

An R Companion to Political Analysis

Second Edition

Sara Miller McCune founded SAGE Publishing in 1965 to support

the dissemination of usable knowledge and educate a global

community. SAGE publishes more than 1000 journals and over

800 new books each year, spanning a wide range of subject areas.

Our growing selection of library products includes archives, data,

case studies and video. SAGE remains majority owned by our

founder and after her lifetime will become owned by a charitable

trust that secures the company’s continued independence.

Los Angeles | London | New Delhi | Singapore | Washington DC | Melbourne

An R Companion to Political Analysis
Second Edition

Philip H. Pollock III

University of Central Florida

Barry C. Edwards

University of Central Florida

Copyright © 2018 by CQ Press, an imprint of SAGE Publications, Inc. CQ Press is a

registered trademark of Congressional Quarterly, Inc.

All rights reserved. No part of this book may be reproduced or utilized in any form or

by any means, electronic or mechanical, including photocopying, recording, or by any

information storage and retrieval system, without permission in writing from the publisher.

The R Foundation owns the copyright to R software and licenses it under the GNU

General Public License 2.0, https://www.r-project.org/COPYING. The R content

depicted in this book is included solely for purposes of illustration and is owned by

The R Foundation and in no way indicates any relationship with, or endorsement

by The R Foundation. The R software logo as it appears in this book is available at

https://www.r-project.org/logo/ and is copyright protected by The R Foundation and

licensed under Creative Commons Attribution-ShareAlike 4.0 International license

(CC-BY-SA 4.0) https://creativecommons.org/licenses/by-sa/4.0/.

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data

Names: Pollock, Philip H., III., author. | Edwards, Barry C., author.

Title: An R companion to political analysis / Philip H. Pollock III,

University of Central Florida, Barry C. Edwards, University of Central

Florida.

Description: Second edition. | Thousand Oaks, California : CQ Press, [2018] |

Includes bibliographical references and index.

Identifiers: LCCN 2017003186 | ISBN 9781506368849 (pbk. : alk. paper)

Subjects: LCSH: Political statistics—Computer programs—Handbooks, manuals,

etc. | Analysis of variance—Computer programs—Handbooks, manuals, etc. |

R (Computer program language)—Handbooks, manuals, etc.

Classification: LCC JA86 .P639 2017 | DDC 320.0285/5133—dc23

LC record available at https://lccn.loc.gov/2017003186

This book is printed on acid-free paper.

17 18 19 20 21 10 9 8 7 6 5 4 3 2 1

FOR INFORMATION:

CQ Press

An imprint of SAGE Publications, Inc.

2455 Teller Road

Thousand Oaks, California 91320

E-mail: order@sagepub.com

SAGE Publications Ltd.

1 Oliver’s Yard

55 City Road

London EC1Y 1SP

United Kingdom

SAGE Publications India Pvt. Ltd.

B 1/I 1 Mohan Cooperative Industrial Area

Mathura Road, New Delhi 110 044

India

SAGE Publications Asia-Pacific Pte. Ltd.

3 Church Street

#10-04 Samsung Hub

Singapore 049483

Acquisitions Editor: Carrie Brandon

Development Editor: Anna Villarruel

Editorial Assistant: Duncan Marchbank

eLearning Editor: John Scappini

Production Editor: Kelly DeRosa

Copy Editor: Christina West

Typesetter: C&M Digitals (P) Ltd.

Proofreader: Sarah J. Duffy

Cover Designer: Anupama Krishnan

Marketing Manager: Amy Whitaker

v

Contents

List of Boxes and Figures ix

Preface xi

A Quick Reference Guide to R Companion Functions xv

Introduction: Getting Acquainted with R 1

About R 2

Installing R 2

A Quick Tour of the R Environment 4

Objects 5

Functions 6

Getting Help 8

Exercises 10

Chapter 1: The R Companion Package 13

Running Scripts 17

Ten Tips for Writing Good R Scripts 19

Managing R Output: Graphics and Text 20

Additional Software for Working with R 22

Debugging R Code 24

Exercises 25

Chapter 2: Descriptive Statistics 27

Interpreting Measures of Central Tendency and Variation 28

Describing Nominal Variables 29

Describing Ordinal Variables 31

Describing the Central Tendency of Interval Variables 34

Describing the Dispersion of Interval Variables 36

Obtaining Case-Level Information 39

Exercises 40

vi Contents

Chapter 3: Transforming Variables 45

Applying Mathematical and Logical Operators to Variables 46

Creating Indicator Variables 48

Changing Variable Classes 49

Adding or Modifying Variable Labels 50

Collapsing Variables into Simplified Categories 51

Centering or Standardizing a Numeric Variable 53

Creating an Additive Index 54

Exercises 57

Chapter 4: Making Comparisons 61

Cross-Tabulations and Mosaic Plots 62

Line Charts 65

Mean Comparison Analysis 66

Box Plots 67

Strip Charts 69

Exercises 70

Chapter 5: Making Controlled Comparisons 75

Cross-Tabulation Analysis with a Control Variable 76

Multiple Line Charts 80

The legend Function 81

Mean Comparison Analysis with a Control Variable 82

Example of an Interaction Relationship 82

Example of an Additive Relationship 84

Exercises 86

Chapter 6: Making Inferences about Sample Means 91

Finding the 95 Percent Confidence Interval of the Population Mean 92

Testing Hypothetical Claims about the Population Mean 93

Caveat 94

Interpreting P-Values 94

Making Inferences about Two Sample Means 95

Making Inferences about Two Sample Proportions 97

Exercises 98

Chapter 7: Chi-Square and Measures of Association 103

Analyzing an Ordinal-Level Relationship 104

Summary 107

Analyzing an Ordinal-Level Relationship with a Control Variable 108

Analyzing a Nominal-Level Relationship with a Control Variable 110

Exercises 112

Chapter 8: Correlation and Linear Regression 117

Correlation Analysis 118

Bivariate Regression with a Dummy Variable 119

Bivariate Regression with an Interval-Level Independent Variable 120

Multiple Regression Analysis 122

Multiple Regression with Ordinal or Categorical Variables 123

Weighted Regression with a Dummy Variable 126

Contents vii

Multiple Regression Analysis with Weighted Data 128

Weighted Regression with Ordinal or Categorical Independent Variables 129

Creating Tables of Regression Results 132

Exercises 133

Chapter 9: Visualizing Correlation and Regression Analysis 139

Visualizing Correlation 140

General Comments about Visualizing Regression Results 142

Plotting Multiple Regression Results 145

Interaction Effects in Multiple Regression 151

Visualizing Regression Results with Weighted Data 154

Special Issues When Plotting Observations with Limited Unique Values 156

Exercises 158

Chapter 10: Logistic Regression 163

Thinking about Odds, Logged Odds, and Probabilities 164

Estimating Logistic Regression Models 165

Interpreting Logistic Regression Results with Odds Ratios 168

Visualizing Results with Predicted Probabilities Curves 169

Probability Profiles for Discrete Cases 172

Model Fit Statistics for Logistic Regressions 175

An Additional Example of Multivariable Logistic Regression 177

Exercises 180

Chapter 11: Doing Your Own Political Analysis 185

Seven Doable Ideas 185

Political Knowledge and Interest 186

Self-Interest and Policy Preferences 186

Economic Performance and Election Outcomes 187

Electoral Turnout in Comparative Perspective 187

Interviewer Effects on Public Opinion Surveys 187

Religion and Politics 188

Race and Politics 188

Importing Data 189

SPSS and Stata Formatted Datasets 189

Microsoft Excel Datasets 190

HTML Datasets 195

PDF Format or Hand-Coded Data 196

Writing It Up 198

The Research Question 199

Previous Research 199

Data, Hypotheses, and Analysis 199

Conclusions and Implications 200

Appendix 201

Table A.1 Alphabetical List of Variables in the GSS Dataset 201

Table A.2 Alphabetical List of Variables in the NES Dataset 208

Table A.3 Alphabetical List of Variables in the States Dataset 220

Table A.4 Alphabetical List of Variables in the World Dataset 224

About the Authors 229

ix

List of Boxes and Figures

Boxes

1.1 Missing Packages 14

1.2 The Companion Datasets 16

1.3 A Special Note on Weights 21

2.1 Additional Math Functions for Interval-Level Variables 38

3.1 Mathematical Operators in R 46

3.2 Logical Operators in R 47

4.1 Analysis Guide 62

5.1 Analysis Guide 76

9.1 Visualizing Multiple Regressions with Many Independent Variables 151

10.1 Marginal Effects and Expected Changes in Probability 174

Figures

I.1 R Project for Statistical Computing Home Page 3

I.2 Location of Repositories 3

I.3 Windows Download Options 3

I.4 Mac OS Download Options 3

I.5 Linux Download Options 3

I.6 R Console 4

I.7 Hypothetical “makeWidget” Function 6

I.8 Function Help File 9

I.9 Extended Search Results 9

1.1 Installing R Companion’s Package 14

1.2 Loading R Companion’s Package 15

1.3 R Script Editor 18

1.4 Sample R Graphics Output 21

1.5 Simple Table Formatting 22

1.6 R Studio Screenshot 23

1.7 R Commander Screenshot 23

2.1 Distribution of Zodiac Signs in the GSS Dataset 29

2.2 Distribution of Zodiac Signs in the GSS Dataset 30

2.3 Public Support for Reducing the Federal Deficit 31

x List of Boxes and Figures

2.4 Public Opinion of Congress 32

2.5 Public Support for President’s Handling of War in Afghanistan 33

2.6 Ages of GSS Respondents 35

2.7 Histogram of Hispanic Population in U.S. States 37

3.1 Ages of GSS Respondents, Five Categories 52

3.2 Public Opinion on Number of Acceptable Reasons for Abortion 56

3.3 Scale of Patriotic Feelings in the General Public 57

4.1 Mosaic Plot 64

4.2 Mosaic Plot with Main Title and Axis Labels 64

4.3 Line Chart of Indicator Variable 65

4.4 Line Chart of Numeric Variable 67

4.5 Box and Whiskers Plot 68

4.6 Box and Whiskers Plot with Main Title and Axis Labels 69

4.7 Strip Chart 70

5.1 Multiple Line Chart with Indicator Dependent Variable (No Legend) 81

5.2 Multiple Line Chart with Indicator Variable (Legend Added) 82

5.3 Multiple Line Chart with Numeric Variable (Interaction) 84

5.4 Multiple Line Chart with Numeric Variable (Additive) 85

7.1 Mosaic Plot of Cross-Tabulation 105

8.1 The Table.Output.html File 132

9.1 Scatterplot Showing the Correlation of Two Variables 141

9.2 Scatterplot Matrix of Correlations among Multiple Variables 141

9.3 Scatterplot Showing Bivariate Regression Estimates 143

9.4 Enhanced Scatterplot with Bivariate Regression Estimates 143

9.5 Expected Values from Regression with a Nominal-Level Independent Variable 145

9.6 Visualizing Multiple Regression Results with Nominal-Level Independent Variables 146

9.7 Multiple Regression Results with Interval-Level and Nominal-Level Independent Variables 147

9.8 Multiple Regression Results with Two Interval-Level Independent Variables 149

9.9 Three-Dimensional Representation of Multiple Regression Results with

Two Interval-Level Independent Variables 150

9.10 Three-Dimensional Scatterplot of Multiple Regression Results

with Two Interval-Level Independent Variables 151

9.11 Visualizing Interactive Terms in Multiple Regression 154

9.12 Scatterplot of Regression with Weighted Data 155

9.13 Hexagonal Scatterplot to Better Visualize Limited Unique Values 156

9.14 Scatterplot with Jittered Observed Values 157

10.1 Relationship between Probabilities and Odds 164

10.2 Relationship between Probabilities and Logged Odds 165

10.3 Predicted Probabilities Curve with an Interval-Level Independent Variable 171

10.4 Predicted Probabilities Curve with Nominal- and Interval-Level Independent Variables 173

10.5 Predicted Probabilities for Discrete Cases 174

10.6 Predicted Probabilities in Three Dimensions 180

11.1 Pippa Norris’s Data Page 189

11.2 R-Unfriendly Excel Dataset 190

11.3 R-Friendly Excel Dataset 191

11.4 Creating an R-Friendly Excel Spreadsheet 192

11.5 Converting and Importing an Excel File 194

11.6 Importing Data in HTML Format 195

11.7 Sample Data in PDF Format 196

11.8 Editing PDF Data to R-Friendly Format 197

xi

Preface

I n many ways, the second edition of An R Companion to Political Analysis follows the template of the book that

 preceded it. Thus, this volume guides students in the use of R for constructing meaningful descriptions of

variables and performing substantive analysis of political relationships, from bivariate cross-tabulation analysis

to logistic regression. As before, all of the examples and exercises use research-quality data—including two

survey datasets (the 2012 American National Election Study and the 2012 General Social Survey) and two

aggregate-level datasets (one based on the 50 U.S. states and one based on countries of the world). And, as in the

first edition, each chapter is written as a tutorial, taking students through a series of guided examples that they

then use to perform the analysis.

The second edition improves upon the first in three ways. First, we have added an “Introduction to R”

to familiarize students with the R environment and help them understand the logic of objects and functions.

Second, we have repurposed Chapter 9 to emphasize how R’s plotting functions can be used to show the results

of regression analysis.

The third and most important change from the first edition is the development and release of an R package

called “poliscidata” that bundles the functions and datasets used in this book. Students can now simply install

this book’s R package, load it in R, and then jump right into executing commands and analyzing results. The

book’s R package is freely available on the Comprehensive R Archive Network (CRAN). The installation process

is detailed in Chapter 1.

Each chapter has been revised to reflect the updated datasets that accompany this book. Where possible,

we’ve revised our examples and model solutions to offer students simpler, more intuitive approaches.

Throughout the text, we emphasize simple solutions that accommodate missing data and allow the research to

apply sampling weights. We’ve also made a special effort to show how to use R to create publication-level tables

and figures. Data visualization is an especially exciting field and a relative strength of R. Because most students

are visual learners, giving them the opportunity to see relationships in data and statistical concepts in action is

also a great teaching tool.

We have updated the end-of-chapter exercises for the second edition of this book. In our exercises, we

attempt to test students’ understanding of the methods demonstrated in each chapter.

Students can log on to edge.sagepub.com/pollock to access datasets used in An R Companion to Political

Analysis as well as tables and figures from the book to strengthen understanding of key terms and concepts.

ADVICE FOR INSTRUCTORS

This book is intended to help college students learn to apply political science research methods using the

R program. We emphasize developing good writing habits, proper interpretation of statistics, and clear

presentation of results. This book isn’t a comprehensive reference to R’s data analysis functions. This book is

xii Preface

intended to serve as a companion to textbooks that emphasize the general concepts of political science research.

We hope this book helps your students use the R program to apply textbook and lecture concepts to solve

problems and conduct research.

Those of us who teach political science research methods understand there are pros and cons to using

different statistics programs. We think instructors should be aware of the advantages and disadvantages of using

R and, if they choose R, work to maximize its advantage and minimize its potential problems.

The primary benefit of using R for teaching students to use political science research methods is that R is a

free program that works well on both Windows and Mac OS platforms. Students don’t have to work on certain

computers on campus or under an expiring software license. In our experience teaching this class, students really

like the convenience of being able to work on their own laptops, even though we have computer labs on campus.

Working with R gives students the option of working on or off campus, at times that fit in their schedules.

Although R is sometimes seen as a program reserved for hardcore quants, it may be more appropriate to view

R as a program made for everybody. We think it’s great that students can build a toolkit of R scripts over the

course of a term and take it with them into other classes or the workplace. The only real limitation to using

R is the willingness to learn how.

In this book, we try to identify the fundamental research methods used by political scientists and

demonstrate the simplest ways of applying these methods using R. In a number of instances, we’ve written very

simple functions to execute certain tasks with minimal coding. Of course, we recognize that there are many

different ways to implement research methods in R. We think it makes sense to teach students how R functions

are called, demonstrate the simplest possible solution to a problem, and encourage students to demonstrate their

creativity and initiative by refining the basic solution or trying other solutions to the problem. If you’ve mastered

different solutions to some of the problems we discuss in this book, we’d encourage you to teach R strategies that

are familiar to you in place of, or as alternatives to, the strategies we demonstrate here.

As noted in the preface to the first edition, teaching students to use R presents a number of challenges.

Students are used to using computer software for everyday tasks and entertainment. Chances are, they’ve never

had to use an instruction manual to operate a computer or electronic device, so using a manual to operate a

statistics program is an unfamiliar task. Our suggestion is to be frank with students about the pros and cons of

R and explain why you’re using it to teach research methods. We’ve found that many students (although often

reluctant to admit it) actually enjoy the challenge of learning a new skill that demands precision and attention to

detail. When students learn that R is widely used in the private sector and familiarity with R is a desirable skill to

potential employers, they are likely to prefer using R to working with other statistics programs.

One specific suggestion we’d like to offer instructors who plan on using R to teach political science research

methods is to consider devoting at least part of one class session to helping students get R and the R package that

bundles the functions and datasets used in this book installed and operational. Encourage students to bring their

personal laptops to this session to get them set up to work independently. If you’ve worked with R for a while,

it’s easy to forget how confusing the R environment appears to a new user. Help students get to the point where

they can execute commands and observe R’s response. Make sure your students are prepared to start making

mistakes and learning from them; trial and error is essential, so you don’t want students to get caught up on

one-time, set-up issues.

If you think that learning how to use R is a learning objective in and of itself and not merely a means to

other ends, consider incorporating some computer lab sessions into your course if time and facilities allow you

to do so. One of us (Edwards) teaches research methods with equal parts lecture and lab sessions. In the lab

sessions, students work on solving problem sets using R for statistical analysis. When students have questions,

they raise their hands and receive one-on-one instruction. Edwards has been fortunate to work with some

excellent graduate teaching assistants who join the class lab sessions to work one-on-one with students. He has

also recruited top students to return to lab sessions in subsequent terms to help other students learn to use the

R program. It’s a lot of fun and the hands-on experience with R reinforces the general concepts from lectures

and the textbook.

ACCOMPANYING CORE TEXT

Instructors will find that this book makes an effective supplement to any of a variety of methods textbooks.

However, it is a particularly suitable companion to Pollock’s own core text, The Essentials of Political Analysis,

now in its fifth edition. The textbook’s substantive chapters cover basic and intermediate methodological issues

Preface xiii

and ideas: measurement, explanations and hypotheses, univariate statistics and bivariate analysis, controlled

relationships, sampling and inference, statistical significance, correlation and linear regression, and logistic

regression. Each chapter also includes end-of-chapter exercises. Students can read the textbook chapters, do the

exercises, and then work through the guided examples and exercises in An R Companion to Political Analysis.

The idea is to get students to experience political research firsthand, early in the academic term. An instructor’s

solutions manual, free to adopters, provides solutions for all the textbook and workbook exercises.

ACKNOWLEDGMENTS

We would like to thank the wonderful editorial team at SAGE Publications for their continued support and

encouragement. It’s a real pleasure to work with such a talented and professional group. We would also like to

thank the R Development Core Team and the authors whose functions we use throughout this book.

Pollock would like to thank his co-author, Barry Edwards, who took on the lion’s share of the revisions and

who is responsible for making this edition much better than the last. Pollock would also like to extend a special

thanks to Charisse Kiino, who saw to it that the first edition of this project got off the ground.

Edwards would like to thank, first and foremost, his co-author, Philip Pollock, for inviting him to help

revise the first edition of this book. Pollock is a terrific co-author and has a great sense of humor. Edwards would

also like to thank the graduate and undergraduate teaching assistants he’s had the pleasure of teaching POS 3703

with: Christine Regnier-Bachand, David Shabat-Love, Jason Christensen, Preeti Prakash, Sydney Dotson, Ryan

Allen, Marissa Hall, Bobby Sells, and Jessica Lago. He also thanks all of the University of Central Florida students

who have endured all his corny jokes in Howard Phillips Hall and inspired him to strive for better and better

ways to teach this material.

xv

A Quick Reference Guide
to R Companion Functions

Symbol What It Means

x Variable; independent variable

y Dependent variable

z Control variable

w Optional weight variable

dataset Dataset (gss, nes, states, or world)

design.dataset Dataset created with svydesign (gssD, nesD, statesD, or worldD)

FUNCTION ARGUMENTS

FUNCTION USAGE

AdjR2(tdf=total.df, null.dev=null.deviance, resid.dev=residual.deviane, k=#indepvars)

CI95(m=mean, se=standard.error); CI99 (m=mean, se=standard.error)

Colors()

compmeans(x=y, f=x, w=w, plot=T/F …)

CramersV(chi=chi2.statistic, r=#rows, c=#columns, n=sample.size)

crosstab(dep=x, indep=y, weight=w)

csv.get(“csv.dataset.csv”) [import data in .csv format)

cut2(x=variable, cuts=cutpoints, m=min.obs, g=num.groups …) [use cuts or g]

ddply(.data, .variables, .function ...) [see help(ddply) for special input format]

describe(x=variable, weights=w ...)

fit.svyglm(svyglm=svyglm.model)

(Continued)

xvi A Quick Reference Guide to R Companion Functions

freq(x=variable, w=w, plot=T/F ...); freqC (x=variable, w=w)

imeansC(function1=~y, function2=~x + z, data=design.dataset)

lineType()

logregR2(model=logit.model ...)

orci(model= logit.model ...)

pchisqC(reduced=reduced.logit.model, full=full.logit.model ...)

plotChar()

plotmeans(formula=y ~ x, data=dataset ...)

plotmeansC(data=dataset, formula2=~y, formula3=~x, formula4=y~x, w=~w ...)

printC(objx=table.output)

prop.testC(y=y, x=x, w=w)

scatterplot(formula=y~x, data=dataset ...)

somersD(formula~x+y=, data=design.dataset)

sortC(data=dataset, id=identifier/name, by=sort.criteria, descending=T/F)

spss.get(“SPSS.dataset.sav”) [import SPSS dataset]

stata.get(“Stata.dataset.dta’) [import Stata dataset]

svyboxplot(formula=y~x, design=design.dataset ...)

svyby (formula=~y, by=~x, design=design.dataset, FUN=function.applied ...)

svychisq (formula=y~x, design=design.dataset ...)

svychisqC (formula=y~x, design=design.dataset)

svydesign(id=~1, data=data, weights=~w ...) [create design.dataset]

svyglm(formula=binary.y ~ x l... xn, design=design.dataset, family=quasibinomial)

svyglm(formula=y ~ xl ... xn, design=desig n.dataset ...)

svytable(formula=y~x, design=design.dataset)

welcome()

wtd.boxplot(formula=y ~ x, weights=w ...)

wtd.chi.sq(var1=x, var2=y, weight=w ...)

wtd.cor(x=variable.matrix, weight=w ...)

wtd.hist(x=variable, weight=w ...)

wtd.mean(x=variable, weights=w ...)

wtd.median(x=variable, weights=w)

wtd.mode(x=variable, weights=w)

(Continued)

A Quick Reference Guide to R Companion Functions xvii

For more detailed help files on these functions, enter ? followed by the function’s name or help(function_name)

in R. Functions from base installation packages are not listed.

wtd.quantile(x=variable, weights=w ...)

wtd.sd(x=variable, weights=w)

wtd.t.test(x=variable, y=test.value, weight=w ...) [One sample t-test]

wtd.t.test(x=var1, y=var2, weight=w1, weighty=w2 ...) [Two sample t-test]

wtd.ttestC(f1=~y, f2=~x, data=design.dataset)

wtd.var(x=variable, weights=w)

xtabC(function1=y~x, data=dataset)

xtp(data=dataset, y=y, x=x , w=w ...)

xtp.chi2(data=dataset, y=y, x=x , w=w ...)

1

Introduction:
Getting Acquainted with R

Objective Functions Introduced Author or Source

Demonstrating R

capabilities

c {base}

data.frame {base}

seq {base}

sqrt {base}

mean {base}

help {utils}

All functions by R

Development Core

Team1

A s you have learned about political research and explored techniques of political analysis, you have studied

 many examples of other people’s work. You may have read textbook chapters that present frequency

distributions, or you may have pondered research articles that use cross-tabulation, correlation, or regression

analysis to investigate interesting relationships between variables. As valuable as these learning experiences are,

they can be enhanced greatly by performing political analysis firsthand—handling and modifying social science

datasets, learning to use data analysis software, learning to describe variables, setting up the appropriate analysis

for interesting relationships, and running the analysis and interpreting your results.

This book will guide you as you learn these practical and creative skills. Using R, powerful data analysis

software, to analyze research-ready datasets, you will learn to obtain and interpret descriptive statistics

(Chapter 2), to collapse and combine variables (Chapter 3), to perform cross-tabulation and mean analysis

(Chapter 4), and to control for other factors that might be affecting your results (Chapter 5). Techniques of

statistical inference (Chapters 6 and 7) are covered too. On the somewhat more advanced side, this book

introduces correlation and linear regression (Chapter 8). You will learn how to create graphics that show

relationships among variables and the results of regression analysis (Chapter 9). Chapter 10 provides an

introduction to logistic regression, an analytic technique that has gained wide currency in recent years.

Chapter 11 shows you how to code your own data, and it provides guidance on writing up your results.

Virtually every chapter in this book places special emphasis on the graphic display of data, an area of

increasing interest to the scholarly community.

1 R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna, Austria: Author.

Available at http://www.R-project.org/

2 Introduction: Getting Acquainted with R

To get started with this book, you will need access to a computer with an Internet connection. After you set

up your computer with the right software and add-ons, you’ll be able to work offline. All of the necessary files

are freely accessible on the Internet.

ABOUT R

What is R? R is free software developed in the public domain to analyze data. You can run R on a variety of

operating systems. The base version of R performs many of the statistical procedures you will learn in this book.

In addition, hundreds of users have written a large number of specialized programs for R, all of which are

available from the Comprehensive R Archive Network (CRAN), a clearinghouse for R resources of all kinds.2

In the world of multi-faceted computer software, R is something of a youthful upstart—version 1.0.0 was

released in early 2000—but its user base has steadily expanded.3 Indeed, by 2014, R had an estimated 2 million

regular users. Large corporations, such as Google and Facebook, use R for special applications, such as data

visualization.

Powerful, flexible, richly supported, increasingly popular—and free. What’s the downside? This: R is hard.

The learning curve is steep. The R interface can be described as either retro or primitive, depending on how

charitable you wish to be. Although a handful of promising graphical user interfaces (GUIs) for R exist, R’s core

power is unlocked by the keyboard, not the mouse. (Yes, R is command line.) Because different programmers

have contributed to R’s development, not all commands adhere to the same syntactical rules. Until you get

the hang of it, you will find yourself frequently referring to the reference card provided with this book. Above

all—and subsuming all these challenges—R’s approach to computing, its idea of computing, is almost certainly

different from the approach you have grown accustomed to. The R statistical environment takes some getting

used to. However, when you get comfortable working with objects and using functions, you’ll appreciate the

program’s flexibility and the wealth of tools available for data analysis.

INSTALLING R

There is no substitute for practical experience with R. Let’s install R so we can begin seeing how R thinks and

behaves.

To install R, follow these steps, illustrated in Figures I.1–I.5:

1. Open http://cran.r-project.org/, the home page of the R Project for Statistical Computing.

2. Under the “Download” heading on the left side of the home page, click the link for “CRAN”

(the Comprehensive R Archive Network).

3. Select a repository near you from the list. The 0-Cloud options at the top of the list offer automatic

redirection to servers worldwide, so they make a good default choice.

4. Under the heading “Download and Install R”, select the link that corresponds to your computer’s

operating system.

 • For Windows: Click “base” or “install R for the first time” to install the basic version of the most recent

version of R. Note to Windows users: The Windows installer should determine whether to install the

32-bit or the 64-bit version of R. However, if you need to determine your machine’s bit count, find

help here: http://support.microsoft.com/kb/827218.

 • For Mac: Select the most recent version of the R program your operating system can support. As of

the time of this writing, the most recent version of R (3.3.1) requires Mac OS X 10.9 or higher. If your

Mac OS is older than that, select the R version appropriate for your system.

 • For Linux: Follow instructions specific to your Linux distributor.

5. Follow normal installation procedures. Click through the installation dialogues. Accept the default

settings.

2 See http://cran.r-project.org/
3 Ashlee Vance, “Data Analysts Captivated by R’s Power,” New York Times, January 6, 2009.

Introduction: Getting Acquainted with R 3

Figures I.1–I.5 R Project for Statistical Computing Home Page, Location of Repositories,

Windows Download Options, Mac OS Download Options, Linux Download Options

4 Introduction: Getting Acquainted with R

Figure I.6 R Console

A QUICK TOUR OF THE R ENVIRONMENT

Before we start entering commands, let’s take a look around the R program. Double-click the R icon. The

window that opens on the left side of screen is called the R Console. Above the R Console, at the top of the

screen, you’ll see a row of drop-down menus. You can edit some settings to customize your R environment, but

the drop-down menus are pretty spare. If you’re running R on Mac OS or Linux, your R environment may look

different than how it’s depicted in Figure 1.6. (You have some options to customize the look and feel of your R

environment with the “GUI preferences . . . ” option under the Edit menu tab.)

Notice the > sign on the last line of the R Console in Figure 1.6? R is awaiting your commands.

Now that you’ve got R running and know where you can enter commands, let’s see what R can do. It can

be helpful to think of R as an overgrown programmable calculator. Like a calculator, if you ask R to calculate a

number like “2 + 2”, it will return the answer, 4, to you.

2 + 2 # Enter “2+2” and R returns “4”

[1] 4

Notice that R’s response to the command “2 + 2” starts with the [1]. Rather than clear your command,

R indexes its answer, “[1]”, and returns it on the next line. In this case, the answer is just one number, but

we’ll soon see that R can work with long series of numbers, in which case indexing helps us make sense of results.

In our simple 2 + 2 example, we see an example of an operator used by the R program. The + sign is a

mathematical operator that adds numbers together. As you might guess, R also uses the familiar mathematical

operators: – (dash, to subtract), / (forward slash, to divide), * (asterisk, to multiply), and ^ (caret, to raise to a power).

The equal sign (=) is particularly important in the R environment and we will focus on it in the next section.

Comparing R to a calculator helps us get started, but it only scratches the surface of what R can do. To start

unlocking R’s potential, we need to learn about objects and functions.

Introduction: Getting Acquainted with R 5

To understand computations in R, two slogans are helpful:

 • Everything that exists is an object.

 • Everything that happens is a function call.

— John Chambers (a co-creator of R)

OBJECTS

Objects are used to store information in an accessible manner. Just as all things are nouns in the English language,

all things are objects in R. Some objects encapsulate just one value; other objects store vast arrays of data. Objects

in R store different things, but they all are equally accessible in the workspace, ready to be put to use—no

opening, entering, creating, saving, or exiting required. You can think of objects as all-purpose containers for

information, much like the contacts list in your phone. You could key in a friend’s number every time you

want to call them, but it’s easier to retrieve their phone number by associating it with their name. The contact

object may have several attributes, such as an e-mail address, mailing address, and photo. Similarly, in R you can

create objects and assign numbers and text—even other objects—to the object. We use the assignment operator to

assign values to objects. The equal sign (=) is the intuitive choice, although R traditionalists prefer the classic

assignment operator (<-), which does provide some advantages when it comes to writing functions.4

phoneNumber = 4078232608 # Assigns number to “phoneNumber”

phoneNumber <- 4078232608 # Alternate assignment operator

Object names must be one word, no spaces. If you were to insert a space in the middle of an object name,

R would think you are referring to two different objects. There are a few limits on the names you can give objects.

Names cannot begin with a digit or with a period followed by a digit. Some objects are already defined by the

system, so you should avoid using them: T, F, and pi are examples. (For a complete list, type “?Reserved” at the

R prompt.) As a general rule, avoid using single-character object names because they are not clear, descriptive

names for the values of their contents. There is no character limit on object names, so you don’t need to sacrifice

clarity to save computer memory.

Just as you assigned a number to the object phoneNumber, you may also want the value of an object to be a

word or phrase. Use quotation marks to assign text as a value to an object, otherwise R thinks you are referring

to an object or doing math. (If we wanted to store the phone number in the above example with formatting, that

is, as 407-823-2608, we would need to put the value in quotation marks.)

name = “UCF Poli Sci Dept” # Assigns text in quotes to “name”

Successful object assignments work quietly in R. If you make an error, such as forgetting the closing

quotation mark, R will let you know. If you type in the name of the object, R will return its assigned value.

Objects are the building blocks of the R environment. Two or more objects can be combined to produce a

more complex and information-rich object. Suppose we wanted to create a new object, “directory”, that combines

the two objects created previously, “name” and “phoneNumber”. The following assignment would do the trick.

(This assignment statement uses a function, data.frame. We will take a closer look at functions in the next section.)

directory = data.frame(name, phoneNumber) # Object from objects

Now enter “directory” to retrieve the contents of the combined object:

> directory

 name phoneNumber

1 UCF Poli Sci Dept 4078232608

4 See http://www.r-bloggers.com/assignment-operators-in-r-%E2%80%98%E2%80%99-vs-%E2%80%98-%E2%80%99/

6 Introduction: Getting Acquainted with R

The new object is a data frame, which stores data in two dimensions: rows and columns. To be sure, our

“directory” object is pretty sparse; it is a dataset with only one row and two columns. (In the next section, we will

look at how to add names and phone numbers.) Even so, our tiny directory can illustrate how to use brackets to

access values stored in objects. To access parts of the directory, you specify the row, column, or both the row and

column, or you use the “$” sign to specify a variable in a dataset.

directory[1,] # returns first row

directory[, 1] # returns first column

directory[, 2] # returns second column

directory[1, 1] # returns value of first row, first column

directory[1, 2] # returns value of first row, second column

directory$name # returns value of “name” variable

directory$phoneNumber # returns value of “phoneNumber” variable

Note especially the role played by the dollar sign symbol, “$”. This symbol tells R exactly where to locate an

attribute stored in an object. Thus, the statement “directory$name” means, “Look in the object named ‘directory’

and output the attribute ‘name’.” The “$” symbol is important syntax, as we will see in Chapter 2, when we start

working with variables.

R recognizes six types of objects. For the purposes of this book, the most important are data frames (such

as “directory”) and vectors, which are strings of numbers (1, 2, 7, -4), words (“one”, “two”, “seven”, “negative

four”), or logical operators (TRUE, TRUE, TRUE, FALSE).

FUNCTIONS

Functions perform a defined sequence of actions. If objects are the equivalent of nouns, then functions are the

equivalent of verbs. Functions are generic, meant to be used in a wide range of similar, but not identical, tasks.

Functions are called by name, followed by a set of parentheses. A name without parentheses is an object. Good

developers give their functions descriptive names. Function names must be one word, no spaces. If you insert a space

in the middle of a function name, R will think you’re referring to an object and a function and this will cause an error.

Some functions create objects, others don’t. Some functions take input from the user. When you call a

function, you may specify the values of the function’s arguments, separating each argument with a comma,

inside the parentheses that follow the function name. The argument values you specify in your function call

are passed to the function and affect what the function does. As an R user, you should think about functions in

terms of what you can input and what functions will output when you call them. To illustrate how you interact

with functions, consider a hypothetical R function, makeWidget. The function allows you to specify the shape,

color, and size of the widget you want made. Someday you may want to discover exactly how widgets are made

but, for now, ignore the processes inside the box we put around the makeWidget function. What’s important is

the function’s output, a widget made to your specifications, and to which we assign the name “myWidget”.

Figure I.7 Hypothetical “makeWidget” Function

Introduction: Getting Acquainted with R 7

The author of a function defines how it is to be used and how any user-supplied information is processed

within the function. The pieces of information that the user supplies the function, like the shape, color, and

size of the widget to make, are called arguments. Some arguments are required, others are optional. You could

imagine, for example, additional options to customize your widget beyond the standard features. A good

developer would write a function that easily creates simple widgets with sensible default options, but also gives

users access to advanced settings to customize their widgets. For the purposes of this book, you need not be too

concerned about the code that is inside the R functions included in the base installation of the program or in the

packages you install to expand R’s functionality. Instead, you should focus on the flow of information between

the function call and the function.

In the preceding section, we used the data.frame() function to create a data frame object, “directory”, from

two other objects, “phoneNumber” and “name”, each of which contain only one value. Now we will take a

look at another useful function, concatenate. It has a simple name: c. Suppose you wanted to create an object

with several phone numbers. You could use the concatenate function to create a vector, which is an object with

multiple values. The following example uses concatenate to produce two vectors, “name” and “phoneNumber”.

The two vectors are then combined to update the “directory” data frame.5

name = c(“UCF Poli Sci”, “HPH lab”, “Orlando”) #name has three values

phoneNumber = c(4078232608, 3215555252, 2025678901) #phoneNumber’s 3 values

directory = data.frame(name, phoneNumber) #updates data frame

directory #outputs data frame

 name phoneNumber

1 UCF Poli Sci 4078232608

2 HPH lab 3215555252

3 Orlando 2025678901

Another function, seq(), provides an opportunity to learn about function arguments. This is a very useful

function, but we must supply it with a few vital pieces of information. Take a look at this function’s usage statement:

seq(from, to, by)

The seq function creates a sequence of numbers, provided that you supply it with the start-from number, the

go-to number, and the count-by increment. Supply that information inside the parentheses that follow the name

of the function. Notice that, because it allows the user to set the parameters, the seq function becomes more

versatile. That is, we don’t need one function to count up, another to count down, another to count by twos, and

so on. The seq function will perform any of those actions. The following code creates a vector object, “vec1”, that

ranges from 1 to 49 in increments of 3:

vec1 = seq(from = 1, to = 49, by = 3) # using function arguments by name

vec1 = seq(1, 49, 3) # using function arguments by position

vec1

[1] 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

5 If we had more phone numbers than names (or vice versa), we could not store these vectors together in a data frame; instead,

we would need to use another function, such as list (), that works with vectors of different lengths. If you want to create large

data frames or lists with many values, you don’t want to create these objects and assign them values in an R script; instead,

you’d want to create a spreadsheet-like file for your data and read that file as an object (loading external data files is discussed

in Chapter 11).

8 Introduction: Getting Acquainted with R

Notice that the first two statements above produce the same result. If we do not specify the names of

function arguments, R will use positional matching and assume that the first value in parentheses corresponds

to the first argument in the definition of the function, the second value in parentheses to the second argument

in the defined usage of the function, and so on. (Consult the help page for a function to see how the function is

defined and what its required and optional arguments are.) Now study these next lines of code and try to predict

what they’ll do when you enter them.

seq(3, 50, 1) # what sequence will this generate?

seq(by=3, to=50, from=1) # will this generate same output?

seq(10, 2, from=1) # what’s wrong with this command?

It is important to understand how functions are defined because one of the most common mistakes is to not

supply function inputs in the right order or with the correct syntax. Remember, R is open source software with

many contributors; there is no single, centralized authority to enforce uniform practices, so you will see different

expressions of the same idea across packages and functions. Because R is open source, many people write

functions for the program, which helps explain its rapid growth and incredible versatility. However, R’s radically

decentralized development also means that authors are not required to adhere to consistent function definitions.

When you are working with simple functions—functions with only a few essential arguments—positional

matching is usually fine. For more complex functions, you might want to use keyword matching. Our first use of

the seq() function used keyword matching because we used the arguments named in the definition of the function.

Throughout this book, when we discuss a particular function, we’ll show you how to call the function correctly.

Sometimes the output of one function is the input to another function. When you nest one function

inside another, pay particular attention to your use of parentheses. In the first example below, we use R’s sqrt()

function to compute the square roots of a sequence of numbers created by the seq() function. The second

example uses the mean() function to calculate the mean of the same sequence.

sqrt(seq(1, 50, 3)) # nested function outputs a vector

mean(seq(1, 50, 3)) # nested function outputs a single number

Notice what happens when you input these commands. One returns a new series of numbers, the other just

one number. Why? R is calculating the square root of each number in the sequence. The mean() function, by

definition, calculates one number from a set of numbers. If we wanted to calculate the square root of the sum, or

square root of the mean, we’d use parentheses to establish the order of operations.

Don’t think of functions as formulas you should memorize. There are far more functions written for R

than you could possibly memorize. (At the time of this writing, there are nearly 10,000 packages written for R

containing approximately 200,000 different functions.) It’s much more important to understand the general logic

of functions. While functions do many different things, you use them the same way. You execute a function by

its name followed by a set of parentheses. Inside the parentheses, you may specify the values of arguments used

by the function. The information you specify in parentheses is supplied to the function and processed within

the function, and the result of the operation is returned to you. When you’re working with a new function,

try executing it in the simplest manner possible before fine-tuning your function usage by setting optional

arguments.

GETTING HELP

To obtain information on a function from a package that is installed and loaded, type ‘?function.name’ or

help(function.name) at the prompt.6 For example, if you want to know more about the seq function, type:

‘?seq’ or ‘help(seq)’. Because the base package is loaded, R will show us the R documentation for the seq

function:

6 For an alphabetical list of R packages, see https://cran.r-project.org/web/packages/available_packages_by_name.html

Introduction: Getting Acquainted with R 9

Figure I.8 Function Help File

Figure I.9 Extended Search Results

Double question marks, ‘??function. name’, extend the scope of the inquiry to R documentation that includes

your search term. Below, we show the results of entering “??scatterplot” to learn more about R’s impressive

graphics capabilities.

10 Introduction: Getting Acquainted with R

R documentation is highly technical and, truth be told, is not always helpful for beginners. Even so, if you

are working with a new function, the usage section of the help file will show you the arguments you can include

inside the parentheses. It may seem like a long list, but many of a function’s arguments are optional. If you are

relying on positional matching, make sure you put the arguments in the expected order. If you’re using keyword

matching, make sure you have the correct argument names. The arguments section of a function help file can tell

you whether you have argument values in the right format; for example, you might need to set the value of an

argument to a number rather than quoted text.

One of the best things about R is its enthusiastic online community. There are excellent resources available

to help you learn about R. A particularly accessible source is Quick-R, http://www.statmethods.net/, created by

Robert I. Kabacoff. With Quick-R, you can learn about the methods introduced in this book in greater detail as

well as methods beyond the scope of this book. There are also some excellent video tutorials available.

On YouTube.com, you can find concise, well-produced R tutorial videos from Phil Chan, Mike Marin (Marin

Stats Lectures), and Lynda.com. For an in-depth treatment, the entire series of lectures from Emory University

Professor Courtney Brown’s “Statistics With R” course is available online. When you encounter problems, there’s

a great chance that someone has encountered the same problem and has published a helpful solution already.

EXERCISES

1. Which of the following are advantages of using the R statistical program? (Check all that apply.)

� Free to use

� Produces high-quality graphics

� Thousands of user-contributed packages extend functionality

� Live tech support available from the R Corporation

2. Create another object called “myName” and use an assignment operator to assign your name to this object.

Be sure to use quotation marks around your name. Create an object called “myAge” and assign it your age in

years. Next, apply the data.frame function to these objects to start a data frame object called “quickBio”. Have

R display the contents of your quickBio by entering “quickBio” in the R Console and copy the output here:

3. Consider the following R Commands:

thisNumber = 8

anotherNumber = thisNumber / 4 ^ 3 * 2

nextNumber = sqrt(anotherNumber)

theAnswer = nextNumber + thisNumber

A. What is the value of “theAnswer”? (Circle one.)

16 8.5

8.25 12

B. Which of the following objects has the largest value? (Circle one.)

thisNumber anotherNumber

nextNumber theAnswer

Introduction: Getting Acquainted with R 11

C. Which of the following objects has the smallest value? (Circle one.)

thisNumber anotherNumber

nextNumber theAnswer

4. Consider the following R Commands:

seq1 = seq(from=1, to=10, by=1)

theSolution = max(seq1) - length(seq1[1:5])

 What is the value of “theSolution”? (Circle one.)

1 5

10 0

5. Everything that exists in the R environment is an object. Everything that happens is a function call.

(Circle one.)

True False

13

1

The R Companion Package

Objective Functions Introduced Author or Source

Installing and loading

the poliscidata package

install.packages {utils}

library {base}

welcome {poliscidata}

R Development Core Team

R Development Core Team

Philip Pollock and Barry Edwards

Exploring package

contents

ls {base} R Development Core Team

Demonstrating R

capabilities

freq {descr}

printC {poliscidata}

getwd {base}

Jakson Aquino1

Philip Pollock and Barry Edwards

R Development Core Team

In the preceding Introduction, you became acquainted with some R basics: objects, functions, vectors, and data

frames. For this book, we have developed a more specialized collection of additional objects and functions that

will permit you to analyze, present, and interpret data. A specialized collection of R elements is called a package.

The package we have created for this book, “poliscidata”, contains the functions and datasets we use in this book

and is available through an online repository. In this section, you will (1) run the install.packages function to

install the poliscidata package, (2) run the library function to load the poliscidata package contents, and (3) run

the poliscidata package’s welcome function to produce some basic information about your working environment.

To install the poliscidata package, enter the following command:

install.packages(“poliscidata”) # install bundled datasets and

 # functions for R companion

This command will prompt you to select a repository from which to download the poliscidata package.

The repositories mirror one another, but you may want to select a repository close to you to save download time.

See Figure 1.1.

You can also download an R package by selecting the “Install package(s) . . . ” option under the Packages

menu. This method will also prompt you to select a nearby repository to download the package from, and then

select the “poliscidata” package from the long alphabetical list of R packages.

You will need to install the poliscidata package on each computer you use. When you install the poliscidata

package, R will automatically install the functions and datasets you’ll be using as well as the packages that the

poliscidata package requires. The installation process may take a couple of minutes.

1 Aquino, J. (2012). descr: Descriptive statistics (R package version 0.9.8). Includes R source code and/or documentation written

by Dirk Enzmann, Marc Schwartz, and Nitin Jain. Available at http://CRAN.R-project.org/package=descr

14 Chapter 1

Figure 1.1 Installing R Companion’s Package

You might wonder why the R program does not come with all the packages you need. There are thousands

of different packages available to extend R’s capabilities. Chances are, you will use only a fraction of them

(even if you become a lifetime R user). So the R Project keeps the base version of the program relatively light and

allows users to add on functionality based on their individual preferences.

Box 1.1 Missing Packages

When you install the poliscidata package, R should automatically install all the packages that our package

depends on. We’ve found, however, that R sometimes fails to install all the required dependencies. If this

happens, you will see an error message that you are missing a required package. Don’t panic. You can fix this

problem pretty easily. You just need to install the missing packages manually. You can either select the “Install

package(s) . . . ” option from the Packages drop-down menu, select a repository near you, and select the missing

package from the very long list of available packages, or you can type:

install.packages("name_of_missing_package")

on the Console command line, substituting the name of the missing package where indicated. If R reports that it

is missing another package, keep installing missing packages until the missing package error messages go away.

You will not have to do all this each time you use R. It is simply a set-up issue.

Now that you’ve downloaded the poliscidata package, you need to load the package in your current

R session using the library command. When you download R packages, they aren’t automatically available every

time you use R. The program allows you to selectively load installed packages so you can make efficient use of

your computer’s memory. It might be helpful to think about R packages likes apps you download to your phone;

your phone doesn’t come with all available apps pre-installed: It lets you pick and choose which ones you want.

After you’ve downloaded an app, you have to open it to use it; you don’t want all your phone apps to open and

run automatically.

The R Companion Package 15

After you’ve installed the poliscidata package, you load it with the library command. You can also load the

poliscidata package by selecting the “Load package . . . ” option under the Packages menu. See Figure 1.2.

library(poliscidata) # Loads R companion package in session

Figure 1.2 Loading R Companion’s Package

When you execute the library(poliscidata) command, it may look like R didn’t do anything. Actually, there

is a lot going on behind the scenes, but R won’t output any messages to the console unless there is a problem.

We created the poliscidata package to make getting started with R as simple and as straightforward as possible.

At this point, you should be ready to go.

To acquaint you with the R working environment and the contents of the poliscidata package, we’ve

written a special function called welcome. This command will generate a welcome message, output some basic

information about your R session, and list the objects and functions in the poliscidata package.

welcome() # introduction to the companion environment

16 Chapter 1

The circled objects on the list above are the four datasets that you will analyze: gss, nes, states, and world.

(For a detailed description of the datasets, see Box 1.2.) You’ll also notice that the package contains four objects

with similar names as our four datasets: gssD, nesD, statesD, and worldD. These are special design datasets that

are used by a useful suite of functions that analyze weighted data.

The list of objects and functions in the poliscidata package may look pretty long at first, but we’ll introduce

them gradually and, with some practice, you’ll learn how to use all sorts of R functions to analyze politics.

Box 1.2 The Companion Datasets

The poliscidata package has four datasets.

1. gss. This dataset has selected variables from the 2012 General Social Survey, a random sample of 1,974

adults aged 18 years or older, conducted by the National Opinion Research Center and made available

through the Inter-university Consortium for Political and Social Research (ICPSR) at the University of

Michigan. Some of the scales in gss were constructed by the authors. The variables in the gss dataset

are described in the Appendix (Table A.1).

2. nes. This dataset includes selected variables from the 2012 National Election Study, a random sample of

5,916 citizens of voting age, conducted by the University of Michigan’s Institute for Social Research and made

available through ICPSR. See the Appendix (Table A.2).

3. states. This dataset includes variables on each of the 50 states. Most of these variables were compiled by

the authors from various sources. A complete description of variables in the states dataset is found in the

Appendix (Table A.3).

4. world. This dataset includes variables on 167 countries of the world. These variables are based on data

compiled by Pippa Norris, John F. Kennedy School of Government, Harvard University, and made available to

the scholarly community through her Internet site. See the Appendix (Table A.4) for a complete description of

variables in the world dataset.

The four datasets included in the R package that accompanies this book contain a wealth of information

about political behavior and institutions. We’ll use these datasets to demonstrate a variety of research methods,

but we hope your curiosity will be sparked to explore variables and relationships that we don’t address here. To

see the names of variables contained in the datasets, you can use the names function. For example, the following

command will return the names of all the variables in the world dataset.

names(world) # list names of variables in dataset

 [1] “country” “gini10” “dem_level4”

 [4] “dem_rank14” “dem_score14” “lifeex_f”

 [7] “lifeex_m” “literacy” “oil”

[10] “pop_0_14” “pop_15_64” “pop_65_older”

[13] “fertility” “govregrel” “regionun”

[16] “religoin” “spendeduc” “spendhealth”

[19] “spendmil” “hdi” “pop_age”

[22] “sexratio” “pop_total” “pop_urban”

[25] “gender_unequal” “gender_unequal_rank” “arda”

[28] “lifeex_total” “debt” “colony”

[31] “confidence” “decent08” “dem_other”

[34] “dem_other5” “democ” “democ11”

The R Companion Package 17

 [37] “democ_regime” “democ_regime08” “district_size3”

 [40] “durable” “effectiveness” “enpp3_democ”

 [43] “enpp3_democ08” “dnpp_3” “eu”

 [46] “fhrate04_rev” “fhrate08_rev” “frac_eth”

 [49] “frac_eth2” “frac_eth3” “free_business”

 [52] “free_corrupt” “free_finance” “free_fiscal”

 [55] “free_govspend” “free_invest” “free_labor”

 [58] “free_monetary” “free_property” “free_trade”

 [61] “free_overall” “free_overall_4” “gdp08”

 [64] “gdp_10_thou” “gdp_cap2” “gdp_cap3”

 [67] “gdpcap2_08” “gdpcap3_08” “gdpcap08_2”

 [70] “gdppcap08” “gdppcap08_3” “gender_equal3”

 [73] “gini04” “gini08” “hi_gdp”

 [76] “indy” “muslim” “natcode”

 [79] “oecd” “pmat12_3” “polity”

 [82] “pr_sys” “protact3” “regime_type3”

 [85] “rich_democ” “unions” “unnetgro”

 [88] “unnetuse” “unpovnpl” “unremitp”

 [91] “unremitt” “vi_rel3” “votevap00s”

 [94] “votevap90s” “women05” “women09”

 [97] “women13” “ipu_wom13_all” “womyear”

[100] “womyear2” “dem_economist” “democ.yes”

[103] “country1”

An important note to commit to long-term memory: Each time that you open a new session to work with

the poliscidata package, you will need to execute the following command:

library(poliscidata)

As we noted above, you can also load the poliscidata package using the “Load package” option under the

Packages menu tab. We encourage you to use R commands when possible because you can save a series of

commands in a script file (more on using scripts below).

We’ve designed this material so you can start analyzing real political science data with R quickly and easily.

You may still encounter some problems or receive some unexpected warnings from the R program. You might

also see a warning message that one or more packages were built under an earlier version of R than the one you

are running. This issue does not seem to pose any serious problem.

RUNNING SCRIPTS

In this book, you will create, run, and save R scripts. R scripts (called R documents on Mac OS) are

documents that contain the lines of code you want R to execute (as well as comments that make your

scripts easier to read and understand). You can think of an R script as a set of step-by-step instructions for

the R program.

By this point, you probably have already executed some R commands successfully from the console’s

command line prompt, so why bother opening another window in the program and creating a script file?

Sometimes getting R to do what you want it to do is tricky, so when you figure out what works, it is a good

idea to save your work so you won’t make the same mistakes again. If you are going to execute the same

commands repeatedly, like the lines of code you need to execute each time you work with the R Companion,

save those commands in a script file, making it easy to repeat them. Just like you save someone’s phone

number so you can call or text them at the touch of a button, rather than manually entering each digit of their

number every time you want to contact them, saving your work in well-written script files saves time and

prevents mistakes.

To create an R script, select the “New script” option under the File menu tab (or press Ctrl-N). If you’re

running R on a Mac OS, your version of R will say “New document” rather than “New script”.

18 Chapter 1

Figure 1.3 R Script Editor

The unassuming R script editor should now appear. Click in the script editor and type a couple of

lines (refer to the Introduction for sample lines of R code). When you finish typing a line of code and

start a new line, the line you’ve completed isn’t automatically executed. You can run lines one at a time

by clicking on the line and pressing Ctrl-R. (If you are running Mac OS, you’ll execute a line of code by

pressing Command-Enter.) You can also select the “Run line or selection” option from the Edit menu tab

or right-click the line and select “Run line or selection” from the pop-up menu, but you’ll find the keyboard

shortcut a time-saving practice. R will execute the line of code the cursor is on and get ready to run the

next line.

When you execute a line of code from the script editor, R reacts just like you entered that line of code at the

command prompt in the console widow. In fact, if you look closely at the Console output, you’ll see that when

you execute a line of code from your script, the line you ran appears in the Console window.

To run multiple lines of code at once, select (highlight) the lines of code you want to run and press Ctrl-R

(or the “Run line or selection” options discussed above). You can run an entire script at once by pressing Ctrl-A

and then Ctrl-R (or the “Run all” option from the Edit menu).

Sometimes it’s very helpful to run just a fragment of a line of code. We often do this to debug a line of code

that’s not working the way we expected. You can run part of a line of code by highlighting part of the line and

pressing Ctrl-R (or the alternatives discussed above).

After you’ve had the chance to write and run a couple lines of test code from the script editor, let’s learn

how scripts are saved and re-opened. This is the big advantage of writing a script, rather than entering command

line statements: You can save your work and pick up from where you left off later. To save your test script, press

Ctrl-S, the ubiquitous keyboard shorthand for save. Give the script a descriptive filename, such as “testScript.R”.

Make sure to type the entire filename, including the .R extension. You might want to create a folder for your

R scripts; you’ll hopefully be developing a nice, well-organized collection soon. Feel free to close your script

and even quit the R program.

To re-open a script and continue working with it, you’ll need to start the R program first and

select “Open script . . . ” under the File menu. The R program doesn’t automatically launch when you

double-click an .R file the way double-clicking a word document launches a word processor. The

.R extension helps the R program recognize a script file, so it is a good script-naming practice to follow.

Your test script may not be especially useful moving forward, but getting in the habit of writing good

R script files will pay dividends.

The R Companion Package 19

TEN TIPS FOR WRITING GOOD R SCRIPTS

Just as you can learn to write good essays, you can learn to write good code for a computer program. In fact,

many of the principles you’ve learned for composing effective prose apply just as well to writing good R code.

Following these suggestions will save you time and aggravation.

 1. Good scripts are user-friendly. We write R code for our benefit, not the computer’s. (To the computer, it

all becomes a stream of 0s and 1s.) So you should write scripts that are clear and comprehensible to you.

 2. When you create objects or generate new variables, give your creations clear, descriptive names. You

aren’t limited to names with a limited number of characters, like some old computer programming

languages. Avoid the temptation to give objects fanciful, humorous, or arbitrary names (they won’t be

very amusing when they give you problems).

 3. Understand how R treats white space and line breaks. R will interpret the space between words as

the separation between objects. If you want to give an object a multi-word name, use underscores or

periods to connect the words, or use camelCase (capitalizing the first letter of each subsequent word).

If you enclose words in parentheses, R will interpret the quoted expression as a value to be assigned

to an object or passed to an argument in a function. If you want to include a quotation mark, or some

other special characters, as part of a quoted expression, you need to use special escape sequences. (Enter

?Quotes for more information.) R will interpret line breaks as the start of new commands. Sometimes,

you’ll want to execute long lines of code that are more easily read and edited if broken into several lines.

You can enclose multiple lines of code in parentheses and R will then interpret everything enclosed in

parentheses as belonging to the same command. We’ll take advantage of this feature to demonstrate

how to use functions with multiple arguments.

 4. Lines of code that work together to complete a particular task should appear like single-space text in a

script. A block of code is a set of instructions that complete a single task, are run together, and look like

a block in a script file. Lines of code that complete another task should be separated into another block.

For example, your script should keep a block of statements that transform a dataset variable together,

a block of statements that create a graphic together, and a block of statements that estimate a statistical

model together. It’s the same logic you follow when you use paragraphs to organize an essay. You use

several sentences to express some idea in a single paragraph and when you’re ready to move on to a

new idea, you start a new paragraph.

 5. Easy on the eyes, easy on the brain. Use comments, white space, and line breaks to write

subheadings and create visual separation in long scripts. Comments are statements intended for

human readers that R does not attempt to execute. Anything you write on a line to the right of a

sign is strictly commentary (including more # signs).

------------- Create Plot of Multiple Regression Results ---------------

 Format longer scripts using comments, spaces between lines, and indentations, just as you would use

subheadings, paragraphs, and punctuation to organize words in an essay. You want to be able to quickly

skim a script to understand its basic design and purpose. This will help you locate particular lines that

you want to copy or revise.

 6. Use comments like “sticky note” reminders to yourself. For example, one of the early lessons in this

book is how to generate descriptive statistics for different types of variables. When you learn how to

produce a frequency table for an ordinal-level variable, insert a comment in your script like:

Create frequency table for ordinal-level variable

The w and plot arguments are optional

freq(x=nes$budget_deficit_x, w=nes$wt, plot=FALSE)

20 Chapter 1

 There’s a good chance you’ll be asking yourself at the end of the term how you created the frequency

tables you made early in the term. If you follow these suggestions, you’ll find a script called something

like “describingVariables.R” on your computer and when you open it, you’ll see your comment telling

you which line(s) of code create the descriptive statistics you need. (Feel free to pat yourself on the back

at this point.) What may seem like a few minutes of extra, unnecessary work in the moment will save

you hours of time in the long run.

 7. Save your scripts with names that clearly describe what the script does. For example, when you write an

R script that makes comparisons between groups, save that script with a name like “makingComparisons.r”.

Don’t save it with a name like “homeworkForClass.r” or “assignment4.r” because those names aren’t

going to help you find the code you want to use to solve a problem in the future. Write separate scripts for

separate projects, just like you have different work documents for different papers.

 8. Set a working directory to keep your files organized. Use a separate working directory for each project.

If you’re using this book as part of a class, create a directory for your class. If, subsequent to taking this

class, you want to apply some of the research methods you’ve practiced to analyze data in a paper or for

a project, you’ll have a well-organized toolkit at your disposal.

 9. Type the name of objects and variables as seldom as possible. Each time you type the name of an object

or variable, there’s a chance you type it incorrectly. Instead, to use an object declared earlier in your

script, highlight the object’s name, copy it, and paste the copied name where you need to reference it. If

you are executing a statement that’s similar to one you’ve already written, copy and paste what you’ve

already written and then edit only those parts of the copied code that needed to be changed to complete

the task at hand. If you’re working on a project that’s similar to one you’ve worked on before, re-use

your earlier work as much as possible.

10. Save your scripts frequently in case R stops responding. It’s a stable program, but it will occasionally

seize up. Even better, save your work on some kind of Cloud storage so it’s convenient for you to work

on multiple machines.

MANAGING R OUTPUT: GRAPHICS AND TEXT

For practically all of the examples and exercises in this book, you will produce and interpret text output—

frequency distributions, cross-tabulations, tables of regression coefficients, and so on. Quite often, you will want

to create an accompanying graph or chart, such as a mosaic plot or scatterplot. R graphics are remarkably easy to

work with: Create them, print them, or copy/paste them into a document, such as a Word document. By

contrast, nicely formatted text requires a bit more work.

To illustrate, we will use the freq command (from the descr package) to obtain a frequency distribution

(text) and bar chart (graphic) of nes$pid_x, a measure of party identification.2 The nes dataset needs to be

weighted, so we will include the weight variable, nes$wt, in the freq command. (Be sure to read Box 1.3, A

Special Note on Weights). At the prompt or in the script file, type and run the following function call:

freq(nespid_x, neswt) # Example: graphics and text output

nes$pid_x

Frequency Percent Valid Percent

StrDem 1156.02 19.5405 19.61

WkDem 890.31 15.0492 15.10

IndDem 690.86 11.6778 11.72

Ind 839.33 14.1875 14.23

IndRep 720.81 12.1841 12.22

WkRep 731.41 12.3632 12.40

StrRep 867.52 14.6640 14.71

NA's 19.74 0.3337

Total 5916.00 100.0000 100.00

2 Chapter 2 covers the freq command in detail.

The R Companion Package 21

Consider the results. As you can see, R creates a graphic, a bar chart of nes$pid_x, and displays it in a

separate window. If you’re using Windows, you can right-click on the graphic to copy or save the figure in a

desired format, or you can print it directly. Not too much to it. An editable version of the console’s frequency

distribution table, on the other hand, requires a few additional steps. There are a couple of ways to manage

R Console output. You’ll frequently want to incorporate the results of your analysis into documents.

To incorporate R Console output into informal documents, like rough drafts of papers or class

assignments (check with your instructor though), you can copy text from the R Console and paste it into

a word processor. The result typically looks disorganized and confusing because the pasted text appears

in your word processor’s default font, which is typically a proportional font (such as Times New Roman).

If you change the font used to display R Console out in a Word document to a monospace font (such as

Courier New or Lucida Console), you can replicate the basic formatting of tabular results you see in the

R Console.

Figure 1.4 Sample R Graphics Output

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

WkDemStrDem WkRep StrRepIndDem Ind IndRep

Box 1.3 A Special Note on Weights

The states and world datasets are unweighted. In analyzing unweighted data, you do not need to adjust

for sampling bias, because each state or country is equally and adequately represented in the dataset. For

example, to calculate the average percentage of women in parliaments of the world (recorded in the variable

world$women09), you would ask R to sum the percentages for each country and divide by the number of

countries.

By contrast, the gss and nes datasets must be weighted. Why is this? In unweighted form, these

datasets contain sampling bias—that is, some groups are over- or under-represented when compared with

the overall population of adults. So, for example, if you wanted to calculate the average age of respondents

in the nes dataset, the unweighted average would be distorted, because not all age groups are equally and

adequately represented in the dataset. To correct for this bias, survey designers provide sampling weights.

Therefore, in order to obtain accurate results from the two survey datasets, gss and nes, you will need to

weight your analyses by the appropriate sampling weight. For nes, the weight variable is nes$wt; for gss,

it is gss$wtss.

Most of the base R functions do not permit sampling weights. Fortunately, the extra packages you installed

in this chapter contain procedures that can be used with weighted data (such as gss and nes) or unweighted

data (such as states and world). On rare occasion, however, you will learn separate procedures, one for weighted

data and one for unweighted data.

22 Chapter 1

For more formal presentations, like final drafts of papers or any analysis you plan on sharing with an audience,

you should edit and format Console output. The printC function will export R tabular output as an .html file to

your working directory. These files can subsequently be opened in a web browser, copied/pasted into a document

file such as Word, and then edited for appearance and readability. The printC function will create an .html file,

named “Table.Output.html”, that will be the repository for all the tables you wish to export, edit, and print. To

create an editable table using the printC function, insert the desired command within printC’s parentheses.3 For

example, to print the frequency distribution table for nes$pid_x using the printC function, enter the following:

printC(freq(nespid_x, neswt)) # Print table output to html file

This statement quietly exports the frequency distribution to Table.Output.html in the working directory. If

you don’t know where to find the Table.Output.html file, enter the getwd() command. (See the section “Creating

Tables of Regression Results” in Chapter 8 for more instruction on the printC command and formatting tables

for formal works.)

ADDITIONAL SOFTWARE FOR WORKING WITH R

In this section, we discuss some options to making the R environment easier to use. As we’ve discussed, the

R environment is relatively spare and efficient. Its graphical user interface is limited and little analysis can be

conducted using its pull-down menus. Fortunately, some software developers are working to address this void

and make R more intuitive and user-friendly. We’ll take a look at two of these developments, R Studio and

R Commander.

R Studio is an interface for R that is available for Windows, Mac OS, and Linux. It’s a free program

(commercial enterprises may pay more for technical support). You can download R Studio and learn more

about it from its website: https://www.rstudio.com/. For new R users, R Studio has some excellent features. We

particularly like R Studio’s ability to suggest and auto-complete code. If you look closely at the screenshot in

Figure 1.6, you’ll see that when we type “nes$” we get a pull-down menu of variables in the nes dataset, a very

helpful feature. Other nice features include an enhanced Editor with line numbers and smart text coloring, a

command history pane, a help file pane, and some nice options for saving graphics.

3 If you get an error message that says “function not found”, that means you either haven’t loaded the companion packages or

didn’t type the name of the function correctly.

Figure 1.5 Simple Table Formatting

The R Companion Package 23

Figure 1.6 R Studio Screenshot

R Commander is an R package that allows users to execute a suite of commands using drop-down menus

and a graphical user interface. If you have used statistics programs like Stata or SPSS before, you might like the

look and feel of R Commander. Once you have R up and running, it’s easy to install and load R Commander:

Install and load the R Commander package

install.packages(“Rcmdr”)

library(Rcmdr)

Figure 1.7 R Commander Screenshot

(Continued)

24 Chapter 1

Of course, not all R packages and functions are integrated into R Commander, but the package makes some

of the most commonly used statistical methods easy to use.

DEBUGGING R CODE

When you execute a statement in R, you might get an error message telling you that an action you performed

did not achieve the desired result. In fact, this happens all the time. Learning how to identify and correct

mistakes is how you practice and develop your skills as an R user. Error messages are different from—and worse

than—warning messages, in which R simply makes note of something it encountered while executing a

command, such as missing data.

In our experience working with students, most errors are caused by typos and minor syntactical mistakes.

When you type the name of an object or function incorrectly, you typically get a “Function not found” or

“Object not found” message. If you see these error messages, carefully check how you’ve spelled the name of the

function or object that’s not found. Remember that R is case sensitive and will interpret a space between words

as the beginning of a new object or function.

Test lines of code as you write them. Don’t wait until you’ve written all the commands you think necessary

to complete a task before running the code. Remember that R can run code one line at a time, just part of a line,

or all lines at once.

If you are working with a function that has many arguments, start by executing the function in its most

basic form and add arguments incrementally. Most R users start by finding a working example that’s similar to

what they want to do and adapting the example to suit their needs. It’s an iterative process with a lot of trial and

error. Functions that create graphics are a good example of this. The best way to create beautiful graphics in

R is to start with a basic working figure and then refine that figure by defining values for optional arguments and

adding layers of information.

Figure 1.7 (Continued)

The R Companion Package 25

If your function call isn’t working, test each executable component of a function call. For example, if you’re

applying a function to a variable, highlight the name of the variable and run it to see its contents. Are you

applying the function to a variable that isn’t there or is not in the form you expected? One of the most common

errors that a user makes when working with a variable is not specifying the dataset in which it resides.

What if you run a function and you see a plus sign (+), rather than the > prompt? The plus sign is the

continuation prompt, meaning that R is waiting for more user input. The most common cause for this error

is having more open parentheses signs than closed parentheses signs in a statement, which tells R you hasn’t

finished calling a function yet. Either execute the right number of closing parentheses signs or click the “STOP”

button on the console window. (To wake up the STOP button, click in the Console window.) Parentheses,

brackets, and quotation marks come in pairs. Make sure each opening parenthesis “(” and opening bracket “[”

has a corresponding closing parenthesis “)” and closing bracket “]”. This can get a little confusing when you

write complex statements with nested functions. Develop the habit of typing a set of parentheses, quotations

marks, brackets, or braces anytime you use them, then move the cursor back inside the set to fill in values,

arguments, and so forth. Some script editors will do this automatically and that can be helpful.

If you copy and paste sample code from a Word document or web page, beware of curly quotation marks.

When you use single or double quotation marks in a word processor, the program uses “curly” quotation

marks for style. In contrast, your R script editor uses "straight" quotation marks. This can be a difficult bug to

spot in code.

If you run a number of statements at once and get a lot of error messages, locate the first line in your script

that prompted an error message—that’s probably where you need to start debugging. A small typo early in a

script can set off a chain reaction of errors. Don’t be alarmed by a cascade of errors and warnings: Just locate the

start of the error messages, read the message for any helpful information, and address one problem at a time.

In the following chapter of this book, we are going to show you how to conduct some fundamental analysis

using R. For particular methods, we will feature one function or set of functions. As mentioned above, there are

thousands of R packages and hundreds of thousands of functions. It should be no surprise, then, that there is a

lot of overlap among functions and there is often more than one way to solve a particular problem. In this book,

we emphasize functions with sensible default values, including handling of missing data, that allow researchers

to use sampling weights. We have only scratched the surface of R’s capabilities, but we believe the best way to

learn how to use R is hands-on experience solving problems with the program.

EXERCISES

1. This chapter described R’s names function. Use the names function to find out which variables are contained

in the states dataset. Which of the following variables are in the states dataset? (Check all that apply.)

 � cigarettes

 � denom

 � gunlaw_scale

 � rep_therm

 � partyid3

 � attend_pct

2. Which of the following uses correct form in telling R where to locate the variable named gini10 in the world

dataset? (Check one.)

 � gini10

 � gini10$world

 � world$gini10

3. The states dataset contains abortlaw10, the number of restrictions that each state puts on access to an

abortion. Values range from 0 (no restrictions) to 10 (ten restrictions). Use the freq command to obtain a

26 Chapter 1

frequency distribution and bar chart. (Hint: The states dataset does not require weighting, so you do not need

to include a weight variable in the freq expression.)

A. Print the graph.

B. Following this chapter’s printC example, create a nicely formatted table of the abortlaw frequency

distribution in a word-processing file, such as Word. When you edit the table in your word processor, give

it this title: “Number of Abortion Restrictions.” Print the formatted table.

4. Each time you start an R session using the R package that bundles the functions and dataset used in this

book, you must type and run which one of the following expressions? (Check one.)

 � ‘library(poliscidata)’

 � ‘welcome()’

 � ‘help()’

27

2

Descriptive Statistics

Objective Functions Introduced Author or Source

Measuring central

tendency

freq {descr}

freqC {rcompanion}

wtd.mode {rcompanion}

wtd.median

{rcompanion}

wtd.mean {Hmisc}

describe {Hmisc}

Jakson Aquino1

Philip Pollock and

Barry Edwards2

Philip Pollock and Barry Edwards

Philip Pollock and Barry Edwards

Frank E. Harrell, Jr.3

Frank E. Harrell, Jr.

Measuring dispersion wtd.hist {weights}

wtd.var {Hmisc}

wtd.sd {rcompanion}

Josh Pasek4

Frank E. Harrell, Jr.

Philip Pollock and Barry Edwards

Getting case-level

information

sortC {rcompanion} Quan Li5

A nalyzing descriptive statistics is the most basic—and sometimes the most informative—form of analysis you

 will do. Descriptive statistics reveal two attributes of a variable:

 • Central tendency (the variable’s typical value)

 • Dispersion (how spread out or varied the variable’s values are)

1 Aquino, J. (2012). descr: Descriptive statistics (R package version 0.9.8). Includes R source code and/or documentation written

by Dirk Enzmann, Marc Schwartz, and Nitin Jain. Available at http://CRAN.R-project.org/package=descr
2 The companion function, freqC, is a slightly modified version of freq.
3 Harrell, F. E., Jr. (2012). Hmisc: Harrell miscellaneous (R package version 3.9-3). Contributions from many other users.

Available at http://CRAN.R-project.org/package=Hmisc
4 Pasek, J. (2012). weights: Weighting and weighted statistics (R package version 0.75). With some assistance from Alex Tahk

and some code modified from R-core. Available at http://CRAN.R-project.org/package=weights
5 Pollock, P. H. (2013). An R companion to political analysis. Thousand Oaks, CA: SAGE/CQ Press. Based on order {base},

R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna, Austria: Author.

Available at http://www.R-project.org/

http://http://www.R-project.org/

28 Chapter 2

The precision with which we can describe central tendency for any given variable depends on the variable’s

level of measurement. Nominal-level variables—for example, gender, race, or religious denomination—have

values that simply differentiate categories: Women are in one category, men in a different category. R refers to

nominal variables as unordered factors. For unordered factors, we can identify the mode, the most common

value of the variable. Ordinal-level variables—a survey question gauging strength of partisanship, for example,

or measuring level of support for or opposition to public policy—are ordered factors. Because ordinal variables,

or ordered factors, have values that convey the relative amount of a characteristic—an individual who “strongly”

supports a policy has a greater amount of support than does an individual who “somewhat” supports it—we can

find the mode and the median, the value of the variable that divides the cases into two equal-size groups. For

interval-level or numeric variables, we can obtain the mode, median, and arithmetic mean, the sum of all values

divided by the number of cases.

Finding a variable’s central tendency is ordinarily a straightforward exercise. Simply read the

output and report the numbers. Describing a variable’s degree of dispersion or variation, however,

often requires informed judgment.6 Here is a general rule that applies to any variable at any level of

measurement: A variable has no dispersion if all the cases—states, countries, people, or whatever—fall

into the same value of the variable. A variable has maximum dispersion if the cases are spread evenly

across all possible values of the variable such that the number of cases in one category equals the number

of cases in every other category. For example, if observations take on one of two values of a variable,

dispersion is greatest when half of the observations have one value and half, the other value. This general

rule is particularly useful for variables measured at the nominal or ordinal level. When a variable is

measured at the interval level, we can calculate statistical measures of dispersion, such as variance and

standard deviation.

INTERPRETING MEASURES OF CENTRAL TENDENCY AND VARIATION

Central tendency and variation work together in providing a complete description of any variable. Some

variables have an easily identified typical value and show little dispersion. For example, suppose you were to

ask a large number of U.S. citizens what sort of economic system they believe to be the best: capitalism,

communism, or socialism. What would be the modal response, the economic system preferred by most

people? Capitalism. Would there be a great deal of dispersion, with large numbers of people choosing the

alternatives, communism or socialism? Probably not. In other instances, however, you may find that one value

of a variable has a more tenuous grasp on the label “typical.” And the variable may exhibit more dispersion,

with the cases more evenly spread out across the variable’s other values. For example, suppose a large sample of

voting-age adults were asked, in the weeks preceding a presidential election, how interested they are in the

campaign: very interested, somewhat interested, or not very interested. Among your own acquaintances,

you probably know a number of people who fit into each category. So even if one category, such as “somewhat

interested,” is the median, there are likely to be many people at either extreme: “very interested” and “not

very interested.” This would be an instance in which the amount of dispersion in a variable—its degree of

spread—is essential to understanding and describing it.7

These and other points are best understood by working through some guided examples using the GSS

dataset. In the examples that follow, you will become better acquainted with the freq function, introduced in

Chapter 1. The freq command produces frequency distributions and bar charts for nominal, ordinal, or interval

variables. In this chapter, you also will use the describe function to obtain descriptive statistics for interval-

level variables. You will learn to use wtd.hist (from the weights package) to create histograms, graphic displays

that enhance the description of interval variables. Finally, you will learn to sort a dataset to obtain case-specific

information about interesting variables using the sortC function.

6 In this chapter, we will use the terms dispersion, variation, and spread interchangeably.
7 For elaboration on these points with additional examples, see Pollock, P. H. (2016). The essentials of political analysis,

5th ed. Thousand Oaks, CA: SAGE/CQ Press, Chapter 2.

Descriptive Statistics 29

DESCRIBING NOMINAL VARIABLES

Nominal-level variables simply differentiate the unit of analysis into different groups or categories. One value

of a nominal-level variable is no more or less than another value, they are just different values. In the

R environment, nominal-level variables are classified as unordered factors.

In this section, you will obtain a frequency distribution for a nominal-level variable, zodiac, which records

GSS respondents’ astrological signs. The variable, zodiac, is in the GSS dataset, which requires a weight variable,

wtss. Recall R’s rule: To R, zodiac is gss$zodiac, and wtss is gss$wtss. To obtain a frequency distribution table

and bar chart of zodiac, enter:

freq(gss$zodiac, gss$wtss) # Describing a Nominal-Level Variable

Frequency Percent Valid Percent

ARIES 145.78 7.381 7.649

TAURUS 171.59 8.688 9.003

GEMINI 161.40 8.172 8.469

CANCER 147.73 7.480 7.751

LEO 190.35 9.638 9.988

VIRGO 158.58 8.029 8.321

LIBRA 183.37 9.285 9.621

SCORPIO 145.12 7.348 7.614

SAGITTARIUS 145.36 7.360 7.627

CAPRICORN 140.29 7.104 7.361

AQUARIUS 173.52 8.786 9.104

PISCES 142.78 7.229 7.492

NA's 69.14 3.501

Total 1975.00 100.000 100.000

Figure 2.1 Distribution of Zodiac Signs in the GSS Dataset

ARIES GEMINI LEO LIBRA CAPRICORN

1
5
0

1
0
0

5
0

0

R produces a frequency distribution table in the console window and a bar chart in the graphics window. If you

want to generate descriptive statistics for a nominal-level variable without weighting observations (for instance, if

you are analyzing a variable in the states or world datasets), simply omit the second argument in the function above.

The value labels for each astrological sign appear in the left-most column of the frequency distribution table, with

Aries occupying the top row of numbers and Pisces the bottom row. There are three columns of numbers: Frequency,

Percent, and Valid Percent. The Frequency column tells us the number of respondents—more accurately, the number

of respondents weighted by the sampling weight—having each zodiac sign. Percent is the percentage of respondents in

each category of the variable, counting missing cases (NA’s). Valid Percent is the column to focus on. So, for example,

ignoring NA’s, about 172 respondents (171.59), or 9.003 percent of the sample, have Taurus as their astrological sign.

30 Chapter 2

Consider the Valid Percent column of the frequency distribution table with the central tendency of this variable

in mind. What is the mode, the most common astrological sign? For nominal variables, the answer to this question

is (almost) always an easy call: Simply find the value with the highest percentage of responses. Leo is the modal sign.

To simply identify a variable’s mode, without consulting a frequency distribution table, try the wtd.mode function:

wtd.mode(gss$zodiac, gss$wtss) # Finding the Modal Value

[1] “LEO”

Do zodiac signs have little dispersion or a lot of dispersion? Take a close look at the Valid Percent column of the

frequency distribution table and consider the height of the bars in the bar chart. Recall that a variable has no dispersion

if the cases are concentrated in one value of the variable; there would be only one bar containing 100 percent of the

cases. A variable has maximum dispersion if the cases are spread evenly across all values of the variable; all the bars

would be the same height. Are most of the cases concentrated in Leo, with only one or two heavily populated bars?

Or are there many cases in each value of zodiac, with many bars of roughly equal height? Since respondents are

widely dispersed across the values of zodiac, we would conclude that zodiac has a high level of dispersion.

When you visually represent data, your plot or chart may need refinement. This is especially true for factor

variables having a large number of categories (zodiac has 12) with long value labels. For example, notice that freq labeled

only 5 of the 12 zodiac signs in the chart (you may see fewer or more labels depending on the size of your graphics

window; Figure 2.1). Later in this chapter, and throughout the remainder of the book, you will learn how to fine-tune R’s

graphics, adding axis labels, titles, legends, line types, and so on. For present purposes, however, a slight variation on the

freq function, freqC, comes in handy for factors with many possible values and long value labels. Try this:

freqC(gss$zodiac, gss$wtss) # Describing a Nominal-Level Variable

 # Uses Modified Plot Settings

(Hint: In the script editor, copy your original freq command, paste it onto a new line, and edit ‘freq’ to read

‘freqC’. Minimize typing to avoid introducing typos in your R code.) The frequency distribution reappears,

accompanied by a bar chart in which all the values of zodiac are labeled (Figure 2.2). Also, the vertical axis

records valid percentages instead of frequencies.8

8 If the x-axis labels are still cropped by the graphics window, try re-sizing your graphics window to a narrower shape and

re-running the freqC command with the graphics window open. If this doesn’t resolve the problem, you may need to add a

line of code to specify the width of the outer margin around the bar chart. To do this, try executing this line of code before the

freqC command: par(omi=c(.2, 0, 0, 0)). This code sets a graphics parameter for the outside margin size clockwise around the

figure (below, left, above, right).

Figure 2.2 Distribution of Zodiac Signs in the GSS Dataset

A
R
IE
S

T
A
U
R
U
S

G
E
M
IN
I

C
A
N
C
E
R

L
E
O

V
IR
G
O

L
IB
R
A

S
C
O
R
P
IO

S
A
G
IT
T
A
R
IU
S

C
A
P
R
IC
O
R
N

A
Q
U
A
R
IU
S

P
IS
C
E
S

8

6

4

2

0

P
e
r
c
e
n
t

Descriptive Statistics 31

Bar charts can be a useful interpretive tool. Even so, you may not always want freq to produce one. You can

suppress the chart by including the additional argument, ‘plot=FALSE’, which may be abbreviated, ‘plot=F’. For

example:

freq(gss$zodiac, gss$wtss, plot=F) # Describing a Nominal-Level Variable

 # Suppresses Plot of Results

DESCRIBING ORDINAL VARIABLES

Next, you will analyze and describe ordinal-level variables, two of which have relatively little variation and a

third which is more spread out. These variables appear in the NES dataset, which contains a wealth of survey

data gauging individuals’ opinions on a variety of public policies.

The NES variable, budget_deficit_x, asks whether respondents favor reducing the federal budget deficit.

Similarly, the variable congress_job_x asks whether respondents approve of the way Congress does its job.

On both questions, respondents could favor strongly, favor moderately, favor slightly, take a middle position,

oppose slightly, oppose moderately, or oppose strongly. For seven-category ordered factors like these, we will run

freqC. To obtain representative results, we should use the survey weights variable, nes$wt.

To create descriptive summaries of nes$budget_deficit_x and nes$congress_job_x, we execute the following

lines of R code:

freqC(nes$budget_deficit_x, nes$wt) # Describing Ordinal Variable

freqC(nes$congapp_job_x, nes$wt) # Additional Example

 # Describing Ordinal Variable

Figure 2.3 Public Support for Reducing the Federal Deficit

P
e
r
c
e
n
t

F
a
v
S
tr
n
g

O
p
p
S
tr
n
g

F
a
v
W
e
a
k

F
a
v
L
e
a
n

N
e
it
h
e
r

O
p
p
L
e
a
n

O
p
p
W
e
a
k

0

10

20

30

40

50

60

Frequency Percent Valid Percent

FavStrng 3373.7 57.027 62.109

FavWeak 623.4 10.538 11.477

FavLean 224.4 3.794 4.132

Neither 637.7 10.779 11.740

OppLean 124.0 2.096 2.283

OppWeak 146.5 2.477 2.697

OppStrng 302.2 5.108 5.563

NA's 484.0 8.182

Total 5916.0 100.000 100.000

32 Chapter 2

Frequency Percent Valid Percent

AppStrng 342.3 5.786 6.177

AppWeak 899.8 15.209 16.236

DisappWk 1343.9 22.717 24.250

DisappStr 2955.9 49.964 53.337

NA's 374.1 6.323

Total 5916.0 100.000 100.000

The results of these lines of code are similar to descriptive statistics we generated for the nominal variable zodiac

above. In both cases, R produces a frequency distribution table in the console and a bar chart in the graphics window.

How would you describe the central tendency and dispersion of NES respondents’ opinions about reducing

the federal budget deficit or how Congress is doing its job? Because budget_deficit_x and congress_job_x are

ordinal variables, we can report both their modes and their medians. The modal mode opinion regarding

budget deficit reduction, clearly enough, is “FavStrng” (favor strongly), the option chosen by 62.11% of NES

respondents (Figure 2.3). Fully 53.34% of respondents “DisappStr” (disapprove strongly) of the job being done

by Congress (Figure 2.4). (As before, make sure to focus on the Valid Percent column.)9

What about the median values of these variables? For ordered factors, freq and freqC return a cumulative

percent column (“Cum Percent”).10 This column reports the percentage of cases falling in or below each value of the

variable. The median for any ordinal or interval variable is the 50th percentile, the category below which 50 percent of

the cases lie. Is the first category, “favor strongly,” the median public opinions about budget deficit reduction? Yes,

it is. The 50th percentile must lie within this heavily populated response category. To simply identify a variable’s

median value, without consulting a frequency distribution table, try the wtd.median function, illustrated below:

wtd.median(nes$budget_deficit_x, nes$wt) # Finding Median Value

wtd.median(nes$congapp_job_x, nes$wt) # Additional Example

 # Finding Median Value

[1] “FavStrng”

[1] “DisappStr”

 9 The encoded values for these variables are abbreviated in the dataset. While the abbreviated labels are useful, one might

want to modify the value labels to produce a table and/or figure for an audience. In Chapter 3, we discuss methods for

transforming and relabeling variable values.
10 If the frequency distribution table that the freq or freqC functions generate in the R console, omit cumulative percentages

and use the class function to determine whether the variable you are analyzing is classified as an ordered factor. If not, you

can use the as.ordered function to reclassify the variable as an ordered factor; either nest the as.ordered command as the first

argument to freq or freqC or create a new variable and use your new variable as the first argument to freq or freqC. See

Chapter 3 for additional information on reclassifying variables.

Figure 2.4 Public Opinion of Congress

A
p
p
W
e
a
k

A
p
p
S
tr
n
g

D
is
a
p
p
W
k

D
is
a
p
p
S
tr

0

10

20

30

40

50

P
e
r
c
e
n
t

Descriptive Statistics 33

The output from these commands should coincide with what you learned from studying the cumulative

percentages in the frequency distribution table: The median NES respondent strongly favors reducing the budget

deficit and strongly disapproves of the job being done by Congress.

Does budget_deficit_x have a high or low degree of dispersion? If budget_deficit_x had a high level of

variation, then the percentages of respondents holding each position would be about equal, much like the

zodiac variable that you analyzed earlier. So roughly one-seventh, or 14 percent, would fall into each of

the seven response categories. If budget_deficit_x had no dispersion, then all the cases would fall into one

value. That is, one value would have 100 percent of the cases, and each of the other categories would have

0 percent. Which of these two scenarios comes closest to describing the actual distribution of respondents

across the values of budget_deficit_x? It seems clear that budget_deficit_x is a variable with a relatively low

degree of dispersion. Indeed, over three-quarters of all respondents fall on the “favor” side of this policy issue

(cumulative percentage, 77.72), differing only in the strength of that opinion.

Now let’s take a look at another NES variable, nes$presapp_war_x, an ordinal-level variable that encodes

how NES respondents feel about President Barack Obama’s handling of the war in Afghanistan. Execute the

following code to generate a frequency distribution table and a bar graph that describe public opinion. Consider

the distribution of public opinion presented here. Examine the Valid Percent column and the bar graph.

freqC(nes$presapp_war_x, nes$wt) # Example, Descriptive Statistics

 # Describing Ordinal Variables

Frequency Percent Valid Percent

1. Approve strongly 1792.5 30.299 31.73

2. Approve not strongly 1362.0 23.023 24.11

4. Disapprove not strongly 857.9 14.502 15.18

5. Disapprove strongly 1637.5 27.679 28.98

NA's 266.0 4.497

Total 5916.0 100.000 100.00

Figure 2.5 Public Support for President’s Handling of War in Afghanistan

1.
 A

p
p
ro

v
e
 s

tr
o
n
g
ly

2
. A

p
p
ro

v
e
 n

o
t
s
tr

o
n
g
ly

5
.
D

is
a
p
p
ro

v
e
 s

tr
o
n
g
ly

4
.
D

is
a
p
p
ro

v
e
 n

o
t
s
tr

o
n
g
ly

0

10

20

30

15

5

25

P
e
r
c
e
n
t

Do common measures of central tendency such as the mode and the median accurately convey public sentiment

about the president’s handling of the war in Afghanistan? The two measures provide inconsistent impressions

of public opinion. What is the mode? Technically, “approve strongly” (31.73 percent) is the mode, although

“disapprove strongly” (at 28.98 percent) is a close rival for that designation (Figure 2.5). The median sentiment is

“approve not strongly.” Split results like this tell us that high variation, not central tendency, is the character trait to

emphasize. One could say that public opinion is deeply divided on this controversial issue, with slightly more than

half of the electorate on the “approve” side of the scale and slightly less than half on the disapprove side.

34 Chapter 2

If you try to apply mathematical functions like mean, wtd.var, or wtd.sd to ordinal or nominal variables,

you may see the “not meaningful for factors” error message. This error indicates you are attempting to use a

function that is not intended for ordered factors. In some cases, changing the class of the variable to numeric

solves the problem (assuming the variable can be treated as numeric data). In Chapter 3, we discuss methods for

converting ordinal values to numeric values.

DESCRIBING THE CENTRAL TENDENCY OF INTERVAL VARIABLES

We now turn to the descriptive analysis of interval-level variables (classified as numeric data in R). An interval-

level variable represents the most precise level of measurement. Unlike nominal variables, whose values stand for

categories, and ordinal variables, whose values can be ranked, the values of an interval variable tell us the exact

quantity of the characteristic being measured.

Because interval variables have the most precision, they can be described more completely than can nominal

or ordinal variables. For any interval-level variable, we can report its mode, median, and arithmetic average,

or mean. In addition to these measures of central tendency, we can make more sophisticated judgments about

variation. The most common measures of the dispersion of interval variables are variance and standard deviation.

Additionally, one can determine if an interval-level distribution is skewed. What is skewness and how do you

know it when you see it? Skewness refers to how symmetrical a distribution is. If a distribution is not skewed,

the cases tend to cluster symmetrically around the mean of the distribution, and they taper off evenly for values

above and below the mean. If a distribution is skewed, by contrast, one tail of the distribution is longer and

skinnier than the other tail. Distributions in which a small number of cases occupy extremely high values of an

interval variable—distributions with a longer, skinnier right-hand tail—have a positive skew. If the distribution

has a few cases at the extreme lower end—the distribution has a longer, skinnier left-hand tail—then the

distribution has a negative skew.

When a distribution is highly skewed, it is a good practice to use the median instead of the mean in describing

central tendency. Skewness has a predictable effect on the mean. A positive skew tends to pull the mean upward;

a negative skew pulls it downward. However, skewness has less effect on the median. Since the median reports the

middle-most value of a distribution, it is not tugged upward or downward by extreme values.

To illustrate how we can use R to describe the central tendency and dispersion of an interval-level variable,

we will analyze gss$age, a numeric variable. Age qualifies as an interval-level variable since its values impart each

respondent’s age in years. To obtain a frequency distribution table and bar chart, run freqC on gss$age, weighted

by gss$wtss. (Notice that the R functions we used to generate descriptive statistics for nominal and ordinal-level

variables also work for interval-level variables.)

freqC(gssage, gsswtss) # Describing Interval Variables

Frequency Percent Valid Percent
18 18.113 0.9171 0.9195

19 27.737 1.4044 1.4081

20 27.165 1.3754 1.3790

21 40.968 2.0743 2.0798

22 44.855 2.2711 2.2770

23 38.798 1.9645 1.9696

24 32.007 1.6206 1.6248

25 34.618 1.7528 1.7574

26 30.872 1.5631 1.5672

. . .

87 8.077 0.4090 0.4100

88 4.581 0.2320 0.2326

89 8.439 0.4273 0.4284

NA's 5.144 0.2604

Total 1975.001 100.0000 100.0000

Note: Table output edited to save space.

Descriptive Statistics 35

You can use the frequency distribution table and bar graph to identify the mode and median ages of GSS

respondents, or use the wtd.mode and wtd.median functions introduced above.11 (The modal age is 55 and

median age is 45.)

Before we make further observations about the central tendency and dispersion of this variable, we will

apply a different function, describe, to generate a bumper crop of information about this numeric variable. The

generic syntax for the describe function is as follows:

describe(x, weights=optional.weight)

If you wish to include a weight variable, the argument, ‘weights=’, needs to be typed out.12 To describe the

age of GSS respondents, we would type:

describe(gss$age, weights=gss$wtss) # Example, Descriptive Statistics

 # Describing Interval Variables

gss$age

n missing unique Info Mean
1969.9 5.1 72 1 46.1

.05 .10 .25 .50 .75
21.0 23.0 32.0 45.0 58.0

.90 .95
71.0 77.0

lowest: 18 19 20 21 22, highest: 85 86 87 88 89

The median is the 50th

percentile, labeled ".50."

The top row of describe’s output tells us the weighted numbers of valid cases and missing cases (1969.9

and 5.1, respectively), the number of unique values (72), and the mean age (46.1 years). Next, describe reports

a series of percentiles. For example, the label, “.05,” and its associated value of age, “21.0,” tells us that 5 percent

(.05) of the individuals in the survey are 21 years old or younger. The 50th percentile, labeled “.50”, is the median

age, 45.00. Half of the GSS respondents are younger than 45 and half are older than 45. Finally, the output of the

describe function reports the five lowest and highest ages found in the GSS dataset.

To simply calculate an interval variable’s mean value, without consulting all the summary information produced

by the describe function, you can use the wtd.mean function. This function will yield the same mean value, but it is

sometimes useful for a function to generate a result rather than extracting it from console output.

wtd.mean(gss$age, weights=gss$wtss) # Describing Interval Variables

[1] 46.10235

11 The frequency distribution table and bar graph produced from this sample code may represent the distribution in too much

detail. It may be more useful to describe the relative distribution of different age groups in the GSS survey rather than break

down each individual age. In Chapter 3, we’ll discuss some techniques to create age groupings.
12 To supply weights to the describe function, we need to use keyword matching. We cannot rely on positional matching

because “weights” is not the second argument to this function as defined by the Hmisc package.

Figure 2.6 Ages of GSS Respondents

P
e
r
c
e
n
t

1.0

2.0

1.5

0.5

2.5

0.0

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3
7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

36 Chapter 2

Describe is so meticulous in providing percentiles, the numbers permit us to determine the interquartile

range, the values of a variable that bracket the “middle half ” of a distribution, between the top of the lowest

quartile (“.25”) and bottom of the highest quartile (“.75”). For age, we can see that the middle half falls between

32 and 58 years of age. The interquartile range has limited analytic value for describing a single variable;

however, interquartile ranges are quite useful when comparing two or more distributions. (This is illustrated in

Chapter 4.)

We have discovered that the mean age, at 46.1, is higher than the median age of 45. What does this

comparison tell us about the skewness of the distribution? When a distribution is perfectly symmetrical—no

skew—its mean will be equal to its median. If the mean is lower than the median—that is, if a few extremely

low values pull the mean down, away from the center of the distribution—the distribution has a negative

skew.13 If the mean is higher than the median, as is the case with our current analysis, the distribution has a

positive skew.14 The bar chart from the freq analysis (Figure 2.6) lends visual clarity. The skinnier right-hand

tail is a tell-tale sign of positive skewness. Even so, the mean (46.1) and the median (45) are just over one year

apart. In this case, it would not be a distortion of reality to use the mean instead of the median to describe the

central tendency of the distribution.

DESCRIBING THE DISPERSION OF INTERVAL VARIABLES

Sometimes the mean value of an interval variable provides a misleading impression of a variable’s typical value.

To illustrate this point—and to introduce another useful graphic form—we will obtain descriptive statistics for a

variable in the states dataset, hispanic10, the Hispanic percentage of each state’s population (as of 2010). This

time we will bypass freq and go directly to describe. (For unweighted data, like states or world, you might prefer

R’s summary function.)

The mean percentage Hispanic, 10.61, is more than two units of measure higher than the median percentage

Hispanic, 8.20, indicating a strong positive skew. The bottom row of describe’s output provides a clue to the

skew: The percentage of Hispanics in the five lowest-percentage states tops out at 2.7. The percentages of the

five highest-percentage states range from 22.5 to 46.3. These high values pull the mean upward, off the median.

In this case, the median, 8.20, is the more accurate measure of central tendency.15

What about graphic accompaniment for describe’s numbers? We could ask freq (or freqC) for a bar chart, but

because states$hispanic10 has so many unique values relative to the number of cases—according to describe,

13 For a precise method of measuring the skew of a distribution, see the skewness function in the “moments” package.
14 We don’t observe a left-side tail of the age distribution because the GSS does not survey children.
15 Many demographic variables are skewed, so their median values rather than their means are often used to give a clearer

picture of central tendency. One hears or reads reports, for example, of median family income or the median price of homes

in an area.

describe(states$hispanic) # Example, Descriptive Statistics

 # Describing Interval Variables

states$hispanic10

n missing unique Info Mean .05 .10 .25 .50

50 0 43 1 10.61 1.725 2.700 4.250 8.200

.75 .90 .95

12.225 22.900 34.000

lowest: 1.2 1.3 1.5 2.0 2.7, hightest: 22.5 26.5 29.6 37.6 46.3

The states dataset does not need to be weighted, so

simply omit the optional “weights=” argument.

The mean is equal to 10.61, much higher than the median, 8.200.

