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Preface

W
e are extremely pleased and grateful that SAGE asked us to put together a third edition of 

Applied Multivariate Research: Design and Interpretation. This edition reflects and attempts to 

not only incorporate feedback we have received from several anonymous reviewers at the start of our 

revision process, but it also integrates the suggestions, questions, and feedback provided to us by both 

readers of the second edition and the students in our courses. Because we use the book in our intro-

ductory graduate-level statistics/research design courses, we have also seen where we might make 

changes to help our students better understand, work with, and follow the material.

In preparing the third edition, we have once again rea�rmed the goals we expressed in originally 

writing this book:

 • We hope to communicate in a relatively readable, understandable, and (mostly) nonmathemat-

ical manner the conceptual bases of a range of multivariate research designs and analyses. At 

the same time, we have attempted to not unduly dilute or oversimplify the material.

 • We want to demonstrate how to perform, interpret, and report the results of multivariate 

analyses in a direct and understandable manner.

 • We have continued our practice of preparing two companion (paired) chapters for each topic, 

an “A” chapter presenting the conceptual treatment of the topic and a “B” chapter presenting 

the step-by-step data analysis, data interpretation, and reporting of the results so that the above 

two goals can be met.

We have used Version 23 of IBM SPSS and IBM SPSS Amos for this third edition, recognizing that 

later versions will be available by the time this book is published. All of the data sets used as examples 

are available on the SAGE website (www.sagepub.com/meyers) so that interested users can replicate 

our analyses on the example data sets.

In addition to updating and carefully editing the material, we restructured the order in which we 

cover the topics in the third edition:

 • Because it was so fundamental in presenting the general linear model and serving as a founda-

tion for the rest of the material covered in this book, we moved our treatment of correlation 

and regression to the front of the book immediately following our data screening chapters.

 • We placed canonical correlation analysis directly after the chapters covering advanced  

regression analyses.

 • The confirmatory factor analysis chapters were moved to an earlier location and now directly 

follow the exploratory factor analysis/principal components analysis chapters.

 • We moved the analysis of variance (ANOVA)/multivariate analysis of variance (MANOVA) 

chapters to a location late in the book, and we placed the chapter on discriminant function 

analysis directly following the MANOVA chapters.

http://www.sagepub.com/meyers
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 • We added a pair of chapters covering survival analysis at the end of the book.

 • Users of the second edition will also notice that the “A” chapters covering confirmatory factor 

analysis, structural equation modeling, and assessing model invariance were largely rewritten; 

further, their companion “B” chapters were completely rewritten with the example analyses 

being made much more extensive and complete. The treatment of ANOVA/MANOVA was 

also extensively modified from the previous edition, with the focus in this third edition being 

on covariance and multivariate (between subjects) analyses and their combination 

(MANCOVA).

We have used data sets from the research of some of our students, including Jacquelyn Johnson, 

Rosalyn Sandoval, and Leanne Stanley. We appreciate their willingness to share their data sets with us, 

and we value the time we have spent teaching and supervising them. We were sad to see the editor of 

our previous two editions, Vicki Knight, retire but we look forward to working with our new SAGE 

editor Leah Fargotstein and her staff as we move forward.

Our overriding goal in writing this book was to make the world of multivariate research design 

and analysis understandable to a wide audience, and we sincerely hope that this book is helpful in that 

regard to its readers and users.
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FUNDAMENTALS OF 
MULTIVARIATE DESIGN
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C H A P T E R  1

An Introduction  
to Multivariate Design

1.1 The Use of Multivariate Designs

The use of multivariate research designs has grown very rapidly in the behavioral and social sci-

ences throughout the past quarter century. This has been made possible in no small part by 

increased availability of sophisticated statistical software packages, such as IBM SPSS, SAS, and 

Stata. But even with the increased availability of such software, behavioral and social science 

researchers have been using some multivariate techniques (e.g., factor analysis, multiple regression) 

for a very long time.

Multivariate designs can be distinguished from the univariate and bivariate designs with which 

readers are likely already familiar. Experimental designs that are analyzed with t tests or analysis of 

variance (ANOVA) are univariate designs, so named because there is only a single dependent vari-

able in the design and analysis of the data (Gamst, Meyers, & Guarino, 2008). A t ratio or an F ratio is 

generated to test whether the group means are signi�cantly di�erent.

A bivariate design derives its name from the fact that there are only two variables that are ana-

lyzed together; it is exempli�ed by a simple correlation design. �e variables in such a design are 

o�en signi�ed as X and Y and, unless we are predicting one (the Y variable) from the other (the 

X variable), which variable is assigned which letter is arbitrary. �e degree to which the measures 

are correlated is assessed with a correlation coe�cient such as the Pearson correlation coe�cient 

(Pearson r).

1.2 The Definition of the Multivariate Domain

To be considered a multivariate research design, the study must have more variables than are contained 

in either a univariate or bivariate design. Furthermore, some subset of these variables must be analyzed 

together, that is, they must be combined in some manner to form a composite variable or variate. The 

most common way to combine variables is by forming a weighted linear composite where each variable 

is weighted in a manner determined by the analysis. This resulting weighted linear composite is known 

as a variate. There are several contexts where we form such variates, three examples of which are as 

follows:
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 • In an experimental design in which we wished to compare the performance of three types of 

memory training, we could measure two or more variables as indicators of performance. 

These variables could then be combined into a single weighted composite measure when we 

would perform a multivariate analysis of variance (MANOVA). For example, we could assess 

both number of correct responses and speed of responding in a memory task that taken 

together might be interpreted as reflecting performance efficiency.

 • In a prediction (regression) design, we might use self-esteem, extraversion, and product 

knowledge to predict dollars of sales for a set of salespeople in a multiple regression analysis. 

The variate in this instance might be thought of as sales effectiveness.

 • To determine which items on a personality inventory might comprise separate subscales that 

measure aspects of a more global construct, we might perform a factor analysis on the 

responses to those items. Each factor would be a weighted linear combination of the inventory 

items.

1.3 The Importance of Multivariate Designs

The importance of multivariate designs is becoming increasingly well recognized. It also appears that 

the judged utility of these designs seems to be growing as well. Here are two of the advantages of mul-

tivariate research designs over univariate research designs based on those offered by Pituch and 

Stevens (2016):

 • Many experimental treatments are likely to affect the study participants in more than one way.

 • Using multiple criterion measures can paint a more complete and detailed description of the 

phenomenon under investigation.

A similar argument is made by Harris (2013):

However, for very excellent reasons, researchers in all of the sciences—behavioral, biological, 

or physical—have long since abandoned sole reliance on the classic univariate design. It has 

become abundantly clear that a given experimental manipulation . . . will affect many some-

what different but partially correlated aspects of the organism’s behavior. Similarly, many 

different pieces of information about an applicant . . . may be of value in predicting his or 

her . . . [behavior], and it is necessary to consider how to combine all of these pieces of infor-

mation into a single “best” prediction. (p. 11)

In summary, there is general consensus about the value of multivariate designs for two very gen-

eral reasons. First, we all seem to agree that individuals generate many behaviors and respond in many 

different although related ways to the situations they encounter in their lives. Univariate analyses are 

able to address this level of complexity in only a piecemeal fashion because they can examine only one 

aspect at a time. Multivariate analysis affords us the opportunity to examine the phenomenon under 

study by determining how the multiple variables interface.

�e second reason why the �eld appears to have reached consensus on the importance of multi-

variate design is that we hold the causes of behavior to be complex and multivariate. �us, predicting 

behavior is best done with more rather than less information. Most of us believe that several reasons 
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explain why we feel or act as we do. For example, the degree to which we strive to achieve a particular 

goal, the amount of empathy we exhibit in our relationships, and the likelihood of following a medical 

regime may depend on a host of factors rather than just a single predictor variable. Only when we take 

into account a set of relevant variables—that is, when we take a multivariate approach—have we any 

realistic hope of reasonably accurately predicting the level—or understanding the nature—of a given 

construct. �is, again, is the realm of multivariate design.

1.4 The General Form of a Variate

The general form of a variate—a weighted composite—is an equation or function. In the weighted 

linear composite shown below, the letter X with subscripts symbolizes each variable in the variate. A 

weight is assigned to each variable by multiplying the variable by this value; this weight is referred to 

as a coefficient in many multivariate applications. Thus, in the expression w
2
X

2
, the term w

2
 is the 

weight that X
2
 is assigned (multiplied by) in the weighted composite, that is, w

2
 is the coefficient asso-

ciated with X
2
. A weighted composite of three variables would take this general form:

Weighted composite = w
1
X

1
 + w

2
X

2
 + w

3
X

3

These weighted composites are given a variety of names, including variates, composite variables, 

and synthetic variables (Grimm & Yarnold, 2000). Variates are therefore not directly measured by the 

researchers in the process of data collection but are created or computed as part of or as the result of 

the multivariate data analysis. Because they are not directly measured, what they assess is often 

referred to as a latent construct, and the variate is often referred to as a latent variable. We will have 

quite a bit to say about variates (weighted linear composites or latent variables) throughout this book.

1.5 The Type of Variables Combined to Form a Variate

Variates may be weighted composites of either independent variables (i.e., manipulated or predictor 

variables) or dependent variables (variables representing the outcome of the research), or they may be 

weighted composites of variables playing neither role in the analysis. Examples where the analysis cre-

ates a variate composed of independent variables are multiple regression and logistic regression 

designs. In these designs, two or more independent variables are combined together to predict the 

value of a dependent variable. For example, the number of delinquent acts performed by teenagers 

might be found to be predictable from the number of hours per week they play violent video games, 

the number of hours per week they spend doing homework (this would be negatively weighted 

because more homework time would presumably predict fewer delinquent acts), and the number of 

hours per week they spend with other teens who have committed at least one delinquent act in the 

past year.

Multivariate analyses can also create composites of dependent variables. �e classic example of 

this is a MANOVA design. �is general type of design can contain one or more independent variables, 

but there must be at least two dependent variables in the analysis. �ese dependent variables are com-

bined together into a composite, and an ANOVA is performed on this computed variate. �e statistical 

signi�cance of group di�erences on this variate is then tested by a multivariate F statistic (in contrast 

to the univariate F ratio that readers have presumably studied in prior coursework).
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Sometimes variables do not need to play the explicit role of either independent or dependent vari-

able and yet will be absorbed into a weighted linear composite in the statistical analysis. �is occurs in 

principal components and exploratory factor analysis, where we attempt to identify which variables 

(e.g., items on an inventory) are associated with a particular underlying dimension, component, or 

factor. �ese components or factors are weighted linear composites of the variables in the analysis.

It is possible that the prior experience of readers is such that great emphasis has been placed on 

the di�erences between dependent and independent variables. If so, it might be somewhat discon-

certing to learn that variates can be composed of either class of variables. But it turns out that, in the 

analysis of data, dependent and independent are roles that are assigned to variables by the research-

ers rather than absolute attributes of the variables themselves. And just as actresses in the theater 

can play di�erent roles in di�erent productions, so too can variables play di�erent roles in di�erent 

analyses. �is can be seen very forcefully in the context of path analysis (Chapters 12A and 13A) and 

structural equation modeling (Chapter 14A), and the interfacing of MANOVA (Chapter 18A) with 

discriminant function analysis (Chapter 19A).

1.6 The General Organization of the Book

The domain of multivariate research design is quite large, and selecting which topics to include and 

which to omit is a difficult task for authors. Most of the multivariate procedures we cover in this book 

are very much related to each other in that they are different surface ways of expressing the same 

underlying model: the general linear model. The general linear model can be generally represented 

by the weighted linear composite discussed in Section 1.4. For example, multiple regression analysis 

involves generating a weighted linear composite of quantitatively measured variables to predict the 

value of a single outcome variable and canonical correlation analysis involves generating a weighted 

linear composite of quantitatively measured variables to predict the value of a weighted linear com-

posite of other quantitatively measured variables.

Separating the chapters into groupings (Parts) is therefore done as a convenience for the readers. 

�e groupings that we use, and even the ordering of the chapters within the groupings, is more of a 

matter of personal expression than a true classi�cation system. �e organizational structure of the 

multivariate domain is su�ciently �uid that we have opted for a somewhat di�erent grouping of our 

chapters and chapter order in this third edition compared to our previous edition.

1.6.1 The Chapters Are in Pairs

Beginning with the third chapter, each topic is presented in the form of a pair of chapters labeled “A” 

and “B.” The “A” chapter of the pair treats the topic at a relatively broad, conceptual level, focusing on 

the uses to which the design is often put, the rationale underlying the procedure, a description of how 

the procedure works, some of the decisions that are likely to be encountered in performing the analysis, 

and some issues of controversy when they are germane to the discussion. The “B” chapter of the pair 

describes a step-by-step procedure or set of procedures to perform the analysis in IBM SPSS (or, in most 

of the Part III chapters, IBM SPSS Amos), and how to interpret the output of the analysis. Some of the 

data sets that we use for our examples are modified versions (sometimes very substantially) of ones our 

students have collected in their research, and we use them with the permission of those students.

For each procedure that we perform in our “B” chapters, we present an example of how the results 

might be reported. It should be emphasized that there is no one best way to report results—we just 
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wanted to illustrate one (hopefully) acceptable way to accomplish this. Readers are encouraged to con-

sult Cooper (2010) for his suggestions on preparing results sections for dissemination. SAGE has estab-

lished a place for the data �les for the analyses demonstrated in each of the “B” chapters on their website 

(www.sagepub.com/meyers).

1.6.2 Part I: Fundamentals of Multivariate Design

The chapters in this part of the book introduce readers to the foundations or cornerstones of designing 

research and analyzing data. Our first chapter—the one that you are reading—discusses the idea of 

multivariate design and addresses the structure of this book. The second chapter on fundamental 

research concepts covers both some basics that readers have learned about in prior courses and pos-

sibly some new concepts and terms that will be explicated in much greater detail throughout this book. 

Data screening is covered in Chapters 3A and 3B. These issues are applicable to all the procedures we 

cover later, and so we cover them once in this pair of early chapters. We discuss ways to correct data 

entry mistakes, how to evaluate statistical assumptions underlying the data analysis, and how to handle 

missing data and outliers.

1.6.3 Part II: Basic and Advanced Regression Analysis

Regression procedures are used to predict the value of a single variable. Pearson correlation (used to 

describe the degree of linear relationship that is observed between two measures) and ordinary least 

squares simple linear regression (where we use one quantitative variable to predict a single outcome 

variable) are covered in Chapters 4A and 4B. Multiple regression analysis is an extension of simple 

linear regression when we use multiple measures to predict the outcome variable. The basics of this 

procedure are covered in Chapters 5A and 5B, and some (more advanced) variations of it are discussed 

in Chapters 6A and 6B.

Canonical correlation analysis, presented in Chapters 7A and 7B, is an extension of multiple 

regression analysis in which a set of quantitative independent variables is used to predict the values of 

a set of quantitative dependent variables. In many ways the process of interpreting the results strongly 

resembles and thus anticipates what we do in principal components and factor analysis.

When the limitations of ordinary least squares regression are exceeded, alternative regression 

techniques need to be initiated. Two such alternatives are presented in the next two pairs of chap-

ters. Ordinary least squares regression assumes that the cases in the analysis are independent of 

each other, an assumption that is violated where cases are nested, that is, hierarchically organized. 

Examples of such organization are students within separate classrooms and clients of particular men-

tal health clinics in a larger health system. In predicting an outcome variable, such as standardized 

test scores of the students, the children within a given classroom may be more related to each other 

on the outcome variable than they are to other students selected at random from the entire school 

or school district. To the extent that the children within a classroom are more alike than students 

selected at random, that is, to the extent that nesting is important, the assumption of independence 

is violated and we must use multilevel modeling in predicting the outcome variable. �is topic is 

presented in Chapters 8A and 8B.

Ordinary least squares regression also assumes that the variable being predicted is measured on a 

quantitative scale of measurement. Yet it is o�en the case that we wish to predict to which group cases 

in the data �le belong; here, group assignment is represented as a categorical variable. For example, 
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we might want to predict whether an individual is likely to succeed or not succeed in a given program 

based on a set of variables. �is type of prediction can be performed using binary or multinomial 

logistic regression, topics discussed in Chapters 9A and 9B. Prediction of a binary variable entails 

setting a decision point so that cases are classi�ed or predicted as belonging to either one group or 

the other based on their score on a continuum. One powerful and commonly used procedure used 

to facilitate the trade-o�s in selecting that decision point is receiver operating characteristic (ROC) 

curve analysis, and this topic is included within the logistic regression chapters.

1.6.4 Part III: Structural Relationships of Measured and Latent Variables

We very generally mean by structure some underlying relationships among the variables that can be 

brought to the surface by the statistical analysis or incorporated within a model specified by the 

researchers that can then be evaluated against the data. Often, but not always, these underlying rela-

tionships are organized into themes or dimensions. This is the realm of latent variables.

Principal components analysis and exploratory factor analysis, discussed in Chapters 10A and 10B, 

both describe the dimensions (latent variables) underlying a set of variables. For example, although 

a paper-and-pencil inventory may contain more than two dozen items, these items may tap into only 

three or four latent main themes or dimensions. Principal components analysis and exploratory factor 

analysis can be used to identify which items relate to each dimension.

Principal components analysis and exploratory factor analysis (both are discussed in Chapters 

10A and 10B) are analogous to an inductive approach in that researchers employ a bottom-up strat-

egy by developing a conclusion from speci�c observations. �at is, the researchers determine the 

interpretation of the factor by examining the variate that emerged from the analysis. Con�rmatory 

factor analysis (presented in Chapters 11A and 11B) seeks to determine if the number of factors and 

their respective measured variables as speci�ed in a model hypothesized by the researchers is sup-

ported by the data set—that is, they determine the extent to which the proposed model �ts the data.

Path (sometimes called causal) structures are presented in the next two sets of chapters. Such struc-

tures extend the thinking behind a multiple regression design to consider relationships and lines of 

in�uence among the predictors rather than just between a set of predictors and the outcome variable. 

When the variables in the hypothesized structure are all measured variables, we speak of path analysis, 

which can be analyzed through ordinary least squares regression (treated in Chapters 12A and 12B) 

or through structural equation modeling using IBM SPSS Amos (treated in Chapters 13A and 13B). 

When we have included latent variables in the path structure, the analysis becomes one of structural 

equation modeling and must be done in IBM SPSS Amos (or comparable specialized so�ware); this 

topic is treated in Chapters 14A and 14B.

It is also possible to ask if a con�rmatory factor structure and/or a structural equation model are 

equally applicable to two or more groups (e.g., males and females; Asian American, White American, 

and Latino/a American students). To address such a research question, we perform an invariance anal-

ysis on the structural con�guration, and this topic is addressed in Chapters 15A and 15B.

1.6.5 Part IV: Synthesizing/Categorizing Data

Chapters 16A and 16B are devoted to multidimensional scaling. Objects or stimuli (e.g., brands of cars, 

retail stores) are assessed using a paired comparison procedure to determine the degree to which they 

are dissimilar. These dissimilarity data are analyzed in terms of the distance between the objects.  
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In turn, the distances between the objects are arrayed or represented in a space defined by the number 

of dimensions specified by the researchers who then attempt to interpret these dimensions along 

which the objects appear to differ.

Cluster analysis is presented in Chapters 17A and 17B. Rather than using common demographic 

variables to de�ne groups (e.g., females and males), we group the cases (e.g., participants in a research 

study, presidents of the United States, brands of beer) on the basis of how they relate based on a set 

of quantitative variables. �ese groupings are called clusters. Two di�erent approaches, hierarchical 

cluster analysis and k-means clustering, are described in the chapters.

1.6.6 Part V: Comparing Means

Part V addresses comparison of means. Chapters 18A and 18B cover analysis of covariance 

(ANCOVA), multivariate analysis of variance (MANOVA), and multivariate analysis of covariance 

(MANCOVA) using one-way and two-way between subjects designs. Discriminant function analysis 

is the flip side of MANOVA in which variates are generated to distinguish and characterize the 

groups in the analysis, and it is covered in Chapters 19A and 19B. Chapters 20A and 20B examine 

several techniques variously labeled as survival analysis. Survival analysis examines in a general sense 

the time interval between two events, often in the form of how long cases remain in one state (e.g., 

obtain their first full-time job) before changing to another state (e.g., change jobs). Three approaches 

are covered in these chapters: life tables, the Kaplan–Meier method, and Cox regression.
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C H A P T E R  2

Some Fundamental 
Research Design Concepts

W
e start our treatment of multivariate research design with a discussion, and for many readers a 

review, of some fundamental concepts that will serve as building blocks for the general arena 

of research design as well as some advanced concepts that are relevant to some of the material we cover 

in this book. These advanced concepts will be revisited in greater depth in later chapters.

2.1 Populations and Samples

A population is composed of all entities fitting the boundary conditions of whom or what we are 

intending to subsume (generalize to) in our research. Populations are typically made up of people or 

other entities meeting certain criteria. In basic behavioral science research, the population of interest 

is often “all humans.” Some applied research may target smaller and more specific populations, such 

as “all breast cancer survivors” or “all senior citizens in community outreach programs.” Some disci-

plines may focus on different types of entities such as schools in a given school district, hospitals 

meeting certain criteria, stores or offices of a given corporation, and so on.

In most situations, it is not possible to include all the population members in a research study. 

Instead, we select a workable number of individuals or entities (cases is the most general label) to 

represent the population. �at set of cases in the study is the sample. Very o�en, the intention of the 

researchers is to study some process or phenomenon in the sample in order to generalize their conclu-

sions to the population from which the sample was drawn.

Generalizing from the sample to the population is a delicate matter resting so strongly on a set of 

technical issues (e.g., sampling can be completely random or random based on some strati�cation of 

the population) that most research methods textbooks cover this topic in detail; indeed, there is enough 

complexity in procedures used for sampling that entire books have been written on it (e.g., Fuller, 2009; 

Levy & Lemeshow, 2008; Lohr, 2010; S. K. �ompson, 2002).

One issue a�ecting generalization concerns the extrapolation of the statistical results to the popu-

lation and is strongly related to tests of statistical signi�cance. Most tests of statistical signi�cance are 

based on the data obtained from the sample, but they are really testing the null hypothesis stating 

(a) that there is no relationship in the population between or among the variables that we are study-

ing or (b) that the sample means we are comparing were drawn from the same population. �e null 
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hypothesis is almost always di�erent from the research hypothesis, which typically asserts that there 

will be signi�cant correlations between the variables or there will be a signi�cant di�erence between 

the treatment conditions. Statistical signi�cance is part of a larger and more complex picture that is 

described in Sections 2.7 and 2.8.

Extrapolation of the statistical �ndings from the sample to the population presumes that the sam-

ple is representative of the population. �e representativeness of a sample is itself a complex issue. In 

most situations, we prefer to randomly sample cases from the population, trusting that such random-

ness will result in the sample strongly resembling its parent population; however, randomness works 

in the very long run and concerns about such representativeness tend to be of greater concern with 

increasingly smaller sample sizes.

Another issue that a�ects generalization from the sample results to the population is attrition 

within the sample. Attrition is usually thought of as a loss of cases over time in a longitudinal design, 

but multivariate analyses are subject to this concern as well. Most of the multivariate statistical proce-

dures require the cases to have valid values on all the measures (variables in the data analysis). With 

multiple measures taken on each case, it is possible that some of the cases will have missing data on 

at least one of the variables. When a particular case has a missing value on even one measure, that 

case will in many instances be removed from the entire multivariate analysis. If many participants are 

excluded in this manner, the possibility exists that those cases remaining in the analysis will comprise 

a subsample somewhat or even quite di�erent from the sample as a whole (e.g., participants of one 

of the two sexes may be disproportionally dropped). Under such a circumstance, conclusions based 

on the results of analyses on the cases remaining may not be properly generalized back to the main 

sample and, by extension, to the original population. Much of Chapters 3A and 3B are devoted to deal-

ing with the issue of missing values.

2.2 Variables and Scales of Measurement

2.2.1 Variables

It is difficult to read a textbook on research design or statistics without immediately encountering the 

notion of a variable. It is truly one of our fundamental concepts, and it tends to take on increasingly 

enriched meaning to students as they progress into more advanced coursework.

As a general characterization, a variable is a construct that can take on di�erent values. When we 

assign values to variables, we speak of measurement. �ese values can be, and very o�en are, numbers 

that have quantitative meaning. Examples of quantitatively based variables include grade point aver-

age, which can take on numerical values between 0 and 4; the number of dollars in weekly vehicle 

sales, which can take on values in hundreds of thousands of dollars; and a score on a standardized 

test such as the Graduate Record Examination (GRE) revised General Test, which can range from 130 

to 170. In data �les, these values will be reproduced in the same form (e.g., a case would have 3.68 

recorded for grade point average, 527,000 dollars recorded for weekly vehicle sales, and 161 recorded 

for test score).

Alternatively, the di�erent values that variables can take may simply be names or identi�ers for 

classes (categories) of individuals or entities. For example, breeds (e.g., collie, golden retriever) repre-

sent di�erent types of dogs and sex labels (e.g., female, male) represent biologically di�erent individuals. 

Categories can also be assigned arbitrary numerical codes, a strategy commonly used in representing 

these categories in data �les. For example, we might code females as 1 and males as 2 under the variable 

of sex of participant.
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Whether quantitatively based or categorically based, all the values for variables have been assigned 

through a set of rules de�ning a measurement operation. �ese measurement operations represent 

di�erent scales of measurement.

2.2.2 Five Scales of Measurement

Although the essentials of measurement scales were known for some time before he formalized our 

treatment of them, it was S. S. Stevens who impressed this topic on the consciousness of behavioral 

scientists. As Stevens (1951) tells us, he initially broached this issue in a 1941 presentation to the 

International Congress for the Unity of Science. Stevens published a brief article addressing scales of 

measurement a few years later in Science (Stevens, 1946), but it was the prominent treatment of this 

topic in his lead chapter in the Handbook of Experimental Psychology, which he edited (Stevens, 1951), 

that most writers cite as the primary historical source.

Measurement (of variables) comprises sets of rules governing the way that values are assigned to 

entities. Each set of rules de�nes a scale of measurement, a�ecting both the kinds of manipulations 

we can appropriately perform on the values as well as the meaning we can derive from those values. 

Stevens (1951) identi�ed four ordered scales: nominal, ordinal, interval, and ratio in that �xed order. 

Each scale includes an extra feature or rule over the one in the scale before it. We add a ��h scale to 

Stevens’s treatment—the summative response scale—placing it between the ordinal and the interval 

scale. We summarize below the essence of each scale.

2.2.2.1 Nominal Scales

A nominal scale of measurement, sometimes called a categorical scale, a qualitative scale, or a classifica-

tion system, has only one rule underlying its use: Cases will be identified as being different on the 

variable that is measured by assigning them to different predefined categories of the variable. There is 

no quantitative dimension implied here at all, no implication that one entity is in any way “more” or 

“less” than another. Examples of nominal scales include sex and race/ethnicity categories, types of 

businesses where people work, and medical conditions people have.

Di�erences between the cases are de�ned by the nominal or classi�cation system. For example, 

individuals may be classi�ed as female or male based on biological features. Within this classi�cation 

system, the set of individuals identi�ed as one of the two sexes may still represent a very diverse group 

who may di�er substantially on a host of other characteristics. Although they are all classi�ed as the 

same sex, it does not mean that they are identical in any other respect.

Numerical coding of categorical variables is regularly done when we are entering data into an 

IBM SPSS data �le. �us, in a study comparing students who enjoy reading di�erent kinds of books 

for leisure, we might use 1 to denote a preference for science �ction, 2 to indicate a preference for 

mystery novels, and 3 to signify a preference for humor. In this situation, the numeric codes do  

not imply anything quantitative; they are used exclusively to represent different categories of  

preference.

2.2.2.2 Ordinal Scales

An ordinal scale of measurement uses numbers exclusively to represent the quantitative standing of 

cases on a variable. As was true for nominal scales, different numbers represent different information. 

But ordinal scales add this additional rule: The numbers convey “less than” and “more than” information, 
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and so apply to variables that have features that can be quantitatively indexed (e.g., extension, inten-

sity). Ordinal information translates most easily to a rank ordering of cases where 1 represents “the 

most” of whatever quantity is being measured, 2 represents “less than 1 but more than 3,” 3 represents 

“less than 2 but more than 4,” and so on.

Cases may be ranked in the order in which they align themselves on some quantitative dimen-

sion, but it is not possible from the ranking information to determine how far apart they are on the 

underlying dimension. For example, if we were ranking the height of three people, the one 7 feet tall 

would be ranked 1, the one 5 feet and 2 inches tall would be ranked 2, and the one 5 feet and 1 inch 

tall would be ranked 3. From the ranked data, we could not determine that two of the individuals were 

quite close in height.

2.2.2.3 Summative Response Scales

A summative response scale requires respondents to assign values to entities based on an underlying 

continuum defined by the anchors on the scale. The numbers are ordered, typically in an ascending 

way, to reflect more of the property being rated. Most common are 5-point and 7-point scales (Gamst, 

Meyers, Burke, & Guarino, 2015). These scales originated in the classic work of Louis Thurstone in the 

late 1920s (1927a, 1927b, 1928, 1929; Thurstone & Chave, 1929) in his pioneering work to develop 

interval-level measurement scales to assess attitudes. Based on Thurstone’s time-consuming and 

resource-intensive scale development techniques, summative response scales were developed by 

Rensis Likert (pronounced “lick-ert” by the man himself) in the early 1930s to make the process more 

efficient (Likert, 1932), and he and his colleagues widely disseminated this scaling process later that decade 

(Likert, Roslow, & Murphy, 1934; Murphy & Likert, 1937). Derivatives of Likert’s scale have become 

increasingly popular ever since.

It is called a summative scale because it is possible to add (sum) the ratings of a set of items together 

and to divide that sum by a constant (usually in the process of taking a mean) to obtain an individual’s 

score on the set of items (an inventory). We will address this in a little more detail a�er introduc-

ing all the scales, but we wish to brie�y illustrate here that the average (mean) derived from a sum-

mative response scale is meaningful, thus rendering this type of scale closer to interval-level than to 

ordinal-level measurement. �e values may not represent equal distance between adjacent numbers (as 

required by interval scales), but the spacing is close enough to equal to meaningfully interpret averages 

of the values.

To illustrate that interpreting a mean of the scale values is meaningful, let’s say that we adminis-

tered a short self-esteem inventory to a class of medical students. Let’s further say that one item on the 

inventory read, “I feel that I am a worthwhile person.” Assume that items were rated on a 5-point scale 

with higher values indicating more endorsement of the statement. Let’s further say that the mean for 

this item based on all the students in the class was 4.75. Is that value interpretable? Yes, it indicates that 

the individuals in the sample on average believed pretty strongly that the content of the item was quite 

true for them—namely, that they were worthwhile people.

2.2.2.4 Interval Scales

An interval scale of measurement has all the properties of nominal, ordinal, and summative response 

scales but includes one more important feature. Fixed intervals between the numbers represent equal 

intervals on the variable. It is also worthwhile noting that interval scales may have zero points, but the 

zero value is an arbitrary point on the scale (this contrasts with ratio scales as noted in Section 2.2.2.5).
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�e most common illustration of an equal interval scale is the Fahrenheit or Celsius temperature 

scale. �ese are interval scales in the sense that a 20° di�erence in one region of the scale represents the 

same amount of di�erence represented by a 20° di�erence in another region of the scale. According to 

Stevens (1951), “Equal intervals of temperature are scaled o� by noting equal volumes of expansion” 

(p. 27). As an example of the arbitrariness of a zero value on an interval scale of measurement, consider 

that 0° does not mean the absence of temperature but is the temperature on the Celsius scale at which 

water freezes.

As was true for summative response scales, it is meaningful to average the data collected on an 

interval scale of measurement. We may therefore say that the average high temperature in our home-

town this past week was 51.4 °F.

2.2.2.5 Ratio Scales

A ratio scale of measurement has all the properties of nominal, ordinal, summative response, and 

interval scales but includes one more important feature. Ratio scales have an absolute zero point on the 

variable, where zero means absence of the property that is measured. Common examples of ratio scales 

are time (e.g., minutes, years) and distance (e.g., centimeters, miles). Further, because the zero value is 

absolute, it is possible to interpret ratios of the numbers in a meaningful way. We can thus say that  

4 hours is twice as long as 2 hours or that 3 miles is half the distance of 6 miles.

2.2.3 Algebraic Properties of the Scales

As we suggested above, the sorts of algebraic operations or manipulations that we can legitimately 

perform on data obtained from each of the scales of measurement is different and will thus limit the 

kind of data analysis we are able to appropriately use. We will discuss Stevens’s classic set of four scales 

first and then fit summative response scales into what we have said.

Nominal measurement is not quantitatively based. Because of that, the only operations that can 

legitimately be performed on the data would be that of determining equality or inequality. For exam-

ple, if we were going to classify entities in our world as either “animals” or “trees,” then skunks and 

chipmunks would be classi�ed as animals (and thus de�ned as being equal or comparable in this mea-

surement or classi�cation system), whereas redwood trees and birch trees would be classi�ed as trees 

(and thus also de�ned as being equal). However, diamonds and phosphorus would not be classi�ed in 

this system. Based on our classifying operation, it is legitimate to count the number of occurrences we 

observed in each category and to compare the counts to determine which is greater. We could thus say 

that in a given area, there were 25 animals and 41 trees. We can also assess the observed frequencies 

against some predetermined expectations (as is done in a chi square analysis).

Ordinal measurement allows us to compare cases in a quantitative manner but only to the extent 

of making greater-than or less-than determinations. If students are ranked in terms of their height, 

we may say that one student is taller than another. But it would not make much sense to identify two 

students whose ranks were 1 and 7 and to add those ranks together (to say that their total rank was 

8 makes no sense) or take an average of the two ranks (to say that their average rank was 4 likewise 

makes no sense).

Interval measurement, where the quantitative scale is marked in terms of equal intervals, allows 

us to perform adding (subtracting) and averaging to the operations of equality/inequality and greater-

than/less-than judgments. �us, we can legitimately add the daily temperatures for the past 7 days and 

divide by 7 to arrive at a meaningful value: the average temperature for the week. It is also meaningful 
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to compute a measure of dispersion of the scores, so that we could legitimately calculate a standard 

deviation.

Ratio measurement, with its absolute zero point, allows us to divide and multiply values to arrive at 

meaningful results in addition to doing all the above-mentioned operations. We cannot meaningfully 

interpret ratios on any of the other scales. To use Fahrenheit temperature (interval measurement) as an 

example, we would be incorrect in asserting that 40° is twice as warm as 20° because there is no absolute 

zero point to ground us. If you are not sure about this, just remember that a Celsius temperature scale 

is a transformation of the Fahrenheit scale. �ese Fahrenheit temperatures would have di�erent values 

on the Celsius scale but would represent the same temperatures. And the Celsius ratio would yield a 

di�erent value. �is can be contrasted to the Kelvin scale of temperature where zero really does mean 

the absence of any heat. Using this latter scale with its absolute or true zero point, one can make ratio 

assertions about temperatures.

Now consider the scale we added to Stevens’s list—summative response scales. It allows more 

operations than an ordinal scale because we can add (and subtract) its values and obtain a meaning-

ful average. Despite this feature, however, some authors (e.g., Allen & Yen, 1979) have unequivocally 

placed these ratings scales within the province of ordinal measures. Historically, however, the scales 

have been treated more liberally. Likert (1932) himself argued that his scaling technique correlated 

close to 1 with the results of �urstone’s (1928; �urstone & Chave, 1929) much more elaborate 

method that appeared to generate an equal interval scale assessing attitudes toward a particular issue. 

Guilford (1954), in his book Psychometric Methods, allowed summative response scales to at least 

have more interval-like properties than rank order scales, and Edwards (1957) goes a bit further, stat-

ing, “if our interest is in comparing the mean attitude scores of two or more groups, this can be done 

with summated-rating scales as well as with equal-appearing interval scales” (p. 157). Summarizing 

a study by Spector (1976), Ghiselli, Campbell, and Zedeck (1981) tell us, “Of particular interest with 

regard to Spector’s research results is the �nding that a majority of existing attitude scales do use 

categories of approximately equal intervals” (p. 414). Given the summary by Ghiselli et al., it is thus 

possible that people might treat summative response scales psychologically (cognitively) as approxi-

mating interval measurement.

Although it may be the case that some researchers will question the degree to which the points 

on a summative response scale are precisely evenly spaced (Velleman & Wilkinson, 1993), the vast 

majority of research published in the behavioral and social sciences over the past half century or 

more has used summative response scales as though they met interval properties. Researchers have 

added the scale points, have taken means and standard deviations, and have used these measure-

ments in statistical analyses that ordinarily require interval or ratio measurement to properly inter-

pret the results. In our view, this treatment of summative response scales is acceptable, appropriate, 

and quite useful. We therefore recommend that data analysis procedures that are ordinarily applied 

to interval and ratio measured variables also be applied to variables measured on a summative 

response scale.

2.2.4 Qualitative Versus Quantitative Measurement

It is possible to identify two categories into which we can classify subsets of these measurement scales: 

qualitative (categorical) and quantitative measurements. Qualitative measurement characterizes what 

we obtain from the nominal scale of measurement. There is no implied underlying quantitative 

dimension here even if the nominal values are numerical codes. Researchers sometimes call qualita-

tive variables by other names, such as the following:
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 • Categorical variables

 • Nonmetric variables

 • Dichotomous variables (when there are only two values or categories)

 • Grouped variables

 • Classification variables

It is useful for our purposes to think of quantitative measurement in a somewhat restrictive  

manner. Although the ordinal scale certainly presumes an underlying quantitative dimension, we 

would generally propose thinking in terms of those scales for which it is meaningful and informative 

to compute a mean and standard deviation. With the ability to compute a mean and standard devia-

tion and all that this ability implies, the gateway is open to performing a whole range of parametric 

statistical procedures, such as Pearson correlation and analysis of variance (ANOVA), as well as the 

host of multivariate procedures we discuss in this book. As we have seen, summative response, inter-

val, and ratio scales meet this standard. Researchers sometimes call quantitative variables by other 

names, such as the following:

 • Continuous variables (although technically, many quantitative variables can be assessed only 

in discrete steps even if the steps are very close together)

 • Metric variables

 • Ungrouped variables

2.2.5 Criticisms of Stevens’s Schema

Most textbooks and common practice use the scale types Stevens proposed as part of the shared lan-

guage of behavioral sciences. However, there may be pitfalls in accepting some of the details of the 

schema, and other classification systems (e.g., Mosteller & Tukey, 1977) of scale types have been 

proposed. Velleman and Wilkinson (1993) have provided an interesting history of many of the cri-

tiques of Stevens’s notions of scale types. For example, some (e.g., Guttman, 1977; Lord, 1953a) have 

forcefully argued that the kinds of mathematical operations we perform on our data depend more on 

the sorts of questions that we are asking than on the particular level of the scale that best describes 

the data (but see Scholten & Borsboom, 2009). The approach to Stevens’s scales that we have outlined 

should therefore be treated as a good starting point for understanding some basics of the scale types 

and implications for the sorts of data analysis that are appropriate to each.

2.3 Independent Variables, Dependent Variables, and Covariates

The concept of a variable is so central to research design, measurement, and statistical analysis that 

we find it applied in several different contexts. Especially in multivariate analyses, variables can play 

different roles in different analyses. Sometimes, variables can even assume multiple roles within a 

single analysis (e.g., as described in Chapters 6A, 12A, and 13A, a mediator variable in a path analysis 

is simultaneously a predicted/dependent variable in one portion of the analysis and a predictor/ 

independent variable in another portion of the analysis). We therefore encourage readers to think of 

the variables in an analysis in this way—as entities specified by researchers to play their roles in a 

particular analysis, one role in this analysis, perhaps a second role in another analysis, perhaps mul-

tiple roles in some other analysis. The following sections present some of these different roles.
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2.3.1 Independent Variables

In the prototypical experimental study, the independent variable represents the manipulation of the 

researchers. In a simple sense, it represents the treatment effect (what the researchers manipulate, vary, 

administer, etc.) contrasted with a control condition. Some of its features are as follows:

 • It could have only two levels (e.g., control and experimental), but it could easily have three 

(e.g., control, placebo, and experimental) or more.

 • It is only a single entity or continuum no matter how many levels represent it.

 • In an experimental context, it is often, but not always, based on qualitative measurement; in a 

prediction (regression) context, it is almost always based on quantitative measurement.

Variables are also specifically identified as independent variables in the analysis of data. In a 

regression analysis, for example, the variables used as the predictors are the independent variables.

2.3.2 Dependent Variables

In the prototypical experiment, the dependent variable represents the outcome measure (response or 

performance) of the participants that is measured by the researchers. In a correlation/prediction 

design, all the measures can be thought of as dependent variables because researchers do not actively 

intervene by manipulating any variables (although we can also just think of them as measured  

variables). In general, dependent variables may be assessed on any scale of measurement. For the 

types of designs that we cover in this book, the dependent variables are almost always measured on 

one of the quantitative measurement scales.

Variables are also speci�cally identi�ed as dependent variables in the analysis of data. In an 

ANOVA, for example, it is the variance of the dependent variable that is to be explained by the inde-

pendent variables in the study. It is the variable representing the behavior of the participants. �at 

is, when we say, “�e mean for females was 3.52,” what we are really saying is, “�e mean value on 

the dependent variable for females was 3.52.” As another example, in multiple regression analysis, 

the criterion variable—the variable being predicted by the independent variables—is known as the 

dependent variable.

2.3.3 Covariates

A covariate is a variable that either actually or potentially correlates (covaries) with a dependent vari-

able. It is important to recognize the possible influence of a covariate because, without taking it into 

account, the relationship we observe between two dependent variables or between a dependent vari-

able and an independent variable may lead us to an incorrect conclusion. That is, we would ordinar-

ily infer from the existence of a relationship between two variables that they are directly associated. 

But that association may be mediated or caused by a third variable—the covariate.

A classic but simpli�ed example is the relatively strong correlation between ice cream sales and 

crime rate. Higher crime rates are associated with greater quantities of ice cream being sold. Yes, 

the two variables are correlated; conceptually, however, they are not directly but only coincidentally 

associated. What mediates this relationship is the weather or the season of the year. For a variety of 

reasons, certain types of crimes are more likely to occur—or are facilitated by—the warmer weather 

during the summer months. Presumably, these crimes would take place whether or not ice cream was 


