating systems, as well as large

amounts of storage capability, longer battery life, and cooler operation. These techno-

logical advances required that the operating system be equipped with commensurate

advancements.

2000s

The new century emphasized the need for improved flexibility, reliability, and speed.

Virtualization allowed separate partitions of a single server to support different oper-

ating systems. In other words, it turned a single physical server into multiple virtual

servers, often with multiple operating systems. Virtualization required the operating

system to have an intermediate manager to oversee the access of each operating system

to the server’s physical resources.

Processing speed enjoyed a similar advancement with the commercialization of multicore

processors, which contained many cores working cooperatively together. For example,

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

21

T
im

e
lin

e
 o

f O
p
e
ra

tin
g
 S

yste
m

s D
e
ve

lo
p
m

e
n
t

Comms

ACM

Hypermedia

“Hypertext”

Hyper

Card UUCO

News

IBM

GroupTalk

VAX/

NOTES

CERNDOC

C.E.R.N.

DD division

MIS OC group

RA section

Tim

Berners-Lee

Hierarchical

systems

ENQUIRE

Linked

information

A

Proposal

X

This

document

Computer

conferencing

for example

for example

includes includes

includes

refers

todescribes

describes

wrote

describes

describes

for example

unifies

(figure 1.12)

Illustration from the

 proposal by Tim Berners-

Lee describing his

revolutionary “linked

information system,”

which became the World

Wide Web (www).

(http://info.cern.ch/

Proposal.html)

a chip with two CPUs allows two sets of calculations to run at the same time, which

sometimes leads to faster job completion (though not always). It’s almost as if the user

has two separate computers, and, thus, two processors, cooperating on a single task.

Designers have created chips that have dozens of cores; one is shown in Figure 1.13.

Does this hardware innovation affect the operating system software? Absolutely. This

is because the operating system must now manage the work of each of these processors

and be able to schedule and manage the processing of their multiple tasks.

2010s

Increased mobility and wireless connectivity spawned a proliferation of multicore CPUs

(a processor is also called a core) on one computer chip. Multicore engineering was

driven by the problems caused by nano-sized transistors and their ultra-close place-

ment on a computer chip. Although chips with millions of transistors placed very close

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

22

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

(figure 1.13)

This single piece of silicon

can hold 80 cores, which,

to put it in the simplest

terms, can perform up

to 80 calculations at one

time, and do so without

overheating.

(Courtesy of Intel

Corporation)

together helped increase system performance dramatically, the close proximity of these

transistors also allowed current to “leak,” which caused the buildup of heat, as well

as other problems. With the development of multi-core technology, a single chip (one

piece of silicon) could be equipped with two or more processor cores. In other words,

they replaced a single large processor with two half-sized processors (called dual core),

four quarter-sized processors (quad core), and so on. This design allowed the same sized

chip to produce less heat and offered the opportunity to permit multiple calculations to

take place at the same time.

Role of the Software Designer

Who writes an operating system? Depending on the complexity of the computer, the

design team could range from a single person to a multi-skilled team of people. Those

who create an operating system are faced with many choices that can affect every part

of the software and the resources it controls. Before beginning, designers typically start

by asking key questions, using the answers to guide them in their work. The most com-

mon overall goal is to maximize the use of the system’s resources (memory, processing,

4
The number of
operating systems
is uncountable.
Some are specific
only to a single
type of device,
and some are
widely used
on systems of
all sizes and
capabilities. The
Linux operating
system was
originally written
by a young
student named
Linus Torvalds in
Finland. There's
more about
Torvalds
in Chapter 15.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

23

K
e
y T

e
rm

s

devices, and files) and minimize downtime, though certain proprietary systems may

have other priorities. Typically, designers include the following factors into their devel-

opmental efforts: the minimum and maximum main memory resources; the number

and brand of CPUs; the variety of storage devices likely to be connected; the types of

files, networking capability, security requirements, and default user interfaces available;

assumed user capabilities; and so on.

For example, a mobile operating system often needs to minimize the heat the device gener-

ates. Likewise, if it’s a real-time operating system, designers need to aggressively manage

memory usage, processor time, device allocation, and files so that urgent deadlines will

not be missed. For these reasons, operating systems are often complex pieces of software.

As we might expect, no single operating system is perfect for every environment. Some

systems can be best served with a UNIX system, others benefit from the structure of a

Windows system, and still others work best using Linux, Mac OS, Android, or even a

custom-built operating system.

Conclusion

In this chapter, we looked at the definition of an operating system as well as its overall

function. What began as hardware-dependent operations software has evolved to run

increasingly complex computers and, like any complicated subject, there’s much more

detail to explore, such as the role of the main memory resource, the CPU (processor),

the system’s input and storage devices, and its numerous files. Each of these functions

needs to be managed seamlessly, as does the cooperation among them and other system

essentials, such as the network it’s connected to. As we’ll see in the remainder of this

text, there are many ways to perform every task, and it’s up to the designers of the

operating system to choose the policies that best match the environment and its users.

In the following chapters, we’ll explore in detail how each portion of the operating

system works, as well as its features, functions, and benefits. We’ll begin with the part

of the operating system that’s the heart of every computer: the module that manages

main memory.

Key Terms

batch system: a type of computing system that executes programs, each of which is

submitted in its entirety, can be grouped into batches, and is executed without external

intervention.

central processing unit (CPU): a component with circuitry that controls the interpreta-

tion and execution of instructions. See also processor.
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

24

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

cloud computing: a multifaceted technology that allows computing, data storage and

retrieval, and other computer functions to take place via a large network, typically the

Internet.

Device Manager: the section of the operating system responsible for controlling the use

of devices. It monitors every device, channel, and control unit and chooses the most

efficient way to allocate all of the system’s devices.

embedded system: a dedicated computer system that is often part of a larger physical

system, such as a jet aircraft or automobile. Often, it must be small, fast, and able to

work with real-time constraints, fail-safe execution, and nonstandard I/O devices.

File Manager: the section of the operating system responsible for controlling the use

of files.

firmware: software instructions, or data, that are stored in a fixed or “firm” way, usu-

ally implemented on some type of read-only memory (ROM).

hardware: the tangible machine and its components, including main memory, I/O

devices, I/O channels, direct access storage devices, and the central processing unit.

hybrid system: a computer system that supports both batch and interactive processes.

interactive system: a system that allows each user to interact directly with the operating

system.

kernel: the primary part of the operating system that remains in random access memory

(RAM), and is charged with performing the system’s most essential tasks, such as man-

aging main memory and disk access.

main memory (RAM): the memory unit that works directly with the CPU, and in which

the data and instructions must reside in order to be processed. Also called primary stor-

age, RAM, or internal memory.

Memory Manager: the section of the operating system responsible for controlling the

use of memory. It checks the validity of each request for memory space, and if it’s a legal

request, allocates the amount of memory required to execute the job.

multiprogramming: a technique that allows a single processor to process several pro-

grams residing simultaneously in main memory, and interleaving their execution by

overlapping I/O requests with CPU requests.

Network Manager: the section of the operating system responsible for controlling the

access to, and use of, networked resources.

network: a system of interconnected computer systems and peripheral devices that

exchange information with one another.

operating system: the primary software on a computing system that manages its

resources, controls the execution of other programs, and manages communications

and data storage.
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

25

E
xe

rcise
s

process: an instance of execution of a program that is identifiable and controllable by

the operating system.

processor: (1) another term for the CPU (central processing unit); (2) any component

in a computing system capable of performing a sequence of activities. It controls the

interpretation and execution of instructions.

Processor Manager: a composite of two submanagers, the Job Scheduler and the Process

Scheduler, that decides how to allocate the CPU.

RAM: short for random access memory. See main memory.

real-time system: a computing system used in time-critical environments that require

guaranteed response times. Examples include navigation systems, rapid transit systems,

and industrial control systems.

server: a node that provides clients with various network services, such as file retrieval,

printing, or database access services.

storage: the place where data is stored in the computer system. Primary storage is main

memory. Secondary storage is nonvolatile media, such as disks and flash memory.

user interface: the portion of the operating system that users interact with directly—is

one of the most unique and most recognizable components of an operating system.

To Explore More

For additional background on a few of the topics discussed in this chapter, begin a

search with these terms.

• Embedded computers aboard the International Space Station

• Operating systems for mainframes

• UNIX operating system in Apple devices

• Windows systems for sports stadiums

• Android operating system for phones

Exercises

Research Topics

 A. Write a one-page review of an article about the subject of operating systems

that appeared in a recent computing magazine or academic journal. Give a

summary of the article, including the primary topic, your own summary of

the information presented, and the author’s conclusion. Give your personal

 evaluation of the article, including topics that made the article interesting to you

(or not) and its relevance to your own experiences. Be sure to cite your sources.
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

26

C
h
a
p
te

r
1
|
In

tr
o
d
u
ci

n
g
 O

p
e
ra

ti
n
g
 S

ys
te

m
s

 B. In the computing environment the numerical value represented by the pre-

fixes kilo-, mega-, giga-, and so on can vary depending on whether they

are describing bytes of main memory or bits of data transmission speed.

Research the actual value (the number of bytes) in a Megabyte (MB) and

then compare that value to the number of bits in a Megabit (Mb). Are they

the same or different? If there is a difference or uncertainty, explain why

that is the case. Cite your sources.

Exercises

 1. Give a real-world example of a task that you perform everyday via cloud

computing. Explain how you would cope if the network connection suddenly

became unavailable.

 2. In your opinion, what would be the consequences if the Memory Manager and

the File Manager stopped communicating with each other?

 3. In your opinion, what would be the consequences if the Memory Manager and

the Processor Manager stopped communicating with each other?

 4. Gordon Moore predicted the dramatic increase in transistors per chip in

1965 and his prediction has held for decades. Some industry analysts insist

that Moore’s Law has been a predictor of chip design, but others say it is a

 motivator for designers of new chips. In your opinion, who is correct? Explain

your answer.

 5. Give an example of an organization that might find batch-mode processing

useful and explain why.

 6. Give an example of a situation that might need a real-time operating system

and explain in detail why you believe that would be the case.

 7. Name five current operating systems (other than those mentioned in Table 1.1)

and identify the computers, platforms, or configurations where each is used.

 8. Many people confuse main memory and secondary storage. Explain why this

might happen, and describe how you would explain the differences to class-

mates so they would no longer confuse the two.

 9. Name the five key concepts about an operating system that you think a typical

user needs to know and understand.

 10. Explain the impact of the continuing evolution of computer hardware and the

accompanying evolution of operating systems software.

 11. List three tangible, physical, resources that can be found on a typical computer

system.

 12. Select two of the following professionals: an insurance adjuster, a delivery per-

son for a courier service, a newspaper reporter, a doctor (general practitioner),

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

27

E
xe

rcise
s

or a manager in a supermarket. Suggest at least two ways that each person

might use a mobile computer to work more efficiently.

 13. Give real-world examples of interactive, batch, real-time, and embedded sys-

tems and explain the fundamental differences that distinguish each one from

the others.

 14. Briefly compare active and passive multiprogramming and give examples of

each.

Advanced Exercises

Advanced Exercises explore topics not discussed in this chapter and are appropriate for

readers with supplementary knowledge of operating systems.

 15. Give at least two reasons why a state-wide bank might decide to buy six net-

worked servers instead of one mainframe.

 16. Compare the development of two operating systems, described in Chapters

13–16 of this text, including design goals and evolution. Name the operating

system each was based on, if any. Which one do you believe is more efficient

for your needs? Explain why.

 17. Draw a system flowchart illustrating the steps performed by an operating sys-

tem as it executes the instruction to back up a disk on a single-user computer

system. Begin with the user typing the command on the keyboard or choosing

an option from a menu, and conclude with the result being displayed on the

monitor.

 18. In a multiprogramming and time-sharing environment, several users share a

single system at the same time. This situation can result in various security

problems. Name two such problems. Can we ensure the same degree of

 security in a time-share machine as we have in a dedicated machine? Explain

your answers.

 19. Give an example of an application where multithreading gives improved per-

formance over single-threading.

 20. If a process terminates, will its threads also terminate or will they continue to

run? Explain your answer.

 21. The boot sequence is the series of instructions that enable the operating system

to get installed and running. In your own words, describe the role of firmware

and the boot process for an operating system of your choice.

 22. A “dual boot” system gives users the opportunity to choose from among a list

of operating systems when powering on a computer. Describe how this process

works. Explain whether or not there is a risk that one operating system could

intrude on the space reserved for another operating system.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

29

“Memory is the primary and fundamental power, without

which there could be no other intellectual opeatrion.”
—Samuel Johnson (1709–1784)

Learning Objectives

After completing this chapter, you should be able to describe:

• How four memory allocation schemes in this chapter manage incoming jobs

• How two memory allocation systems work: best-fit and first-fit

• How a memory list is used to keep the status of available memory

• The essential role of memory deallocation, and the consequences if it isn’t

performed

• How compaction can improve memory allocation efficiency

Chapter 2 Early Memory
Management Systems

MEMORY MANAGER Single-User Configurations

Fixed Partitions

Dynamic Partitions

Relocatable Dynamic Partitions

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

30

C
h
a
p
te

r
2
 |
 E

a
rl
y

M
e
m

o
ry

 M
a
n
a
g
e
m

e
n
t
S
ys

te
m

s

One of the most critical segments of the operating system is the part that manages the

main memory. In fact, for early computers, the performance of the entire system was

judged by the quantity of the available main memory resources, and how that memory

was optimized while jobs were being processed. Back in those days, jobs were submitted

serially, one at a time; and managing memory centered on assigning that memory to

each incoming job, and then reassigning it when the job was finished.

Main memory has gone by several synonyms, including random access memory or

RAM, core memory, and primary storage (in contrast with secondary storage, where

data is stored in a more permanent way). This chapter discusses four types of memory

allocation schemes: single-user systems, fixed partitions, dynamic partitions, and relo-

catable dynamic partitions. Let’s begin with the simplest memory management scheme:

the one used with early computer systems.

Single-User Contiguous Scheme

This memory allocation scheme works like this: before execution can begin, each job

or program is loaded, in its entirety, into memory, and is allocated as much contiguous

space in memory as it needs, as shown in Figure 2.1. The key terms here are entirety

and contiguous. If the program is too large to fit into the available memory space, it

cannot begin execution.

This scheme demonstrates a significant limiting factor of all computers—they have

only a finite amount of memory. If a program doesn’t fit, then either the size of main

memory must be increased, or the program must be modified to fit, often by revising

it to be smaller.

4
The earliest
memory
management
scheme processed
only a single job
at a time. It did
not allow two jobs
to share main
memory at the
same time, even
if a sufficient
amount of memory
was available.

Operating System

Job 1 (30K)

10K

40K

Remainder of

Main Memory

is Unused

(figure 2.1)

Only one program (this

one is 30K in size) at a

time is allowed to occupy

memory, even if there is

room to accommodate

the next job that’s wait-

ing. Notice that the space

that’s reserved for the

operating system must

remain in main memory.
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

31

Fixe
d
 P

a
rtitio

n
s

Single-user systems in a non-networked environment allocate to each user, access to all

available main memory for each job, and jobs are processed sequentially, one after the

other. To allocate memory, the amount of work required from the operating system’s

Memory Manager is minimal, as described in the following steps:

 1. Evaluate the incoming job to see if it is small enough to fit into the available

space. If it is, load it into memory; if not, reject it and evaluate the next incoming

process.

 2. Monitor the occupied memory space. When the resident job ends its execution and

no longer needs to be in memory, indicate that the entire amount of main memory

space is now available and return to Step 1, evaluating the next incoming job.

An “Algorithm to Load a Job in a Single-User System,” using pseudocode and demon-

strating these steps, can be found in Appendix A.

Once the incoming job is entirely loaded into memory, it begins its execution and

remains there until the execution is complete, either by finishing its work, or through the

intervention of the operating system, such as when an error is detected. When it finishes,

the operating system prepares to load the next waiting job, and so on.

One major problem with this type of memory allocation scheme (first made available

commercially in the late 1940s and early 1950s) is that it doesn’t support multiprogram-

ming (multiple jobs or processes occupying memory at the same time).

Fixed Partitions

The first attempt to allow for multiprogramming used fixed partitions (sometimes called

static partitions) within main memory—that is, the entirety of each partition could be

assigned to a single job, and multiple partitions allowed multiple jobs at the same time.

This memory management system was naturally more complex to manage.

For example, a system with four partitions could hold four jobs in memory at the same

time. One fact remained the same, however: these partitions were static, so the systems

administrator had to turn off the entire system to reconfigure partition sizes, and any

job that couldn’t fit into the largest partition could not be executed. The role of the

individual operating the computing system was essential.

An important factor was introduced with this scheme: protection of the job’s assigned

memory space. Once a partition was allocated to a job, the jobs in other memory parti-

tions had to be prevented from invading its boundaries, either accidentally or inten-

tionally. This problem of partition intrusion didn’t exist in the single-user contiguous

allocation scheme because only one job was present in the main memory space at any

given time, that is, only the portion of main memory that held the operating system had

to be protected. However, with the introduction of fixed partition allocation schemes,

4
If one large job
(or many small
jobs) were ready
for processing, the
operator might
want to reconfigure
the partition sizes
to accommodate
them as efficiently
as possible, but
the size of each
partition couldn’t
be changed
without restarting
(rebooting) the
system.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

32

C
h
a
p
te

r
2
 |
 E

a
rl
y

M
e
m

o
ry

 M
a
n
a
g
e
m

e
n
t
S
ys

te
m

s

protection was mandatory for each partition in main memory. Typically, this was the

joint responsibility of the hardware of the computer and of the operating system.

The algorithm used to store jobs in memory requires a few more steps than the one used

for a single-user system because the size of the job must be matched with the size of the

available partitions in order to make sure it fits completely. (“An Algorithm to Load

a Job in a Fixed Partition” is in Appendix A.) Remember, the fixed partitions scheme

also required that the entire job be loaded into memory before execution could begin.

To do so, the Memory Manager would perform these steps (in a two-partition system):

 1. Check the incoming job’s memory requirements. If it’s greater than the size of

the largest partition, reject the job and go to the next waiting job. If it’s less

than the largest partition, go to Step 2.

 2. Check the job size against the size of the first available partition. If the job is

small enough to fit, see if that partition is free. If it is available, load the job

into that partition. If it’s busy with another job, go to Step 3.

 3. Check the job size against the size of the second available partition. If the job

is small enough to fit, check to see if that partition is free. If it is available, load

the incoming job into that partition. If not, go to Step 4.

 4. Because neither partition is available now, place the incoming job in the wait-

ing queue for loading at a later time. Return to Step 1 to evaluate the next

incoming job.

This partition scheme is more flexible than the single-user scheme because it allows

more than one program to be in memory at the same time. However, it still requires

that the entire program be stored contiguously and in memory from the beginning to

the end of its execution.

In order to allocate memory spaces to jobs, the Memory Manager must maintain a table

showing each memory partition’s size, its address, its access restrictions, and its current

status (free or busy). Table 2.1 shows a simplified version for the system illustrated in

Figure 2.2. Note that Table 2.1 and the other tables in this chapter have been simplified.

More detailed discussions of these tables and their contents are presented in Chapter 8,

“File Management.”

Partition Size Memory Address Access Partition Status

100K 200K Job 1 Busy

25K 300K Job 4 Busy

25K 325K Free

50K 350K Job 2 Busy

(table 2.1)

 A simplified fixed-par-

tition memory table for

several small jobs with the

free partition shaded.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

33

Fixe
d
 P

a
rtitio

n
s

When each resident job terminates, the status of its memory partition is changed from

busy to free in order to make it available to an incoming job.

The fixed partition scheme works well if all of the jobs that run on the system are of

similar size, or if the sizes are known ahead of time and don’t vary between reconfigu-

rations. Ideally, this would require accurate, advance knowledge of all the jobs waiting

to be run on the system in the coming hours, days, or weeks. However, under most

circumstances, the operator chooses partition sizes in an arbitrary fashion, and, thus,

not all incoming jobs fit in them.

There are significant consequences if the partition sizes are too small: large jobs will

need to wait if the large partitions are already booked, and they will be rejected if they’re

too big to fit into the largest partition.

On the other hand, if the partition sizes are too big, memory is wasted. Any job that

occupies less than the entire partition (the vast majority will do so) will cause the unused

memory in the partition to remain idle. Remember that each partition is an indivisible

unit that can be allocated to only one job at a time. Figure 2.3 demonstrates one such

circumstance: Job 3 is kept waiting because it’s too big for Partition 3, even though

there is more than enough unused space for it in Partition 1, which is claimed by Job 1.

This phenomenon of less-than-complete use of memory space in a fixed partition is

called internal fragmentation because it’s inside a partition, and is a major drawback

to this memory allocation scheme.

Main Memory

200K

available

Partition 1 = 100K

Operating System

Partition 4 = 50K

Partition 3 = 25K

Partition 2 = 25K

Main Memory

Partition 1 has 70K of

internal fragmentation

Operating System

Partition 3 is empty

JOB LIST :

Job 1 = 30K

Job 2 = 50K

Job 3 = 30K (waiting)

Job 4 = 25K

Job 1 uses 30K

Job 2 in Partition 4

Job 4 in Partition 2

(a) (b)

(figure 2.2)

As the small jobs listed in

Table 2.1 are loaded into

the four fixed partitions,

Job 3 must wait, even

though Partition 1 has

70K of available memory.

These jobs are allocated

space on the basis of “first

available partition that

accommodates the job’s

size.”

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-208

