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PREFACE

T
he set of bivariate techniques covered in this book (analyses with one predictor and one 
outcome) are the same as those in most introductory textbooks. This book provides an 

applied perspective.
What does an applied perspective involve? Textbooks often use well-behaved data 

(without missing values, outliers, or violations of assumptions). This book introduces, early 
on, the idea that real data have problems. Discussion of ways in which actual practice dif-
fers from ideal situations helps students understand statistics in the context of real-world 
research. Here are examples: Textbooks describe random samples from clearly defined 
populations, while researchers often work with convenience samples. Textbooks usually 
present one significance test in isolation, whereas research reports often include numerous 
analyses, accompanied by increased risk for Type I error. This book includes discussion of 
these  problems.

Each chapter begins with a simple question: What kinds of questions can this analysis 
answer? Chapters include fully worked examples with by-hand computation for small data 
sets, screenshots for SPSS menu selections and output, and results sections. Technical and 
supplemental information, including nonparametric alternatives, is provided in appendices at 
the ends of most chapters.

This book devotes less space to rarely used techniques (such as frequency polygons 
and methods to locate medians in grouped frequency distributions) and more space to 
real-world decisions made during data analysis (such as outlier detection and evaluation 
of distribution shape). Connections are made between design decisions and results; for 
instance, students will see that choice of dosage levels, control over within-group variance, 
and sample size influence the obtained magnitude of t and F ratios (along with sampling 
error, of course).

Traditional use of statistical significance tests is covered. However, consistent with the 
New Statistics guidelines, there is greater emphasis on confidence intervals, effect sizes, and 
the need to document decisions made during analysis. Limitations of p values are discussed 
in nontechnical terms. Discussion also focuses on common researcher behaviors that affect  
p values (e.g., running numerous analyses and reporting only a few).

A distinction is made between “statistical significance” and practical or clinical or every-
day “significance” or importance (i.e., a small p value does not necessarily indicate a strong 
treatment effect).

Students are encouraged to think in terms of “degree of belief” rather than yes/no deci-
sions. To paraphrase David Hume, a wise person proportions belief to the evidence.

Notation and presentation are consistent with Volume II (Applied Statistics II: Multivariable 
and Multivariate Techniques [Warner, 2020]).

DIGITAL RESOURCES

Instructor and student support materials are available for download from edge.sagepub.com/
warner3e. SAGE edge offers a robust online environment featuring an impressive array of free 
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tools and resources for review, study, and further explorations, enhancing use of the textbook 
by students and teachers.

SAGE edge for students provides a personalized approach to help you accomplish your 
coursework goals in an easy-to-use learning environment. Resources include the following:

 • Mobile-friendly eFlashcards to strengthen your understanding of key terms

 • Data sets for completing in-chapter exercises

 • Links to web resources, including video tutorials and creative lectures, to support 
and enhance your learning

SAGE edge for instructors supports your teaching by providing resources that are easy 
to integrate into your curriculum. SAGE edge includes the following: 

 • Editable, chapter-specific PowerPoint® slides covering key information that offer 
you flexibility in creating multimedia presentations

 • Test banks for each chapter with a diverse range of prewritten questions, which can 
be loaded into your LMS to help you assess students’ progress and understanding

 • Tables and figures pulled from the book that you can download to add to handouts 
and assignments

 • Answers to in-text comprehension questions, perfect for assessing in-class work 
or take-home assignments

Finally, in response to feedback from instructors for R content to mirror the SPSS 
coverage in this book, SAGE has commissioned An R Companion for Applied Statistics I by 
Danney Rasco. This short supplement can be bundled with this main textbook.

The author welcomes communication from teachers, students, and readers; please e-mail 
her at rmw@unh.edu with comments, corrections, or suggestions.
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CHAPTER 1

1.1 INTRODUCTION

In everyday use, statistics can refer to specific pieces of numerical information, such as average 
income for all employed persons in the United States. In science and technical fields, the term 
statistics more often describes techniques for analyzing and interpreting numerical information. 
Readers should not assume that all published numerical information is correct. Numeracy skills 
are needed to understand and evaluate how numerical information is collected, analyzed, and 
presented.

1.2 GUIDELINES FOR NUMERACY

A report published by the American Statistical Association’s Committee on Guidelines for 
Assessment and Instruction in Statistics Education (GAISE College Report ASA Revision 
Committee, 2016) described numeracy skills as follows:

Students should become critical consumers of statistically-based results reported 
in popular media, recognizing whether reported results reasonably follow from 
the study and analysis conducted. To be a critical consumer of statistically-based 
results, it is necessary to understand the components that produced them: the 
design of the investigation, the data, its analysis, and its interpretation. Identifying 
the variables in a study, which includes consideration of the measurement units, is 
a necessary step to inform judgments or comparisons. Identifying the subjects (cases, 
observational units) of a study and the population to which the results of an analysis 
can be generalized helps the consumer to recognize whether the reported results 
can reasonably support the conclusions claimed for an analysis. Being able to 
interpret displays of data (tables, graphs, and visualizations) and statistical analyses 
also informs the consumer about the reasonableness of the claims being presented. 
(Italics added)

Italicized terms in the preceding quotation identify components of the research and data 
analysis process; these are discussed further in Chapter 2 and research methods courses. This 
chapter briefly considers other fundamental issues in the communication of numerical infor-
mation: (a) sources (or communicators), (b) types of evidence, (c) questions about generaliz-
ability and causal inference, (d) quality control mechanisms, (e) ethical responsibilities, and 
(f) degrees of belief.

EVALUATING NUMERICAL INFORMATION
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1.3 SOURCE CREDIBILITY

1.3.1 Self-Interest or Bias

Communicators can be motivated by self-interest or bias. Self-interest is often clear in 
mass media; messages are often intended to influence audience beliefs or behaviors (such as 
voting or product purchases). Science communicators can also be motivated by self-interest; 
for instance, some researchers receive funding from alcohol or pharmaceutical companies, 
and their future funding may depend on research results. Many science journals require 
authors to declare potential conflicts of interest.

Self-interest of information providers is not always obvious. Many webpages offer “spon-
sored content”: paid messages from advertisers that look like news articles but in fact promote 
the interests of advertisers. For instance, a new diet pill might be presented as “news” when 
in fact the article is an advertisement. Communicator self-interest raises concerns about credibility 
of messages.

1.3.2 Bias and “Cherry-Picking”

Communicators generally cannot (or do not) present all available information.  Selection 
of information by communicators can be influenced by confirmation bias, a preference 
for information that confirms preexisting beliefs or ideas. Biased selection of evidence can 
be informally called cherry-picking. Information and ideas that are excluded may be as 
 important as information that is included.

As an example of cherry-picking, suppose 20 studies show no association between 
consuming meat and cancer risk, and 3 studies do show an association. A journalist might 
report only the 3 studies that showed an association or might report only the single most 
recent study. Whether the bias was intentional or not, the article will not provide an accurate 
 summary of research results.

When scientists write literature reviews (reviews of past research), they are expected to 
discuss all past relevant research.1 Literature reviews are included in the introductions to most 
primary source research reports; literature reviews can also be stand-alone papers or books.

1.3.3 Primary, Secondary, and Third-Party Sources

An old game called “telephone” illustrates the problem of distance from a source. People 
form a line; the first person whispers a message to the second person, the second person 
whispers it to the third, and so forth. When the final message is compared with the original 
message, there are changes and distortions. Transmission of information can introduce errors 
because of each person’s biases or misunderstandings.

In science, a primary source is a research report written by a researcher who has first-
hand knowledge of behaviors and events in a study. Primary source reports (sometimes called 
articles or papers) are published in science journals.2 Primary source data may also appear in 
books written for science audiences.

A secondary source is a description or summary of past research, created by some-
one who did not experience the reported data collection or observations firsthand. In many 
disciplines, secondary sources are scholarly books. Some journal articles are also secondary 
sources because they only review past research and do not present new data about which their 
authors have firsthand knowledge. Literature reviews in the introductions to science journal 
articles are secondhand discussions of past studies. (In the sciences, literature refers to past 
published research.)

Unfortunately, primary source reports are usually long and difficult to read (particularly 
for readers unfamiliar with statistics and technical terms). Language in research reports is 
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sometimes unnecessarily obscure. Some full-length science research reports are published 
on the web as open-access materials; anyone can view these. However, many publishers 
require fees or subscriptions for access. The consequence is that many people can’t easily 
understand most primary source information in science and sometimes cannot even gain 
access to it.

Much content on websites for news organizations is third-party content. This is con-
tent written by someone who may have examined only secondary sources or other thirdhand 
content, such as news reports or press releases. Often, third-party content is authored by 
someone who has no technical knowledge of the research field and statistical methods. Exam-
ples include articles published by news organizations. These articles usually don’t provide 
complete or accurate information about research results.

In the past, editors of prestigious newspapers required reporters to fact-check claims 
carefully. Increasingly, news reports on the web are paraphrases of, or uncritical reposting 
of, third-party content from other news sources. Some mass media news sources specifically 
disclaim responsibility for accuracy. Here is an example; many other news organizations post 
similar disclaimers:

CNN is a distributor (and not a publisher or creator) of content supplied by third 
parties and users. . . . Neither CNN nor any third-party provider of information 
guarantees the accuracy, completeness, or usefulness of any content. . . . (CNN, 2018)

Communicators can provide better quality information when they are closer to original sources of 
information, and they are likely to provide better quality information when they assume responsibility 
for accuracy.

In everyday life, most of us rely on thirdhand information most of the time. Because so 
much of what we think we know is based on thirdhand information, we should not be overly 
confident about things we think we know.

1.3.4 Communicator Credentials and Skills

Communicators are more believable when they have training and background related to 
information in the message. Researchers generally have credentials that provide evidence of 
this training and background, including advanced degrees such as a PhD or MD, affiliations 
with respected organizations such as universities, and publications in high-quality science 
journals. Some journalists have strong credentials in science, but many do not. People who do 
not have training in statistics can easily misunderstand studies that use statistical terms such 
as logistic regression and odds ratios.

Celebrity status is not a meaningful credential. Famous media personalities, such as 
Dr. Oz3 and other self-appointed lifestyle or health experts, may base recommendations on 
incomplete or incorrect information.

Scientific research reports include source information (authors, university affiliations, 
and so forth). News reports and websites sometimes do not include source information; they 
provide no basis to evaluate self-interest, distance from information source, and creden-
tials. Guidelines for evaluation of websites are provided by Kiely and Robertson (2016) and 
 Montecino (1998).

1.3.5 Track Record for Truth-Telling

There are independent, nonpartisan organizations that evaluate communicator track 
records for truth-telling in journalism, for example, the Pulitzer Prize–winning site www 
.politifact.com. PolitiFact rates statements as true, mostly true, half true, mostly false, false, 
and “pants on fire” (extremely false). Other respected fact-checking sites are www.snopes.com 
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and www.factcheck.org. These fact-checkers do the work that information consumers usually 
don’t have the time to do.

Information published in scientific journals can be incorrect because of fraud; fraud in 
science is rare, but it has occurred. A notorious example was a claim by Andrew Wakefield 
that vaccines cause autism (discussed by Godlee, Smith, & Marcovitch, 2011). There are 
severe penalties for fraud or plagiarism in science, including forced retraction of publica-
tions, withdrawal of research funds, loss of reputation, and job dismissal. Rare instances of 
fraud in science can be identified by a web search for the researcher name and terms such 
as fraud. Information consumers should be skeptical of information from sources with poor records for 
truth-telling.

1.4 MESSAGE CONTENT

1.4.1 Anecdotal Versus Numerical Information

Anecdote means “story,” often about an individual person or situation. First-person 
accounts are often called testimonials. Audiences may find narrative stories or anec-
dotes more persuasive and memorable than numerical information. There are many 
potential problems with anecdotes (anecdotal evidence). Sometimes individual situ-
ations are not reported accurately (for example, advertisements for weight loss prod-
ucts often include falsified before and after photos). Even when anecdotal evidence is 
accurate, it is difficult to know whether the experience shown is generalizable: Has this 
experience happened to many other people, or was this a unique situation? Diet prod-
uct advertisers are required to acknowledge this and typically do so in a tiny footnote: 
“Individual results may vary.”

In science, a detailed report of an individual person or situation is called a case study. 
The study of unique cases, such as the brain damage suffered by railway worker Phineas Gage 
(Kihlstrom, 2010; Twomey, 2010) can be valuable. However, generalizability concerns are still 
relevant.

Anecdotal evidence can dramatize genuine problems. However, anecdotal evidence can 
also dramatize and promote incorrect beliefs. It is obviously easy to cherry-pick anecdotes. 
Supporting evidence in the form of systematic numerical information can provide a more 
accurate overview of evidence than anecdotal reports.

1.4.2 Citation of Supporting Evidence

In science, identification of outside sources of evidence is done by citation. Author 
names and years of publication are included in the text (to identify sources of ideas and evi-
dence), and complete information to locate each source is included in a reference list. Cita-
tion has two purposes. First, it gives credit to others for their ideas and evidence; this avoids 
plagiarism, which occurs if authors present ideas or contributions of other people as if they 
were the authors’ own new contributions. Second, it shows how the present study builds upon 
an existing body of evidence.

A message is more believable when it includes or refers to specific supporting evidence. 
In science, the most complete and detailed supporting evidence appears in primary source 
research reports in science journals. Documentation of information sources is typically less 
detailed and systematic in journalism and mass media. (The best science journalists provide 
references or links to primary source research reports.)

It is possible for a writer or an advertiser to claim a spurious air of authority by citing 
numerous sources. However, a long list of references does not guarantee accuracy. On closer 
examination, readers may find that communicators have cherry-picked, misinterpreted, or 
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misrepresented evidence; cited sources that are not relevant to the topic; or referred only to 
opinion pieces that do not actually contain evidence.

To evaluate the quality of evidence, we need to know how it was collected. Collection 
of evidence in science is systematic; that is, there are rules and procedures that specify what 
researchers should do to gather evidence and limit the kinds of interpretations they are 
 permitted to make. Rules for statistical analysis are an important part of this.

1.5 EVALUATING GENERALIZABILITY

Researchers and journalists usually want to generalize about their findings. In other words, 
instead of just saying: “45% of the respondents I talked to said they plan to vote for candidate 
X,” they want to say something like “45% of all registered voters plan to vote for candidate X.” 
Generalizability of results is the degree to which a researcher can claim that results obtained 
in a specific sample would be the same for a population of interest. Results from a sample can 
be generalized to an actual population of interest if the sample is representative of the popula-
tion; representativeness can often be obtained using random or systematic methods to select 
the sample. Results from an accidental or a convenience sample may be generalizable to a hypo-
thetical population if the sample resembles that hypothetical population. Results from a biased 
sample are not generalizable. In experiments, generalizability also depends on similarity of type 
and dosages of experimental treatment to real-world experiences with the treatment variable, 
setting, and other factors.

Polling organizations, such as Gallup, collect public opinion information in ways that 
provide a good basis for generalization. They use large samples (usually at least 1,000 indi-
viduals) and obtain these samples using combinations of random and systematic selection 
so that the people who responded to the survey resemble the larger population (such as all 
registered voters) in terms of age, income, and so forth (Gallup, n.d.).

When journalists report information from polls and demographic studies, they are (once 
again) in a position to cherry-pick. Because of differences in procedures and types of people 
contacted, various polling organizations may report different predictions about presidential 
candidate preference. A journalist who wants to make a case to support Candidate X may 
report only the poll in which Candidate X had the highest approval ratings.

In behavioral and social science, the problem of generalizability can have a different 
form. A researcher may want to know whether cognitive behavioral therapy (CBT) reduces 
depression. Typically, studies examine small to moderate numbers of cases, for instance,  
35 patients who receive CBT and 35 who do not. To generalize results about effects of CBT 
to a large hypothetical population of “all depressed persons,” ideally, we would want a random 
sample drawn from that population. However, participants are often convenience samples, 
that is, people who were easy to recruit.

It is important to know what kinds of people were (and were not) included in a study. For 
example, if a drug study finds evidence that a new medication is effective and safe for healthy 
young men, that does not necessarily mean that the drug is also effective and safe for women, 
elders, children, and other kinds of people not included in the study.

Be careful not to overgeneralize results, particularly when there is little information 
about the types and numbers of people (or cases) included. It makes sense to generalize infor-
mation from a small group to some larger population only when people in the group resemble the 
population of interest. This is discussed further in Chapter 2 in sections about samples and 
populations.

In science communication, authors are expected to discuss limitations that must be con-
sidered before drawing any conclusions. Limitations include the number and kinds of people 
(or cases) included in a study. Science writing should make limitations of evidence clear; media 
reporting often does not.
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1.6 MAKING CAUSAL CLAIMS

In everyday life, and in science, we often want to know about causal connections. Consider a ques-
tion raised by Wootson (2017). Do diet (artificially sweetened) soft drinks cause weight gain? If you 
are concerned about weight gain, and if artificially sweetened soft drinks cause weight gain, then you 
might consider avoiding diet soft drinks to avoid weight gain. However, it is possible that the asso-
ciation reported in some studies did not arise because of any direct causal impact of diet soft drinks 
on weight. Perhaps when people drink diet soft drinks, they feel free to indulge in other high-calorie 
foods, and perhaps it is those other high-calorie foods, not the soft drinks in and of themselves, that 
cause weight gain. If that is the correct explanation, then what you need to do to avoid weight gain 
is to avoid consuming high-calorie foods (rather than reduce diet soda consumption).

Causal explanations are attractive because they tie events together in meaningful ways. 
This is useful in science as well as everyday life. Sometimes when a cause–effect relationship 
is known, it suggests what we can do to change outcomes.

Demonstrating that two events are causally connected can be difficult, because there are 
often rival possible explanations. Well-controlled experiments can rule out many rival expla-
nations. In everyday life, people sometimes jump to conclusions about causality on the basis 
of insufficient evidence.

1.6.1 The “Post Hoc, Ergo Propter Hoc” Fallacy

News commentators frequently offer causal explanations for events (e.g., the stock mar-
ket went down because of a blizzard the previous day). This explanation is often just an opin-
ion of the news commentator. The stock market might have gone down for other reasons 
(including random variations). This is an example of a common logical fallacy called “post 
hoc, ergo propter hoc.” This Latin phrase means “after this, therefore, because of this.” This 
(incorrect) reasoning goes like this: If Event A happens, and then Event B happens, then A 
must have caused B. Before we can conclude that Event A caused Event B, additional condi-
tions are required. Here is another example. If you have a cold, take a large dose of vitamin 
C, and then the cold goes away, you might conclude that vitamin C cured the cold. However, 
the cold might have gone away on its own, whether you took vitamin C or not. Post hoc, ergo 
propter hoc reasoning uses one instance of co-occurrence (vitamin C, end of cold) to draw 
a causal conclusion. That is poor-quality reasoning that often leads to mistaken beliefs in 
causality. To conclude that vitamin C cures colds, you would need an experiment to evaluate 
whether the duration of colds was less in a group that took vitamin C than in a group that did 
not (controlling for other factors, such as placebo effects).

1.6.2 Correlation (by Itself) Does Not Imply Causation

You may have frequently heard the warning that correlation does not imply causation. This 
warning should be stated more precisely. It is more accurate to say, Existence of a statistical relation-
ship, such as a correlation, between variables X and Y, is needed to make claims that X causes Y. However,  
the mere existence of a statistical relationship does not prove that X causes Y. Alternative explanations 
for the statistical relationship between X and Y must be ruled out before we can believe that X causes Y.

Let’s examine this idea carefully.
The word correlation has two meanings. First, sometimes people use the term correla-

tion to refer to a specific statistic: the Pearson product–moment correlation, also called 
Pearson’s r. Second, the term correlation can be used in a broader sense; we can say that 
variables are correlated if they are statistically related using some statistical analysis. The sta-
tistical analysis can be something other than Pearson’s r. For example, if we compare average 
height for male and female groups and find that men are taller than women, we can say that 
sex (X) is statistically related to height (Y) or that sex is correlated with height.
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We cannot claim that an X variable “causes” a Y variable if there is no statistical relation-
ship of any kind between X and Y. In other words, the existence of a statistical relationship 
between X and Y is a necessary condition before we can consider causal inference.

However, existence of a statistical association is not enough evidence by itself to prove 
causality. Sometimes variables are statistically related (correlated) just by chance, or because 
the X and Y variables are related to some third variable Z, and Z may be the real “cause.”

Consider this example: If we measure ice cream sales (X) and number of homicides (Y) 
once a month for a year, there is a correlation between them. Months that have the most ice 
cream sales also have the largest number of homicides (Peters, 2013). Does eating ice cream 
cause people to commit homicide? That idea is obviously silly. A more plausible explanation 
is that temperature is related to both ice cream consumption and homicide. During hotter 
months, people may buy more ice cream; homicide rates are higher in hotter months (perhaps 
because people hang around outside more, or perhaps heat makes people more irritable).

Correlation (statistical association) is a necessary but not sufficient condition for 
making causal inference. Statistical association is necessary because we can’t conclude that 
X causes Y unless X and Y go together or co-occur. Statistical association is not sufficient by 
itself to prove causation because, even if X and Y covary, this co-occurrence may be due to the 
influence of one or more other variables; one of those other variables might be the real cause 
of X, or of Y, or both. In this example, heat or temperature might cause (or at least predict) 
ice cream purchase and homicide.

The effects of rival explanatory variables can be reduced or eliminated in well-controlled 
experiments and reduced by statistical controls. Mere co-occurrence is not enough evidence 
to make a causal inference.

Sometimes the need to look for a different explanation is obvious (as in the ice cream/
homicide example). It would be absurd to argue that ice cream causes homicide. However, the 
need to consider rival explanations also arises in situations that are not so obviously silly. In 
the diet soft drink/weight gain example, it is conceivable that artificial sweeteners have causal 
effects on appetite or metabolism that really do lead to weight gain, even though the artificial 
sweeteners contain zero (or negligible) calories. However, the other explanation (that drink-
ing diet beverages leads people to indulge in other high-calorie foods) is also plausible. (It 
is also conceivable that both these explanations are partly correct.) Both experimental and 
nonexperimental studies, with humans and nonhuman animals, would be helpful in sorting 
out the relations among variables and whether any of the associations are causal.

1.6.3 Perfect Correlation Versus Imperfect Correlation

Perfect co-occurrence (perfect correlation or statistical association) is rare. Consider the 
genetic mutation for hemophilia (Table 1.1). If a male child inherits this genetic mutation, 
he will have hemophilia. Most other heritable diseases do not show this perfect association. 
(For female children, effects of the hemophilia gene are ruled out by information on the other  
X chromosome.)

Table 1.1  Example of Perfect Co-occurrence or Perfect Correlation  
(Between Gene and Disease)

Male Child Has 

Hemophilia

Male Child Does Not 

Have Hemophilia

Hemophilia gene is present 100% 0%

Hemophilia gene is absent 0% 100%
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If a male child does not inherit the gene for hemophilia, he will not have hemophilia. 
In logical terms, the mutated gene is both necessary and sufficient for the disease. The 
mutated gene is necessary for hemophilia because a person can’t get hemophilia without it. 
The mutated gene is sufficient for hemophilia, because if a person has it, he always has hemo-
philia. In other words, hemophilia always occurs when the mutated gene is present and never 
occurs when the mutated gene is absent.

Most associations in behavioral and social sciences and medicine are not perfect. Con-
sider this hypothetical example for a behavior (washing or not washing hands) and a disease 
outcome (getting sick).

Table 1.2 shows an imperfect association. Only 25% of regular hand washers got sick, while 
67% of the those who don’t regularly wash their hands got sick. While most people who washed 
their hands did not get sick, hand washing did not guarantee that they could avoid getting sick.

The association between lung cancer and smoking is also not perfect. The risk for getting 
lung cancer is much higher for smokers than for nonsmokers. However, a few nonsmokers  
do get lung cancer, and many smokers do not get lung cancer.

In situations where associations are not perfect, it is likely that other variables are 
involved. Behaviors or conditions that sometimes (but not always) precede disease are often 
usually called “risk factors” rather than causes. Smoking is a risk factor for lung cancer. Some 
diseases have numerous risk factors (for example, risk for heart disease is related to smoking, 
body weight, sex, age, high blood pressure, and other factors).

We call behaviors that reduce risk for a negative outcome “protective factors.” For 
example, hand washing is a protective factor against getting sick.

1.6.4 “Individual Results Vary”

Unless there is a perfect correlation (as in the hemophilia example), statistical associations 
or correlations between variables do not predict exact outcomes for all individuals. Consider 
the results of a study by Judge and Cable (2004), informally reported in Dittman (July/ August 
2014). They reported that taller persons tend to earn more money (that is, height is correlated 
with salary). This is not a perfect correlation. If you are short, that does not necessarily mean 
that you will earn very little. Mark Zuckerberg (the founder of Facebook) is reported to be 
5’7”, but that did not prevent him from becoming one of the wealthiest men in the world. If 
you think about the implications correlations might have for your own  outcomes, realize that 
individual outcomes differ when correlations are not perfect.

1.6.5 Requirements for Evidence of Causal Inference

Training in research methods and statistics provides the skills scientists need to think 
carefully about the evidence needed to support causal claims. Mass media journalists often 
rely on secondary sources or third-party content. By the time information filters through 
multiple communication links, details about the nature of the evidence and concerns about 

Table 1.2  Association Between Hand Washing and Getting Sick  
(Imperfect Association)

Person Does Not Get Sick Person Gets Sick

Person washes hands regularly 75% 25%

Person does not wash hands 

regularly

33% 67%
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limitations that affect the ability to generalize and make causal inferences are often lost. 
Third-party content often does not provide accurate information about generalizability and 
potential causality.

1.7 QUALITY CONTROL MECHANISMS IN SCIENCE

1.7.1 Peer Review

The science research process has mechanisms for information quality control. The most 
important mechanism is peer review. Researchers submit research reports to science journals 
(also called academic journals) for consideration (see note 2). The editor sends papers to peer 
reviewers (peers are expert researchers in the same field). Reviewers provide detailed criticism 
of studies, including evaluation of their research methods. On the basis of reviews, editors 
decide whether to reject a paper as inadequate, ask authors to revise the paper to correct errors 
or deficiencies, or (very rarely) accept the paper with only minor corrections. Papers are rarely 
accepted in their initially submitted form. Rejection rates for some journals are 80% or higher.

Peer review is fallible. Reviewers can also be subject to confirmation bias (they are more 
likely to favor conclusions consistent with their own beliefs). Reviewers may not notice all of 
the problems in a research report. However, peer review weeds out much poorly conducted 
research and improves the quality of published papers. The community of scientists in effect 
systematically polices the work of all individual scientists.

1.7.2 Replication and Accumulation of Evidence

A second important mechanism for data quality control in academic research is 
replication. Replication means repeating or redoing a study. This can be an exact replication 
(keeping all methods the same) or a conceptual replication (changing elements of the study, 
such as location, measures, or type of participants, to evaluate whether the same results occur 
in different situations). We should not treat findings from any one study as a conclusive answer 
to a research question. Any single study may have unique problems or flaws. In an ideal world, 
before we accept a research claim, we should have a substantial body of good-quality and 
consistent evidence to back up that claim; this can be obtained from replications.

Peer review and replication in science are fallible. However, they provide the best ongo-
ing quality control checks we have. In contrast to science, there are few quality control 
 mechanisms for most mass media communication.

1.7.3 Open Science and Study Preregistration

There are recent initiatives to improve the reproducibility and quality of research 
results in biomedicine, psychology, and other fields (Begley & Ioannidis, 2015; Open Science  
Collaboration, 2015). The Open Science model includes components such as preregistration 
of research plans and sharing details of data and methods. For further discussion, see 
Cumming and Calin-Jageman (2016).

1.8 BIASES OF INFORMATION CONSUMERS

1.8.1 Confirmation Bias (Again)

Information consumers or receivers also tend to select evidence consistent with their 
preexisting beliefs. Media consumers need to be aware that they can systematically miss kinds 
of information (which may be of high or low quality) when they select news sources they 
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like. Ratings of many web news sources on a continuum from left/liberal to right/conser-
vative, along with assessment of accuracy, are provided at https://mediabiasfactcheck.com/ 
politifact/. News sources that are extremely far left or far right tend to be less accurate.

Because of confirmation bias, people can get stuck: They continue to believe “facts” that 
aren’t true, and ideas that are wrong, because they never expose themselves to information 
that might prompt them to consider different possibilities. Consumers of mass media usually 
avoid evidence that challenges their beliefs. Philosopher of science Karl Popper argued that 
scientists also need to examine evidence that might falsify their beliefs. Scientists and people 
in general should consider evidence that challenges their beliefs.

1.8.2 Social Influence and Consensus

Should we believe something simply because many people, particularly those whom we 
know and respect, believe it? Not necessarily. Some incorrect beliefs are widely reported in 
mass media and held by millions of people. My personal favorite conspiracy theory is that 
alien reptiles control U.S. politics. Bump (2013) reported that more than 12 million people, 
or 4%, of the U.S. population said that they believed this theory in 2012–2013. To be clear,  
I strongly disbelieve that we are ruled by alien reptiles. (I am also not sure whether to believe 
Bump’s report that 12 million people really believe this; surveys are not always accurate.)

Consensus among science researchers can enhance the believability of a claim. However, 
even in science, consensus does not always guarantee accuracy. Experts can turn out to be 
wrong. For example, there was a consensus among nutrition researchers that eggs are bad for 
health because of their cholesterol content. Some recent research suggests that this widely held 
belief may be incorrect4 (Gray & Griffin, 2009), but the issue continues to be  controversial.

A belief shared by millions of people is not necessarily wrong. However, consensus is neither 
 necessary nor sufficient evidence that information is correct.

1.9 ETHICAL ISSUES IN DATA COLLECTION AND ANALYSIS

1.9.1 Ethical Guidelines for Researchers: Data Collection

Ethical issues arise when collecting data about people and nonhuman animals. For psy-
chologists, the American Psychological Association has codes of ethics that protect the well-
being of subjects (Campbell, Vasquez, Behnke, & Kinscherff, 2009). Research that involves 
human participants is evaluated by an institutional review board; research that involves 
nonhuman animals is evaluated by an institutional animal care and use committee. Ethical 
codes govern research in other areas such as biomedicine. Data collection cannot begin until 
ethics board approval of procedures has been obtained. Adherence to those rules is an ethical 
obligation for researchers. We should not harm the people or entities we study.

As an example of potential harm to a research participant, suppose that a study reveals 
that a person has a history of addiction. If that information gets into the hands of potential 
landlords or employers, it could have an impact on that person’s search for housing and jobs. 
Researchers must keep such records confidential.

Researchers also have an ethical responsibility to think about the potential impact of 
their research (both positive and negative) on public policy and the behavior of organizations 
and individuals.

1.9.2 Ethical Guidelines for Statisticians: Data Analysis and Reporting

The GAISE report states, “Students should demonstrate an awareness of ethical 
issues associated with sound statistical practice” (GAISE College Report ASA Revision 
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Committee, 2016). A separate document (American Statistical Association, 2015) discusses 
ethical issues in detail. Here is a list of ethical practices for data analysts, paraphrased from 
the American Statistical Association’s ethics document. You will be reminded about these 
issues as you  continue through the book.

1. Ensure that numbers are accurate. Fully disclose data handling procedures (such as 
deletion of cases or replacement of missing values) that could alter conclusions.

2. Make the limitations of the type of statistical analysis clear. (As each new analysis is 
introduced, you will learn about its limitations.)

3. Avoid behaviors that can lead to errors (including, but not limited to, cherry-picking 
a few results).

4. Avoid misleading presentations (such as “lying graphs”; see Section 1.10).

5. Avoid language that obscures results.

6. Do not overgeneralize. Do not make strong claims about characteristics of a 
population when your sample does not resemble that population.

Real-world problems in applications of data analysis are often not clear in introduc-
tory courses; students learn to do one analysis at a time using one small set of numbers. In 
actual practice, data analysts often work with large sets of messy data. Data analysts need 
to make many choices that involve difficult judgment calls. This book points out differ-
ences between the ideal use of statistics in artificially simplified situations and the actual 
application of statistics to real-world data. Sometimes decisions about “best practice” are 
difficult.

As Harris (2001) said, “Statistics is a form of social control over the professional behav-
ior of researchers. The ultimate justification for any statistical procedure lies in the kinds of 
research behavior it encourages or discourages.” Science has rules and standards about good 
practice in collection, analysis, and presentation of evidence. These are discussed throughout 
this book.

Researchers should be aware that press releases from universities sometimes overhype 
research findings (Resnick, 2019).

This book discusses good practices in applied statistics that can potentially improve the 
clarity and honesty of research reports. When communicators present information in mis-
leading, unclear, or dishonest ways, they risk loss of credibility, trust, and respect, not just for 
themselves but for the professions of statistics and science. When information consumers rely 
on incorrect information, they may make poor decisions.

1.10 LYING WITH GRAPHS AND STATISTICS

The most extreme form of lying with statistics is fabrication or falsification of data; this is rare. 
However, some common research practices slant information presentation in ways that can be 
called “lying with statistics.” The classic book How to Lie With Statistics (Huff, 1954) presented 
numerous examples.

Deceptive bar graphs are among the most common ways information communica-
tors mislead information consumers. If you will be an information producer, you need to 
know how to set up “honest” bar graphs. When you are an information consumer, you 
need to know how to examine graphs to make sure that they are not misleading. Chapter 5  
provides examples of clear versus misleading graphs and guidelines for evaluation of 
graphs.
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1.11 DEGREES OF BELIEF

People rarely have time to collect all necessary information. Even for questions in science, 
we often do not have enough information to be confident about conclusions. Uncertainty is 
more common than people realize, even in areas such as medicine. There are many questions 
in medicine (such as what causes autoimmune disorders) for which medical research does not 
have good answers (Fox, 2003).

It is useful to think about scientific knowledge in terms of degree of belief instead of 
certainty. The philosopher David Hume said that “a wise [person] . . . proportions his [or 
her] belief to the evidence” (Schmidt, 2004). Degree of belief should be based on the quantity 
of consistent and good-quality, systematically collected supporting evidence. When there is little 
evidence (for example, results from only one study), people should not have strong belief in a 
claim. As additional good-quality evidence accumulates, degree of belief can increase. People 
should revise degree of belief upward or downward as new (good-quality) evidence becomes 
available.

This rating scale illustrates the concept of degree of belief. The use of a five-point scale 
and the exact verbal descriptions for each numerical rating are arbitrary.

1 2 3 4 5

Probably 

untrue

May be untrue Not sure; insufficient 

evidence

May be true Probably true

Fairly often, the best answer to research or public policy questions is that we do not have 
enough high-quality evidence to be confident that we know the correct answer. We should 
never assume that numerical results of one single study or mass media report are conclusive.

1.12 SUMMARY

Here are some questions to keep in mind when evaluating numerical (and other) information.

1. Is there evidence of communicator bias or self-interest?

2. Is evidence cherry-picked to fit the communicator’s argument?

3. Is the communicator far from the information source or not well qualified to evaluate the 
information?

4. Does the communicator have a good record for truth-telling?

5. What types of evidence are included. Anecdotes? Citations of specific, credible sources?

6. Have you considered your own possible biases as an information consumer? Do you accept 
information uncritically because it confirms when you already believe? Are you influenced by 
what other people believe?

7. Do data come from people (or cases) who resemble the population of interest? Are results 
generalizable?

8. Are causal inferences drawn when there is not enough information to prove a causal 
association? Remember that imperfect correlation or co-occurrence does not indicate 
causation.

9. Has information been subjected to quality control? (In science, this includes peer review and 
replication.)
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10.  Is the presentation of information deceptive (e.g., lying graphs)?

11.  What ethical issues are at stake in the conduct and application of the research?

12.   Is your degree of belief proportional to the quantity of good quality and consistent 
evidence? (You should never believe a claim on the basis of just one scientific study or one 
journalism report.)

Sometimes the best answer to questions such as “Are eggs harmful to cardiovascular health?” 
is that we don’t have enough evidence yet to answer the question. Unfortunately, lack of evidence 
does not prevent some communicators from making premature claims. When claims are made on 
the basis of limited evidence, contradiction and confusion often arise. It is better to reserve judg-
ment until a large quantity of good-quality evidence is available. One single media report, or one 
single science report, is not “proof.”

Even if you do not plan to be a researcher, you can benefit from thinking like a scientist and 
statistician about numerical evidence you encounter in everyday life. Some decisions have high 
stakes. For example, you may need to decide whether to undertake a risky but potentially benefi-
cial medical treatment. Ideally, you should have accurate information about potential outcomes. 
The higher the stakes, the more you need to know how to obtain trustworthy information.

The take-home message from this chapter is: We all know a lot less than we think we do, 
because most of us rely heavily on third-party content that has little or no information quality 
control. All of us (scientists, journalists, and information consumers) should be cautious 
about degree of belief. Sometimes the best answer to a question is: We don’t have enough 
good quality evidence. Courses in statistics and research methods teach you good practice in 
evaluation and presentation of evidence.



COMPREHENSION QUESTIONS

1. What is cherry-picking of evidence, and why is it deceptive? (Can you think of a book or 
media report that seems to present cherry-picked evidence?)

2. Give examples of self-interest that might make a communicator less believable.

3. Why is distance to original source of information an important factor when you evaluate 
message credibility?

4. What does it mean to say that a correlation (or association) between variables is imperfect?

5. Give an example of a risk factor, and a protective factor, not discussed in the chapter.

6. Why is the existence of a correlation (existence of co-occurrence or association) between  
X and Y not enough evidence for us to say that X causes Y ?

7. What is the post hoc, ergo propter hoc fallacy? (Give an example you have seen, different 
from the one in this chapter.)

8. What is confirmation bias?

9. What quality control mechanisms are used in science?

10.   What is peer review? How can it improve the credibility of science reporting?

11.    What is research replication? How can this improve the quality of evidence in science? How 
do exact replication and conceptual replication differ?

12.   A researcher might say “the results of this one study prove” something. Is this justified?

13.   What (approximate) degree of belief should you have on the basis of only one study?

NOTES

1 Scientists are expected to be objective when they select information to report. However, scientists 
tend to focus selectively on information consistent with the most widely accepted existing theories; 
Kuhn and Hacking (2012) called this “selection of significant fact.”

2 Numerous predatory, for-profit online journal publishers have emerged in recent years. It has 
become more difficult to determine whether online publications are credible. Research reports 
published in predatory journals are not valued by professional colleagues and universities. Beall’s 
List of Predatory Journals and Publishers names many publishers that are almost certainly preda-
tory (https://beallslist.weebly.com). Additional warning signs that a publisher may be predatory:

• The journal invites you to submit your undergraduate or graduate thesis for publication 
(particularly if the journal title is not in your discipline or field).

• The journal offers to publish your paper without peer review.

• The journal asks you to pay for publication. (However, many legitimate publishers charge 
author fees to make journal articles open access on the web; therefore, a request for payment 
is not always an indication that a journal is predatory.)

If you are not sure whether a journal or publisher is predatory, search <journal name> or <pub-
lisher name> along with the term predatory. You can also ask mentors, advisers, or colleagues.

14   APPLIED STATISTICS I



CHAPTER 1 • EVALUATING NUMERICAL INFORMATION   15

3 About half of Dr. Oz’s medical advice is not supported by medical research (Belluz, 2014). Dr. Oz 
was investigated in a congressional hearing and paid large settlements in lawsuits for false advertis-
ing (Cohen, 2015).

4 This video about an imaginary time-traveling dietician makes fun of changes in dietary recom-
mendations across the decades: https://www.youtube.com/watch?v=5Ua-WVg1SsA.

DIGITAL RESOURCES

Find free study tools to support your learning, including eFlashcards, data sets, and web 
resources, on the accompanying website at edge.sagepub.com/warner3e. 
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CHAPTER 2

2.1 INTRODUCTION

Basic understanding of research methods is needed to understand and interpret statistical 
results. This chapter is a brief, nontechnical introduction to selected research methods terms 
mentioned in the GAISE (GAISE College Report ASA Revision Committee, 2016) numeracy 
guidelines in Chapter 1.

The design of an investigation refers primarily to the distinction between designs in which 
investigators have a high degree of control over the research situation (such as  experiments) and 
situations in which researchers have little or no control (nonexperimental studies).  Experimental 
methods of control include techniques such as random assignment of participants to groups and 
holding variables other than the treatment variable constant. Statistical methods of  control 
are included in some types of analysis. Other design issues are discussed in greater detail in 
research methods textbooks (e.g., Cozby & Bates, 2017).

Data (or data set) refers to information, usually in numerical form in a computer file, 
about multiple cases and/or multiple variables.

Analysis refers to statistical techniques.
A variable is a characteristic that differs or varies across subjects or cases. Examples of 

variables for human research participants include sex, height, heart rate, and salary.
Subjects or cases are the entities or observational units studied. In psychological 

research, cases are usually individual persons or nonhuman animals. In other disciplines, 
cases can be different kinds of entities; for example, in sociology, a case can be a group or 
an  organization; in political science, a case may be a nation; in forestry, a case may be a 
 geographic location.

The terms sample and population are often used differently in ideal textbook situations than in 
many real-life research situations, as discussed in Section 2.11. For now, it is sufficient to say that 
a sample is a subset of a population; that is, a sample consists of cases selected from a population.

A generalization is a statement that results obtained for people and situations included 
in a study are applicable to other people and situations not included in the study. Ability to 
generalize results from a sample to a population depends on similarity of the sample to the 
population of interest.

Examples of errors in interpretation include (a) generalizing results more widely than can 
be justified, (b) arguing that one variable causes another variable when there is not enough 
evidence to support that claim, and (c) misunderstanding the limits of research methods and 
statistical analyses. Other types of error are possible.

BASIC RESEARCH CONCEPTS
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2.2 TYPES OF VARIABLES

2.2.1 Overview

It is useful to distinguish between categorical variables and quantitative variables (Jaccard 
& Becker, 2009). Scores for categorical variables tell us which group or category each case 
belongs to (e.g., whether a person is male or female). Scores for quantitative variables provide 
information about the amount of something (for example, height). Some psychologists make 
further distinctions among levels of measurement; see Appendix 2A for discussion. Two addi-
tional types of variables are discussed in this section: rating scales and ordinal (also called rank).

2.2.2 Categorical Variables

Categorical variables identify group (or category) membership for each case. They are 
also called nominal variables because numbers serve only as names or labels for groups. 
This is a common type of variable. Examples of categorical variables include sex (for example, 
with group membership coded 1 = male, 2 = female) and marital status (with values coded  
1 = never married, 2 = divorced, 3 = currently married). Additional categories could be 
included; for example, marital status could include categories such as engaged, cohabiting, 
separated, and remarried. Numerical values used for categorical variables are arbitrary; we 
could code divorced as 3 instead of 2, and this change in group numbering will make no 
 difference in results of analyses.

When numbers are only labels for group membership, it is not meaningful to compare 
these numbers in terms of “greater than” or “less than.” A person whose marital status is rep-
resented by the number 2 (divorced) is not greater than or better than a person whose marital 
status is represented by 1 (never married). We can say only that these individuals differ in 
marital status. It makes no sense to apply arithmetic operations (+, –, ×, ÷) to numbers when 
they are used only as labels for group membership. It makes no sense to calculate statistics 
such as sample means for scores on categorical variables; for example, it would be nonsense 
to compute a mean marital status.

Often the number of different score values for a categorical variable is small. However, it is 
possible for categorical variables to have many different score values. For example, a categorical 
variable to identify choice of future career could include dozens of different possible careers.

2.2.3 Quantitative Variables

Quantitative variables indicate “how much” of some characteristic or behavior each 
case or person has. For example, we can measure height or blood pressure for each person. 
When numerical scores for these variables are compared, it makes sense to describe them in 
terms of “more than” and “less than.” A person who is 70 inches tall is taller than a person 
who is 65 inches tall. It is reasonable to apply arithmetic operations to numerical values for 
quantitative variables; we can add, subtract, multiply, and divide scores. Thus, it is reason-
able to compute a mean for variables such as height. Quantitative variables are common in 
 behavioral and social science research.

2.2.4 Ordinal Variables

Sometimes researchers rank subjects instead of measuring amount. For example, we 
could tag the runners in a race as 1, 2, 3, . . . last (the order of crossing the finish line). Alter-
natively, we could measure running time in seconds. Variables with scores that correspond 
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to ranks are called ordinal variables. Later you will see that there are specific analyses for 
scores that are collected in the form of ranks or are converted to ranks to get rid of problems 
such as outliers. Ranks are not widely used in data collection in behavioral and social sciences; 
measurements of quantity are generally preferred.

2.2.5 Variable Type and Choice of Analysis

Categorical and quantitative variables require different types of descriptive statistics 
(Chapter 4), graphs (Chapter 5), and other statistical analyses. It is necessary to distinguish 
between categorical and quantitative variables to choose appropriate statistical techniques. 
For some variables the decision is easy. Clearly, height and age are quantitative; sex and mari-
tal status are categorical. However, there are examples of variables that can be handled as 
either categorical or quantitative, as noted in the next section.

2.2.6 Rating Scale Variables

A Likert scale is a common response format in survey and personality research. A typi-
cal Likert scale question consists of a statement (worded so that it expresses a clearly positive 
or negative view about an issue) followed by a choice among degree of agreement ratings, 
as in the following example; each person chooses the number that best represents his or 
her degree of agreement. Originally Likert scales included five degrees of agreement, but 
 multiple-point rating scales often have different numbers of responses (such as seven).

Example: “I believe the president is doing a great job.”

1 2 3 4 5

Strongly disagree Disagree Neutral or don’t know Agree Strongly agree

If five-point ratings are evaluated according to the formal levels of measurement stan-
dards proposed by Stevens (1946, 1951; see Appendix 2A), they lie somewhere between the 
ordinal (rank) and interval levels of measurement. Rating scores provide at least rank-order 
information (e.g., 4 represents stronger agreement than 3). However, the differences between 
scores probably don’t represent equal intervals; for example, the difference in degree of agree-
ment represented by 4 versus 5 may not be the same as the difference between 3 and 4. 
Five-point rating scale scores fall into a gray area: probably more informative than ranks, 
but probably less informative than measurements that assume equal intervals. That leads to 
disagreement as to whether it makes sense to compute means and other statistics for variables 
rated on five-point scales. Authorities cited in Appendix 2B argue that is acceptable to treat 
rating scale variables as quantitative variables in some circumstances.

In practice, ratings on five-point scales can often be treated as either categorical or quan-
titative variables, whichever makes more sense in a specific research situation. Scores for the 
question above could be used to divide people into five groups that have different degrees of 
agreement (i.e., used as a categorical variable). It would also be reasonable to compute a mean 
for ratings.

2.2.7 Scores That Represent Counts

Consider this survey question: “How many children do you want to have in the future?” 
Possible responses include none, one, and so forth. This is a quantitative variable; three chil-
dren are more than two children. Unlike many other quantitative variables, scores for this 
variable have a limited number of possible values; it is rare in the United States to encounter 
persons who want more than four children. In a small sample, a researcher might find that the 
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only responses to this question are zero, one, and two. In some analyses it may be convenient 
and informative to treat these scores as labels for group membership (e.g., Group 1 does not 
want any children, Group 2 wants only one child, and Group 3 wants two children). However, 
it is also reasonable to compute the mean number of children. For variables that consist of 
counts (e.g., number of children) and variables that represent ratings on degree of agreement 
or behavior frequency (as in Section 2.2.3), it sometimes makes more sense to handle them as 
categorical, and it sometimes makes more sense to treat them as quantitative.

2.3 INDEPENDENT AND DEPENDENT VARIABLES

The first statistical techniques you will learn are ways to describe scores for just one variable.
However, real-world research usually begins with questions about the way two or more 

variables are related. It often makes sense to identify one of the variables as the independent 
or predictor variable (X) and the other as a dependent or an outcome variable (Y). The deci-
sion about which variable to identify as independent depends on the nature of the research 
question about the variables.

2.4 TYPICAL RESEARCH QUESTIONS

This section describes three types of research questions about the relationship between two 
variables. When we distinguish between independent and dependent variables, the independent 
variable is often denoted X and the dependent variable Y.

2.4.1 Are X and Y Correlated?

A researcher can simply ask whether scores on two variables (X and Y) tend to co-occur 
or go together (without assuming any causal connection between them). There are alternative 
ways to word this question, such as:

 � Are scores on X and Y correlated?

 � Do scores for X and Y tend to co-occur?

 � Are high scores on X associated with high scores on Y?

 � Are X and Y associated?

I prefer this wording: Are scores on X and Y statistically related?
For this research question, it is not necessary to identify one variable as independent 

and the other variable as dependent. The term correlated can refer specifically to the results 
of a Pearson r correlation analysis. However, researchers sometimes use the word correlated 
in a much broader sense, to refer to any statistical relationship between variables, even when 
information about the relationship comes from some statistic other than a correlation coef-
ficient (for example, from an independent-samples t test). We can evaluate whether X and Y 
are statistically related by doing whatever statistical analysis is appropriate for the types of 
variables (categorical vs. quantitative).

The bivariate statistics described in later chapters provide different ways to evaluate the 
extent to which scores on two variables are statistically related. The specific statistic that is 
most appropriate for a pair of X and Y variables depends on the types of variables (categorical  
or quantitative) and other issues; see Section 2.10. We can evaluate whether X and Y are 
statistically related on the basis of the outcome of any of these bivariate statistical analyses.
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2.4.2 Does X Predict Y?

In this question, X is identified by the researcher as the predictor or independent vari-
able; Y is the outcome or dependent variable. To predict means to anticipate or guess some-
thing that will happen in the future. A predictor should occur before the outcome (or at least 
not after the outcome). This is called temporal precedence. If X happens before Y, X has 
temporal precedence.

Consider these examples. Does height at age 10 years (X) predict height at age 21 years 
(Y)? Do high school grades (X) predict college grades (Y)? When temporal precedence is 
clear, it does not make sense to reverse these variables, that is, to ask whether height at age 21 
predicts height at age 10 or whether college grades predict high school grades.

2.4.3 Does X Cause Y?

This question can be worded in several similar ways; we can replace the word cause with 
words such as change, determine, increase, decrease, or influence.

Here are examples of questions about cause:

 � Does the death of a spouse (X) cause depression (Y)?

 � Does study time (X) increase exam score (Y)?

 � Does social stress (X) influence blood pressure (Y)?

 � Does cigarette smoking (X) increase the risk for lung cancer (Y)? Is cigarette 
smoking a risk factor for lung cancer? (If a variable is called a risk factor, this usually 
implies that there may be other risk factors or causes.)

Note that the word order in questions can vary, for example, Is exam score (Y) increased 
by amount of study time (X)? In this question, study time is still the independent variable 
(presumed cause), and exam score is the dependent variable.

We need stronger evidence for claims that X causes or influences Y than for claims that 
X merely predicts Y or that X co-occurs with Y. Keep in mind that no matter what results we 
obtain in one study of X and Y, we should not view those results as a final answer to any of 
these questions.

2.5 CONDITIONS FOR CAUSAL INFERENCE

When researchers select variables to include in a study, the first consideration is:

1. There should be a plausible theory that explains why X and Y might be related (cf. 
Brannon, Feist, & Updegraff, 2017).

It does not make sense to choose an X variable and a Y variable at random. Variables are 
selected because past research or theories suggest that they may be related in meaningful 
ways.

Three additional conditions should be considered when interpreting research results as 
potential evidence for causation (Cozby & Bates, 2017).

2. We can say that X and Y are associated only if we find that X and Y are related when 
we do an appropriate statistical analysis. To evaluate whether X and Y are statistically 
related (or correlated), you will use the statistical analyses that you will learn in later 
chapters, such as the independent-samples t test and Pearson correlation.
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The next condition is required for questions about prediction and causation.

3. We can say that X predicts Y only if X happens earlier in time than Y (or at least not 
later than Y) and, in addition, X is statistically related to Y.

Questions about causal relationships (does X cause or influence Y) require all these 
 preceding types of evidence as well as this fourth additional type of evidence:

4. We can infer that X causes Y only if no other variables are plausible rival 
explanations for changes in Y. In other words, X must be the only possible 
explanation for changes in Y. This condition can be very difficult to satisfy, because 
rival explanatory variables are common in many research situations.

Rival explanatory variables (also called confounds or confounded variables) arise in 
situations where many variables (other than X) might cause or influence Y. Suppose a researcher 
wants to know whether social stress (X) causes higher blood pressure (Y). Many other variables, 
in addition to social stress, can influence blood pressure, including but not limited to cardio-
vascular fitness, body weight, use of caffeine, alcohol, and other drugs, smoking, and family 
history of high blood pressure. Smoking and use of alcohol might well be correlated with or 
confounded with anxiety. We can evaluate whether anxiety influences high blood pressure only 
if we control for other explanatory variables (or take them into account in statistical analysis).

In experiments, we take other rival explanatory variables into account by using experi-
mental controls, such as holding the variables constant. For example, a study may include 
only people who do not use any drugs that may influence blood pressure. In nonexperimental 
studies, we use statistical control to try to rule out effects of rival explanatory variables. 
Techniques to do this are not covered in this volume; they involve more advanced forms of 
analysis. When a more sophisticated type of analysis is performed, the correct answer to the 
question “Does stress cause high blood pressure?” may be that stress is one among many 
variables that predict, and may possibly influence, blood pressure. Whether experimental  
or statistical control is used, readers need to know what variables have and have not been 
controlled in some way.

When scores for two potential causal or independent variables co-occur, we say that they 
are confounded. If people who experience a lot of social stress in their everyday lives tend to 
smoke a lot, then social stress and smoking are confounded, and it may be difficult to separate 
their effects. If people who report high levels of social stress have high blood pressure, the real 
reason for this (or at least a partial explanation for this) may be that people with high levels of 
stress also smoke or drink heavily.

The next section describes the extent to which various research designs (including 
nonexperimental, experimental, and quasi-experimental) can provide the evidence needed to 
satisfy Conditions 2, 3, and 4.

2.6 EXPERIMENTAL RESEARCH DESIGN

A typical experimental research design includes two or more groups of cases; each group 
is exposed to a different type of treatment or different amount of treatment (such as a drug). 
Experiments require comparisons. If a researcher wants to evaluate the effects of caffeine (X) on 
heart rate (Y), the researcher needs to examine situations in which people do, and do not, receive 
caffeine (or situations in which people receive varying amounts of caffeine). In many studies, a 
control group that receives no treatment is included.

Figure 2.1 is a schematic outline of a simple experiment. Read from left to right: the 
researcher has a group of available participants. Participants are divided into groups using a 
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method that should ensure that similar people are included in Groups 1 and 2. Often random 
assignment to treatment groups is used to do this. In this example, Group 1 receives a bever-
age that does not contain caffeine; Group 2 receives a beverage that does contain caffeine. 
The outcome variable, heart rate, is measured after participants drink the beverage. Statistical  
analysis compares mean heart rate to see if people who consumed caffeine (Group 2)  
have a higher average heart rate than people who did not consume caffeine (Group 1).  
(A placebo control group could be added.) The independent-samples t test is one example of 
a statistic that provides information about the differences for means of Y across groups.

In behavioral and social sciences, experimental design typically includes several kinds of 
experimental control. One form of experimental control is that a researcher controls assign-
ment of participants to groups. In many experiments, cases are assigned to groups randomly. 
The intended purpose of random assignment is to avoid a confound of preexisting subject 
characteristics with type of treatment. (Note that random sampling of participants from a 
population is not the same as random assignment of those participants to treatment groups.)

Here is an example of a potential confound of participant characteristics with type of 
treatment. Suppose that a researcher arbitrarily assigns people to groups. Suppose that people 
in Group 1 (who do not consume caffeine) have low anxiety levels; people in Group 2 (who 
consume caffeine) have high anxiety levels. If average heart rate is higher in Group 2, it 
will not be clear whether this is due to caffeine or to preexisting anxiety (or both). There 
is a confound between the independent variable X (whether caffeine is present, no or yes)  
and a personal characteristic (preexisting anxiety). Preexisting anxiety is a plausible rival 
explanatory variable; we cannot conclude that caffeine caused a higher heart rate unless we 
can  control for, rule out, or get rid of the differences in anxiety between groups.

A common way to try to prevent confound of treatment with participant characteristics is 
random assignment of participants to groups or conditions. Random assignment means 
that each subject or case has an equal chance of being placed in either group. An example of 
a method of random assignment is tossing a coin for each person and assigning the person 
to the no-caffeine group for heads and to the caffeine group for tails. This should result in a 
mixture of high and low anxiety scores within each of the two groups, with the same average 

Figure 2.1 Schematic Outline of Simple Experimental Design
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anxiety score in Group 1 as in Group 2. This should also make the groups similar on other 
participant characteristics, such as age, past experience with caffeine, and body weight. When 
it works well, random assignment of participants to conditions prevents confounds of most 
participant characteristics with type of treatment.

The researcher has control over the type and amount of treatment. In this example, the 
researcher controls whether each participant receives caffeine and the amount of caffeine.

The researcher can control other variables and tries to keep them the same across par-
ticipants both between groups and within groups. This is called standardization and experi-
mental control over other situational factors or extraneous variables. Variables that are 
not included in the research question are extraneous (not of interest) in the present study. 
Many things other than the caffeine administered by the researcher could influence heart rate 
(for example, time of day, whether the research assistant is calm or upset, and whether partici-
pants know that they are consuming caffeine). To achieve standardization, ideally, all partici-
pants would be tested at the same time of day; the behavior of the research assistant would be 
made consistent, perhaps by training or even the use of a script; and neither  participants nor 
research assistants would know which drinks contain caffeine.

Researchers need background knowledge about their variables to understand what 
kinds of confounds they need to anticipate and avoid. For example, if heart rate is the depen-
dent variable, the researcher needs to know what other factors (apart from the manipulated 
 variable, caffeine) might influence heart rate.

Sometimes experimental control does not work as well as hoped. Random assignment 
of participants to groups can result in “unlucky randomization,” that is, groups that are not 
similar on one or more participant characteristics. In implementation of a treatment, variables 
may be unintentionally confounded with type of treatment. Consider the hypothetical flawed 
study in Figure 2.2.

Figure 2.2 illustrates two possible confounds. First, Groups 1 and 2 include differ-
ent types of students (high vs. low academic ability). Second, Groups 1 and 2 had differ-
ent instructors (Dr. Feelgood vs. Dr. Deadly). Any differences we find between final exam 
scores in these groups might be due to one or more of the following rival explanatory  

Figure 2.2 Flawed Study to Compare Mean Exam Scores (Y) Between 
Classroom and Online Instruction (X)
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variables: classroom versus online setting, academic ability levels of students, and behaviors 
of the different instructors. We cannot conclude that classroom and online instruction cause 
different results on final exams unless we can rule out or get rid of the effects of the two 
confounded, rival explanatory variables (student ability and teacher identity). In many experi-
mental situations, there are large numbers of potential confounds. See research methods text-
books (such as Cozby & Bates, 2017) for further discussion of experimental control.

When potential confounds and extraneous variables can be ruled out by these forms of 
experimental control, an experiment can provide good-quality evidence that may be consis-
tent with a researcher hypothesis about causal inference. (The results of a single study should 
not be considered proof of causal influence.) Nonexperimental designs lack all these types of 
experimental control. Quasi-experimental studies typically have some, but not all, of these 
forms of control.

2.7 NONEXPERIMENTAL RESEARCH DESIGN

In a typical nonexperimental research design (also called a correlational study), a researcher 
measures two or more variables that are believed to be meaningfully related, and the researcher 
does not introduce a treatment or intervention.

Consider this example. Suppose that X is a measurement of amount of (naturally occur-
ring) physical exercise, and Y is a score for depression. Both variables might be measured 
using self-report survey questions. A researcher may suspect that there is a causal association 
(getting more exercise reduces depression). See Figure 2.3.

Suppose that there is a strong correlation: People who report that they choose to exer-
cise more tend to report lower levels of depression; people who report that they choose to 
exercise less tend to report higher levels of depression. That outcome cannot be interpreted 
as evidence that exercise causes a reduction in depression, because the data do not come from 
an experiment.

One requirement for causal inference is that the variable thought to be the cause should 
happen earlier in time than the variable thought to be the outcome. A nonexperimental 
study can (partly) satisfy that requirement by measuring exercise first and depression at a 
later point in time. Another option is to measure exercise and depression at multiple points 
in time.

Figure 2.3 Diagram of Nonexperimental Design With Two Variables
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A more serious problem is that exercise is confounded with other variables, and those 
other variables might influence depression. For example, a person who experiences chronic 
stress may not feel like exercising, and chronic stress might cause depression. It is also  possible 
that depression causes people to exercise less.

Advanced courses in statistics include methods for statistical control that can help sepa-
rate the influences of rival explanatory variables (for example, using multiple regression). 
However, if all you have is a statistical relationship between amount of exercise and depres-
sion, and amount of exercise has not been manipulated, that is not sufficient evidence to 
conclude that lack of exercise causes depression.

It may occur to you that you could do an experiment in which you randomly assign peo-
ple to high-exercise and no-exercise groups and measure later depression. That is possible, 
although it would be a challenge to create a good experiment for these variables.

Results from nonexperimental studies can satisfy the first two requirements in the list of 
conditions for causal inference. Variables X and Y can be chosen so that there is some logical 
or theoretical connection between them. Sometimes, but not always, there is clear temporal 
precedence, so that one variable can be identified as predictor and the other as outcome. 
Nonexperimental research can be sufficient to answer the question, Do X and Y co-occur? If 
a strong argument can be made for temporal precedence, data from nonexperimental studies 
can also be used to ask, Does X predict Y?

Researchers often identify variables in nonexperimental studies as independent and 
others as dependent, on the basis of theories about possible causal connections. However, 
distinctions between independent and dependent variables in nonexperimental studies are 
sometimes arbitrary (and even questionable). Consider a survey that measures self-esteem (X) 
and grades (Y) at the same point in time for a group of schoolchildren. If the analysis shows 
that higher self-esteem tends to co-occur with higher grades, and if the theory says that self-
esteem causes better performance in school, a researcher may be tempted to phrase the inter-
pretation in ways that suggest that the study proved a causal connection; the researcher might 
say, “High self-esteem leads to higher grades” (leads to is one of many synonyms for causes). It 
is plausible to theorize that grades increase self-esteem, but it is also possible that self-esteem 
increases grades or that both grades and self-esteem are influenced by other variables, such as 
intelligence. In a situation like this, I would say that neither self-esteem nor grades are clearly 
“the” independent variable or dependent variable. When there is no temporal precedence and 
no ability to rule out rival explanatory variables, it is preferable to say that X and Y are cor-
related variables (instead of calling one independent and the other dependent).

2.8 QUASI-EXPERIMENTAL RESEARCH DESIGNS

Studies that compare group outcomes but lack the full set of controls in true experiments (such as 
researcher control over assignment of participants to groups, researcher administration of treat-
ments, and researcher control over other situational variables) are called quasi- experiments. Quasi-
experimental research designs fall between experimental and nonexperimental designs in their 
ability to rule out rival explanatory variables. Quasi-experiments often arise when programs are 
evaluated in field settings. Occasionally, true experiments are run in field settings, but it is generally 
easier for researchers to have control over variables when they are in laboratory settings.

The simplest types of quasi-experiments involve comparison of two or more groups that 
receive different treatments (Figure 2.4) using preexisting groups instead of groups formed 
by a researcher. For example, each of two classrooms or schools may be used as a group. 
When preexisting groups are compared, the members of groups are likely to differ in many 
preexisting characteristics. This is called a nonequivalent control group design.

Consider potential problems in the group comparison design in Figure 2.4. Because the 
researcher cannot control the assignment of subjects to groups, the groups that do versus do 
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not experience the program often include different kinds of participants (i.e., there may be a 
confound between participant characteristics and type of treatment).

In addition, when data are collected in field settings such as schools over long periods of 
time, other events that might influence the outcome variable may occur. As an example, con-
sider a hypothetical study to evaluate a drug education program (students in School 1 do not 
receive it; students in School 2 do receive it). The outcome measure could be self-reported 
intention to use drugs. To what extent does the drug education program have an impact 
on this? It is possible that School 1 and School 2 differ in ways that would influence drug 
use intention, for example, family religious backgrounds. It is possible that things happen in 
School 1 that did not happen in School 2 over the course of the study; for example, a popular 
student in School 1 dies from a drug overdose, which does not happen in School 2. These 
confounds would make it impossible to tell whether the drug education program causes any 
observed difference between groups for intention to use drugs.

A second simple quasi-experimental design compares scores for one group after the inter-
vention with scores for the same group before the intervention (Figure 2.5). At first glance this 
may seem to be less problematic than the nonequivalent control group design, but this simple 
design is quite problematic. Many events, in addition to the intervention, may occur between 
Times 1 and 2, and any of these events might influence the outcome. A student may die in an 
alcohol-related car accident, and that event is a rival explanatory variable. If the study takes place 
over 3 years, there is time for maturation to occur (students are 3 years older at Time 2 than at 
Time 1, and changes in scores might be related to age). Shadish, Cook, and Campbell (2001) 
provided extensive information about the design and analysis of quasi-experimental studies.

2.9 OTHER ISSUES IN DESIGN AND ANALYSIS

Beginning students sometimes ask questions such as “Which is better, an experiment or a 
nonexperimental study?” It is more informative to ask, What are the potential advantages 
and  disadvantages of experimental versus nonexperimental studies?

Figure 2.4 Quasi-Experimental Nonequivalent Control Group Design
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The three types of design just reviewed (experimental, nonexperimental, and quasi-
experimental) differ in the amount of control a researcher has over assignment to groups and 
ability to rule out rival explanatory variables. Sometimes situations in which a researcher has a 
substantial amount of control are in laboratory settings. Laboratory settings and experiments 
may be artificial or contrived situations (in other words, different from real-world situations).

Consider one highly contrived research situation in psychology: the Skinner box. A rat or 
pigeon is placed in a glass box. No other animals are present. Lights or tones act as signals for 
the performance of a specific behavior, such as lever pressing for the availability of a reward. 
Food, water, or other rewards drop into the box when a lever is pressed. The schedule for 
the availability of rewards is completely under researcher control. All other variables, for all 
practical purposes, are held constant: temperature, lighting conditions, the age and health of 
the rat, and so forth. Interactions of the human researcher with the animal may be minimal.

This situation is ideal if the goal is to make causal inferences: How does the schedule of 
reinforcement or reward influence the frequency of lever-pressing behavior? There are few 
or no rival explanatory variables. However, this situation is not ideal if we want to know about 
learning or food foraging in natural environments, where different factors may be important, 
or learning in species other than rats and pigeons.

In psychology the terms internal validity and external validity are used to describe two 
different aspects of research situations. A study has high internal validity when control of 
rival explanatory variables is so thorough that there are no rival explanatory variables to worry 
about when making a causal inference. Experiments in lab settings can potentially have high 
internal validity. Nonexperimental studies typically have low internal validity, because the 
ability to rule out rival explanatory variables is limited.

External validity refers to the similarity of the situation in the study to real-world situa-
tions we would like to be able to talk about. A study has high external validity if the situations 
resemble real-world situations of interest and low external validity if the situations are so artifi-
cial and contrived that they don’t resemble any real-world situations of interest. Often nonex-
perimental research has higher external validity than experimental research, because researchers 
observe or ask about naturally occurring behaviors, sometimes in real-world settings.

There tends to be a trade-off between internal and external validity. Often, we have the 
best internal validity in experimental situations that are highly controlled and artificial, but 
these situations may have poor external validity. Often, we have the best external validity in 
uncontrolled nonexperimental studies, but these studies usually have poor internal validity.

There are things researchers can do to improve external validity in lab experiments; the 
goal is to make the situation as lifelike and believable as possible. There are things researchers 

Figure 2.5 Within-Group or Pretest–Posttest Quasi-Experimental Design
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can do to improve internal validity in nonexperimental studies; often this involves the use of 
statistical control to compensate for the lack of experimental control.

We can build the strongest possible cause for a claim (for example, that crowding 
increases hostility) when we can show that the evidence for this claim is consistent across 
many different contexts: lab versus field setting, experimental versus nonexperimental design, 
animal and human subjects, different ways of measuring hostility, and so forth.

Another issue to consider in thinking about possible designs for a study is whether the 
groups in a design are between-S, as in Figures 2.1, 2.2, and 2.4, or within-S or repeated 
measures, as in Figure 2.5. In a typical between-S (also called independent-groups) study, 
each participant is assigned to just one group and contributes one score for the outcome 
variable. In a within-S or repeated-measures study, each case or participant receives multiple 
treatments or is evaluated at multiple points in time, or both. It is usually easy to tell whether 
a study is within-S or repeated measures because terms and phrases such as “each partici-
pant received all treatments,” repeated measures, longitudinal, prospective, or pretest–posttest are 
included in descriptions of within-S studies.

The examples provided so far are extremely simple. However, group comparison designs 
can have more than two groups. In addition, research designs can include both within- and 
between-S factors (for example, pretest and posttest measures could be added to the study in 
Figure 2.4). Correlational or nonexperimental studies (as in Figure 2.3) usually include large 
numbers of variables.

You will learn statistical techniques for each of these situations one at a time. Later edu-
cation in statistics shows ways to combine these simple research designs into more complex 
designs and analyses.

2.10 CHOICE OF STATISTICAL ANALYSIS (PREVIEW)

Chapters 9 through 17 in this book describe statistics used to assess whether two variables are 
related. There are four possible combinations of types of independent and dependent variables. 
(To select a statistical analysis, it may be necessary to identify one of your variables as an inde-
pendent variable even if you do not have a causal hypothesis.) As a brief preview, here are some 
(not all) of the commonly used statistics for each combination of variables.

1. X is categorical, Y is categorical: χ2 analysis of contingency table

2. X is categorical, Y is quantitative: t test or analysis of variance (ANOVA)

3. X is quantitative, Y is quantitative: Pearson r, bivariate regression

What do each of these analyses tell us?

1. A χ2 (chi-squared) test evaluates whether membership in one type of group is 
statistically related to membership in another type of group. Consider sex (a group 
membership variable) and political party (a second group membership variable). A 
χ2 analysis and examination of percentages can answer questions such as, Are women 
more likely to be Democrats, and are men more likely to be Republicans? The χ2 
test is more often used in nonexperimental research; however, it can be used in 
experiments when the outcome variable is categorical.

2. An independent-samples t test or analysis of variance compares mean scores 
on a dependent variable across two or more groups. Often this is done in an 
experiment in which a researcher has divided people into groups and then given 
a different type of treatment to each group. For example, a study might compare 
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mean anxiety scores between Group 1 (which received psychotherapy) and 
Group 2 (which did not receive psychotherapy) to see if people who received 
psychotherapy had lower anxiety on average. This analysis can also be used 
to compare means between naturally occurring groups, such as mean height 
between male and female groups.

3. A Pearson correlation (denoted r) is used to examine scores for two quantitative 
variables (such as X, height, and Y, salary). Pearson correlation is an appropriate 
analysis only when there is a linear association between X and Y, as discussed in a 
later chapter.

4. Chapters 9 through 17 do not cover analyses for the situation in which X is 
quantitative and Y is categorical. (Logistic regression can be used in this situation.)

2.11 POPULATIONS AND SAMPLES:  

IDEAL VERSUS ACTUAL SITUATIONS

2.11.1 Ideal Definition of Population and Sample

Statistical techniques were developed on the basis of ideal, imaginary situations. The 
development of statistical techniques began by specifying a population of interest. In an 
industrial quality control study, for example, the population could be all the widgets that are 
produced by a machine in a month. Let’s assume that the variable of interest is the diameter 
of the widgets. If it is possible and not too expensive to measure the diameter of every single 
widget in the population, it makes sense to do that. However, it is often too costly or difficult 
to obtain information for every case in a population. Statisticians knew that it would be useful 
to develop techniques that can use information from a sample to make inferences (estimates) 
about population characteristics. A sample can be defined as a subset of the cases in a popula-
tion, as in the following example. All members of the sample are members of the population. 
However, some members of the population are not included in the sample.

Population (of 7): [72, 81, 98, 67, 101, 78, 79]
Sample (subset) of size N = 3: [98, 72, 78]
To develop the techniques you will learn, statisticians made assumptions that simplified 

the problem. They assumed that all members of the population can be identified and can potentially 
be included in a sample. For the development of some statistics, they assumed that scores for the 
variable are normally distributed in the population. They assumed that the sample would be 
randomly selected from the population, in a way that gave every member of the population an 
equal chance of being included in the sample. Here’s an example of a simple random selection 
method to obtain a sample that includes 50% of the population: Toss a coin for each case and 
include that case in the sample if the result is heads.

2.11.2 Two Real-World Research Situations Similar to the  

Ideal Population and Sample Situation

Industrial quality control involves a situation similar to the one imagined by statisti-
cians. Returning to the widget example, the population of interest, all widgets produced by a 
machine in a month, can be identified. It is possible to select a sample of widgets randomly 
from this population of interest.

A second situation that is somewhat comparable with the ideal situation arises in political 
polling. Polling organizations such as Gallup define the population of interest in terms such 
as “all registered U.S. voters.” It is more difficult to identify all members of this population 
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than in the widget example, and there are cases in this population that cannot be contacted 
and included in a sample. Organizations such as Gallup use complex sampling methods that 
include both random and systematic selection to obtain samples that should be representative 
of the population. A representative sample of a population is created if the cases in the 
sample have characteristics similar to those of the population. For example, if 51% of a Gallup 
sample are women, 10% are Hispanic, and 20% are older than 65, and the population of all 
registered voters includes 51% women, 10% Hispanic voters, and 20% voters older than 65, 
then the sample is representative of that population for those three variables. On the other 
hand, if the sample has 23% women, but the population has 51% women, then the sample is 
not representative of the population in sex distribution. This book does not deal with complex 
sampling issues and technical tools such as case weighting; for a comprehensive discussion, 
see Thompson (2012).

2.11.3 Actual Research Situations That Are Not Similar  

to Ideal Situations

In many behavioral and social science studies and in medicine, researchers often begin 
not with a well-specified population but with a convenience sample (sometimes called an 
accidental sample). Convenience samples consist of cases that are easy for the researcher 
to get. However, researchers almost always want to say something about cases not included 
in the study. Most textbooks don’t address this question: What population can researchers 
talk about in this situation? Trochim (2006) suggests that researchers rely on a proximal 
similarity model to generalize from convenience samples. The proximal similarity model 
says that it is reasonable to generalize results from a sample to some broader hypothetical 
or imaginary population if the members of the sample have participant characteristics 
like those of the population of interest (i.e., if the sample is representative of the  population 
of interest).

For example, a psychologist might run a study with a small sample of moderately 
depressed patients to evaluate whether cognitive behavioral therapy (CBT) (X) improves life 
satisfaction (Y). The psychologist can see whether patients in the study who received CBT 
have higher life satisfaction scores than patients in the study who did not. However, the psy-
chologist does not want to be limited to saying, “CBT increased life satisfaction for the 30 
patients in my study.” The psychologist hopes to be able to say something like “CBT prob-
ably increases life satisfaction for many other depressed patients” (i.e., a broader hypothetical 
population of other depression patients).

How far can researchers go when making such generalizations? They should limit them-
selves to generalizations about populations similar to members of the study. If a CBT study 
finds that CBT increases life satisfaction for women ages 20 to 50 with moderate levels of 
depression, the researcher should not assume that CBT would have similar effects for men, 
older and younger persons, and persons with mild or severe depression.

When a sample is selected randomly from an actual well-specified population, cases 
in the sample should be like the population. In this situation we can justify generalizations 
beyond the sample to the population from which that sample was selected on the basis of the 
sampling model (Trochim, 2006).

In behavioral, social, and medical laboratory research situations, it is common for 
researchers to generalize from convenience samples to broader hypothetical populations 
(relying implicitly on the proximal similarity model). Research situations such as industrial 
quality control and political polling, where samples are obtained by random sampling from 
a population, can justify generalizations on the basis of the sampling model. In either case, 
generalizations from sample to population should be made cautiously. Even random selec-
tion of cases from a clearly defined population can sometimes yield a nonrepresentative 
sample.


