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• Preface •

W
orking on a new edition of this text is an opportunity to make valuable 

changes that benefit readers. The first change readers will notice is 

the addition of a second author, Dr. Carolyn Thorpe, to the writing team. 

Dr. Thorpe is an outstanding scholar whose qualifications and background are 

described more fully elsewhere in this volume. Suffice it to say here that she 

brings an extremely valuable perspective and a rich skill set, as both a teacher 

and researcher, to the task of communicating important topics in instrument 

development and evaluation. Her knowledge, clarity, and judgment have 

greatly improved this edition.

The goal of every revision of this text has been to meet the needs more effec-

tively and thoroughly of researchers and scholars interested in measurement. 

The praise that users most often have voiced for past editions of this book is 

that technical topics are presented in a way that is more understandable than 

it is in most texts. Obviously, we have done our best to continue in that vein. 

The criticism most often heard is that the topic of indices, as opposed to scales, 

has not been given sufficient coverage. With this edition, we have addressed 

that shortcoming. 

Although scales remain the primary focus of this book, we have long rec-

ognized that many measurement situations involve combining indicators 

into composites that are, in fact, indices rather than scales. Although both are 

measures comprising multiple separate indicators, scales and indices differ in 

important ways. As we talked about what we felt was most lacking in previous 

editions, we kept returning to the topic of indices. They received only brief 

mention in past editions, in part because it has taken time for a consensus to 

emerge among measurement experts. The differences between the two types of 

measures—and the distinct approaches that each require—are often misunder-

stood. In talking with researchers working in applied settings, we often have 

people present us with ideas for potential “scales” that actually seem much 

more like indices. But the researchers are often unaware of the distinction and 

the different methodologies it dictates. Once these people became aware of the 

basic distinction, they usually are eager for greater clarity. However, much of 

the relevant scholarship is technical and presents concepts that may not be 

familiar to non-experts. Now, having gone through much of the current work 

on the topic and wrestling with how to make it as clear as possible for the  widest 

possible readership, we think we can provide some answers in ways that will 

be accessible to a broader audience. Accordingly, Chapter 7 in this new edition 

lays out the key concepts that distinguish indices from scales, contrasts various 
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types of indices, suggests approaches for developing them, reviews validity 

and reliability issues, and discusses in broad terms some analytic approaches. 

Throughout the chapter, we have tried to explain seemingly arcane concepts 

(for example, “vanishing tetrads”) in simpler, more familiar terms than one 

typically finds in other sources. We also describe real-world examples of index 

development and usage. We believe that this information is a valuable addition 

to Scale Development: Theory and Applications that will help researchers develop 

more effective measurement tools, allow them to make more informed choices 

among existing tools, and use them appropriately. 

Although we have paid new attention to indices, we still focus primarily 

on scales, as in previous editions. We have carefully reviewed all previously 

existing chapters. Each has been refreshed and updated while retaining the fea-

tures that have served readers well in previous editions. Where warranted, we 

have added new information, revised illustrations, changed or added examples, 

added citations to more recent work, and edited for further clarity. In Chapter 4 

(Scale Validity), for example, we have added information on receiver operating 

characteristic (ROC) curves. Similarly, in Chapter 5 (Guidelines in Scale Devel-

opment), we have added a section on modes of item administration as well 

as new information concerning different types of item response options and 

expanded discussion of the use of cognitive interviewing in scale development. 

In our coverage of Factor Analysis (Chapter 6), we have added more about the 

distinction between principal components and common factors and expanded 

the discussion of factor rotation.

As with previous transitions between editions, the goal has been to pro-

vide readers with the background they need to understand measurement issues 

commonly encountered in behavioral and social research. Moreover, we have 

tried to present this information in a form that is clear and accessible. Our 

hope is to strike a balance between including relevant topics and highlight-

ing recent developments in measurement while retaining an accessible, user-

friendly approach to the material covered. We feel that, particularly with the 

addition of a full chapter on indices, this edition achieves that goal. We hope 

you will agree.
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1
Overview

M
easurement is of vital concern across a broad range of social research con-

texts. For example, consider the following hypothetical situations:

1. A health psychologist faces a common dilemma: The measurement 

scale she needs apparently does not exist. Her study requires that she 

have a measure that can differentiate between what individuals want 

to happen and what they expect to happen when they see a physician. 

Her research shows that previous studies used scales that inadvertently 

confounded these two ideas. No existing scales appear to make this 

distinction in precisely the way that she would like. Although she 

could fabricate a few questions that seem to tap the distinction 

between what one wants and expects, she worries that “made-up” 

items might not be reliable or valid indicators of these concepts.

2. An epidemiologist is unsure how to proceed. He is performing 

secondary analyses on a large data set based on a national health 

survey. He would like to examine the relationship between certain 

aspects of perceived psychological stress and health status. Although 

no set of items intended as a stress measure was included in the 

original survey, several items originally intended to measure other 

variables appear to tap content related to stress. It might be possible 

to pool these items into a reliable and valid measure of psychological 

stress. However, if the pooled items constitute a poor measure of stress, 

the investigator might reach erroneous conclusions.

3. A marketing team is frustrated in its attempts to plan a campaign for 

a new line of high-priced infant toys. Focus groups have suggested 

that parents’ purchasing decisions are strongly influenced by the 
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apparent educational relevance of toys of this sort. The team suspects 

that parents who have high educational and career aspirations for 

their infants will be more attracted to this new line of toys. Therefore, 

the team would like to assess these aspirations among a large and 

geographically dispersed sample of parents. Additional focus groups are 

judged to be too cumbersome for reaching a sufficiently large sample 

of consumers.

In each of these situations, people interested in some substantive area have 

come head to head with a measurement problem. None of these researchers 

is interested primarily in measurement per se. However, each must find a way 

to quantify a particular phenomenon before tackling the main research objec-

tive. In each case, “off-the-shelf” measurement tools are either inappropriate 

or unavailable. All the researchers recognize that adopting haphazard measure-

ment approaches runs the risk of yielding inaccurate data. Developing their 

own measurement instruments seems to be the only remaining option.

Many behavioral and social science researchers have encountered similar 

problems. One all-too-common response to these types of problems is reliance 

on existing instruments of questionable suitability. Another is to assume that 

newly developed questionnaire items that “look right” will do an adequate 

measurement job. Uneasiness or unfamiliarity with methods for developing 

reliable and valid instruments and the inaccessibility of practical information 

on this topic are common excuses for weak measurement strategies. Attempts 

at acquiring scale development skills may lead a researcher either to arcane 

sources intended primarily for measurement specialists or to information too 

general to be useful. This volume is intended as an alternative to those choices.

General Perspectives on Measurement

Measurement is a fundamental activity of science. We acquire knowledge 

about people, objects, events, and processes by observing them. Making sense 

of these observations frequently requires that we quantify them (i.e., that we 

measure the things in which we have a scientific interest). The process of mea-

surement and the broader scientific questions it serves interact with each other; 

the boundaries between them are often imperceptible. This happens, for exam-

ple, when a new entity is detected or refined in the course of measurement or 

when the reasoning involved in determining how to quantify a phenomenon 

of interest sheds new light on the phenomenon itself. For example, Smith et al. 

(1995) investigated women’s perceptions of battering. An a priori conceptual 

model based on theoretical analysis suggested six distinct components to these 

perceptions. Empirical work aimed at developing a scale to measure these per-

ceptions indicated that, among both battered and nonbattered women, a much 

simpler conceptualization prevailed: A single concept thoroughly explained 

how study participants responded to 37 of 40 items administered. This find-

ing suggests that what researchers saw as a complex constellation of variables 
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was actually perceived by women living in the community as a single, broader 

phenomenon. Thus, in the course of devising a means of measuring women’s 

perceptions about battering, we discovered something new about the structure 

of those perceptions.

Duncan (1984) argues that the roots of measurement lie in social processes 

and that these processes and their measurement actually precede science: “All 

measurement . . . is social measurement. Physical measures are made for social 

purposes” (p. 35). In reference to the earliest formal social measurement pro-

cesses, such as voting, census taking, and systems of job advancement, Duncan 

notes that “their origins seem to represent attempts to meet everyday human 

needs, not merely experiments undertaken to satisfy scientific curiosity.” He 

goes on to say that similar processes

can be drawn in the history of physics: the measurement of length or dis-

tance, area, volume, weight, and time was achieved by ancient peoples in 

the course of solving practical, social problems; and physical science was 

built on the foundations of those achievements. (p. 106)

Whatever the initial motives, each area of science develops its own set of 

measurement procedures. Physics, for example, has developed specialized 

methods and equipment for detecting subatomic particles. Within the behav-

ioral/social sciences, psychometrics has evolved as the subspecialty concerned 

with measuring psychological and social phenomena. Typically, the measure-

ment procedure used is the questionnaire and the variables of interest are part 

of a broader theoretical framework.

Historical Origins of Measurement  
in Social Science

Early Examples

Common sense and the historical record support Duncan’s claim that social 

necessity led to the development of measurement before science emerged. No 

doubt, some form of measurement has been a part of our species’ repertoire 

since prehistoric times. The earliest humans must have evaluated objects, pos-

sessions, and opponents on the basis of characteristics such as size. Duncan 

(1984) cites biblical references to concerns with measurement (e.g., “A false 

balance is an abomination to the Lord, but a just weight is a delight,” Proverbs 

11:1) and notes that the writings of Aristotle refer to officials charged with 

checking weights and measures. Anastasi (1968) notes that the Socratic method 

employed in ancient Greece involved probing for understanding in a manner 

that might be regarded as knowledge testing. In his 1964 essay, P. H. DuBois 

(reprinted in Barnette, 1976) describes the use of civil service testing as early 

as 2200 BCE in China. Wright (1999) cites other examples of the importance 

ascribed in antiquity to accurate measurement, including the “weight of seven” 
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on which seventh-century Muslim taxation was based. He also notes that some 

have linked the French Revolution, in part, to peasants being fed up with unfair 

measurement practices.

The notion that measurement can entail error and that certain steps might 

be taken to reduce that error is a more recent insight. Buchwald (2006), in his 

review of measurement discrepancies and their impact on knowledge, notes 

that, while still in his twenties during the late 1660s and early 1670s, Isaac 

Newton was apparently the first to use an average of multiple observations. His 

intent was to produce a more accurate measurement when his observations of 

astronomical phenomena yielded discrepant values. Interestingly, he did not 

document the use of averages in his initial reports but concealed his reliance 

on them for decades. This concealment may have stemmed less from a lack of 

integrity than from a limited understanding of error and its role in measure-

ment. Commenting on another astronomer’s similar disdain for discrepant 

observations, Alder (2002) argues that even in the late 1700s, concealment of 

discrepancies in observation “were not only common, they were considered a 

savant’s prerogative. It was an error that was seen as a moral failing” (p. 301). 

Buchwald (2006) makes a similar observation:

[17th- and early 18th-century scientists’] way of working regarded dif-

ferences not as the inevitable byproducts of the measuring process itself, 

but as evidence of failed or inadequate skill. Error in measurement was 

potentially little different from faulty behavior of any kind: it could 

have moral consequences, and it had to be managed in appropriate  

ways. (p. 566)

Astronomers were not the only scientists making systematic observations 

of natural phenomena in the late 1600s and early 1700s. In the 1660s, John 

Graunt was compiling birth and death rates from christening and burial records 

in Hampshire, England. Graunt used an averaging procedure (though not the 

one in common use today) to summarize his findings. According to Buchwald 

(2006), Graunt’s motivation for this averaging was to capture an ephemeral 

“true” value. The notion was that the ratio of births to deaths obeyed some 

law of nature but that unpredictable events that might occur in any given year 

would mask that fundamental truth. This view of observation as an imperfect 

window into nature’s truths suggests a growing sophistication in how the mea-

surement was viewed: In addition to the observer’s limitations, other factors 

could also corrupt empirically gathered information, and some adjustments of 

those values might more accurately reveal the true nature of the phenomenon 

of interest.

Despite these early insights, it was a century after Newton’s first use of the 

average before scientists more widely recognized that all measurements were 

prone to error and that an average would minimize such error (Buchwald, 

2006). According to physicist and author Leonard Mlodinow (2008), in the late 

18th and early 19th centuries, developments in astronomy and physics forced 
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scientists to approach random error more systematically, which led to the emer-

gence of mathematical statistics. By 1777, Daniel Bernoulli (nephew of the more 

famous Jakob Bernoulli) compared the distributions of values obtained from 

astronomical observations to the path of an archer’s arrows, clumping around 

a central point with progressively fewer at increasingly greater distances from 

that center. Although the theoretical treatment that accompanied that obser-

vation was wrong in certain respects, it marks the beginning of a formal analy-

sis of error in measurement (Mlodinow, 2008). Buchwald (2006) argues that 

a fundamental shortcoming of 18th-century interpretations of measurement 

error was a failure to distinguish between random and systematic error. Not 

until the dawning of the next century would a more incisive understanding of 

randomness emerge. With this growing understanding of randomness came 

advances in measurement; and, as measurement advanced, so did science.

Emergence of Statistical Methods and the  

Role of Mental Testing

Nunnally’s (1978) perspective supports the view that a more sophisticated 

understanding of randomness, probability, and statistics, was necessary for 

measurement to flourish. He argues that, although systematic observations 

may have been going on, the absence of more formal statistical methods hin-

dered the development of a science of measuring human abilities until the 

latter half of the 19th century. The eventual development of suitable statistical 

methods in the 19th century was set in motion by Darwin’s work on evolution 

and his observation and measurement of systematic variation across species. 

Darwin’s cousin, Sir Francis Galton, extended the systematic observation of 

differences to humans. A chief concern of Galton was the inheritance of ana-

tomical and intellectual traits. Karl Pearson, regarded by many as the “founder 

of statistics” (e.g., Allen & Yen, 1979, p. 3), was a junior colleague of Galton’s. 

Pearson developed the mathematical tools—including the Product-Moment 

Correlation Coefficient bearing his name—needed to systematically examine 

relationships among variables. Scientists could then quantify the extent to 

which measurable characteristics were interrelated. Charles Spearman contin-

ued in the tradition of his predecessors and set the stage for the subsequent 

development and popularization of factor analysis in the early 20th century. 

It is noteworthy that many of the early contributors to formal measurement 

(including Alfred Binet, who developed tests of mental ability in France in the 

early 1900s) shared an interest in intellectual abilities. Hence, much of the 

early work in psychometrics was applied to “mental testing.”

The Role of Psychophysics

Another historical root of modern psychometrics arose from psychophysics. 

As we have seen, measurement problems were common in astronomy and other 

physical sciences and were a source of concern for Sir Isaac Newton ( Buchwald, 

2006). Psychophysics exists at the juncture of psychology and physics and 
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concerns the linkages between the physical properties of stimuli and how they 

are perceived by humans. Attempts to apply the measurement procedures of 

physics to the study of sensations led to a protracted debate regarding the nature 

of measurement. Narens and Luce (1986) have summarized the issues. They 

note that in the late 19th century, Helmholtz observed that physical attributes, 

such as length and mass, possessed the same intrinsic mathematical structure as 

did positive real numbers. For example, units of length or mass could be ordered 

and added as could ordinary numbers. In the early 1900s, the debate contin-

ued. The Commission of the British Association for the Advancement of Science 

regarded fundamental measurement of psychological variables to be impossible 

because of the problems inherent in ordering or adding sensory perceptions.  

S. S. Stevens argued that strict additivity, as would apply to length or mass, was 

not necessary and pointed out that individuals could make fairly consistent 

ratio judgments of sound intensity. For example, they could judge one sound 

to be twice or half as loud as another. He argued that this ratio property enabled 

the data from such measurements to be subjected to mathematical manipula-

tion. Stevens is credited with classifying measurements into nominal, ordinal, 

interval, and ratio scales. Loudness judgments, he argued, conformed to a ratio 

scale (Duncan, 1984). At about the time that Stevens was presenting his argu-

ments on the legitimacy of scaling psychophysical measures, L. L. Thurstone 

was developing the mathematical foundations of factor analysis (Nunnally, 

1978). Thurstone’s interests spanned both psychophysics and mental abilities. 

According to Duncan (1984), Stevens credited Thurstone with applying psycho-

physical methods to the scaling of social stimuli. Thus, his work represents a 

convergence of what had been separate historical roots.

Later Developments in Measurement

Evolution of Basic Concepts

As influential as Stevens has been, his conceptualization of measurement 

is by no means the final word. He defined measurement as the “assignment 

of numerals to objects or events according to rules” (Duncan, 1984). Duncan 

challenged this definition as

incomplete in the same way that “playing the piano is striking the keys 

of the instrument according to some pattern” is incomplete. Measure-

ment is not only the assignment of numerals, etc. It is also the assign-

ment of numerals in such a way as to correspond to different degrees of a 

quality . . . or property of some object or event. (p. 126)

Narens and Luce (1986) also identified limitations in Stevens’s original 

conceptualization of measurement and illustrated a number of subsequent 

refinements. However, their work underscores a basic point made by Stevens: 

Measurement models other than the type endorsed by the Commission (of the 
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British Association for the Advancement of Science) exist, and these lead to 

measurement methods applicable to the nonphysical as well as physical sci-

ences. In essence, this work on the fundamental properties of measures has 

established the scientific legitimacy of the types of measurement procedures 

used in the social sciences.

Evolution of Mental Testing

Although, traditionally, mental testing (or ability testing, as it is now more 

commonly known) has been an active area of psychometrics, it is not a primary 

focus of this volume. Nonetheless, it bears mention as a source of significant 

contributions to measurement theory and methods. A landmark publication, 

Statistical Theories of Mental Test Scores, by Frederic M. Lord and Melvin R. 

Novick, first appeared in 1968 and has recently been reissued (Lord & Novick, 

2008). This volume grew out of the rich intellectual activities of the Psychomet-

ric Research Group of the Educational Testing Service, where Lord and Novick 

were based. This impressive text summarized much of what was known in the 

area of ability testing at the time and was among the first cogent descriptions of 

what has become known as item response theory. The latter approach was espe-

cially well suited to an area as broad as mental testing. Many of the advances in 

that branch of psychometrics are less common and perhaps less easily applied 

when the goal is to measure characteristics other than mental abilities. Over 

time, the applicability of these methods to measurement contexts other than 

ability assessment has become more apparent, and we will discuss them in 

a later chapter. Primarily, however, I will emphasize the “classical” methods 

that largely have dominated the measurement of social and psychological phe-

nomena other than abilities. These methods are generally more tractable for 

nonspecialists and can yield excellent results.

Assessment of Mental Illness

The evolution of descriptions of mental illness has a separate history that 

provides a useful case study in how the lack of a guiding measurement model 

can complicate assessment. Over the centuries, society’s ability to recognize 

different types of mental illness has evolved from completely unsystematic 

observation toward efforts to understand relationships among symptoms, 

causes, and treatments that are compatible with more formal measurement. It 

has been a challenging journey.

Early Roman, Greek, and Egyptian writings equated what we now recognize 

as symptoms of mental illness with demonic possession or other supernatural 

circumstances (e.g., PBS, 2002). By 400 BCE, the Greek physician Hippocrates 

was trying to understand mental conditions as arising from the physiological 

processes that were the primary focus of his scholarly work (PBS, 2002). His 

efforts may have been among the earliest to think of the overt indicators of 

mental illness in terms of their latent causes. However, even at that stage and 

well beyond, mental illnesses were described phenomenologically; that is, the 
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manifestations associated with mental illness were merely catalogued descrip-

tively rather than understood as endpoints in a sequence with one or more 

clear, underlying causes.

Fairly crude methods of categorization continued for more than a millen-

nium. Tartakovsky (2011) has summarized how mental illness was categorized 

for U.S. Census purposes as early as the mid-1800s. In the 1840 census, a single 

category, “idiocy/insanity,” indicated the presence of a mental problem. By 

1880, the census classification scheme had expanded to the following catego-

ries: mania, melancholia, monomania, paresis, dementia, dipsomania, and epi-

lepsy. These are essentially descriptions of abnormal states or behaviors (e.g., 

persistent sadness, excessive drinking, muscle weakness, or convulsions) rather 

than etiological classifications.

Early in the 1880s, German psychiatrist Emil Kraepelin began to differenti-

ate more systematically among mental disorders. A student of Wilhelm Wundt, 

who is credited as the founder of experimental psychology, Kraepelin was 

also a physician (Eysenck, 1968). Thus he brought two different perspectives 

to his classifications of mental illness. In 1883, he published Compendium der 

Psychiatric (Kraepelin, 1883), a seminal text arguing for a more scientific clas-

sification of psychiatric illnesses and differentiating between dementia prae-

cox and manic depressive psychosis. But, again, despite his efforts to invoke 

explanations for these illnesses, his early diagnostic categories primarily are 

summary descriptions of manifest symptoms that tend to co-occur rather than 

cogent etiological explanations (Decker, 2007). Although Kraepelin advanced 

the scientific approach to understanding mental illness, the tools at his dis-

posal were primitive, and in the end, his nosological categories were still largely 

descriptive. Decker (2007) assesses his legacy as follows: “To sum up: by today’s 

research standards, Kraepelin’s record-keeping and deductions would raise 

questions about preconceived notions and observer bias. The scientific short-

comings can be seen in Kraepelin’s own description of his methods. For all his 

brilliance in categorical formulations, his legacy is balanced on shaky empirical 

foundations” (p. 341).

In the mid-20th century, American psychiatry tried to impose greater order 

on the assessment of mental illness. By the time of the appearance of the Diag-

nostic and Statistical Manual of Mental Disorders (DSM; American Psychiatric 

Association [APA], 1952), the prevailing categorization systems attempted to 

classify mental illnesses based on both their manifestations and their etiolo-

gies, as in the case of acute brain trauma or alcoholism. However, more subtle 

notions of etiologies for conditions not linked to an obvious exogenous cause 

were not yet well developed and psychodynamic causes were often assumed. 

The term applied to such conditions was reactions, presumably to psychic 

stressors of unspecified origins. Again, the categorizations primarily were 

descriptions of manifest symptoms. Although DSM’s system of classification 

represented clear progress beyond earlier systems, it still fell short of conforming 

to standards of modern measurement. Even four decades later, when DSM-IV  

(American Psychiatric Association, 2000) appeared, there was considerable 
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dissatisfaction with the classification system. Psychologist Paul Meehl (1999) 

noted that the problem was not necessarily with the use of categories (some 

hard and fast, belong or don’t belong, categories probably did exist, he argued) 

but the absence of a clear rationale for assigning people to them. To quote 

Meehl (1999), “For that minority of DSM rubrics that do denote real taxonic 

entities, the procedure for identifying them and the criteria for applying them 

lack an adequate scientific basis” (p. 166).

The prelude to and eventual appearance of DSM-V in 2013 (American Psy-

chiatric Association, 2013) created an opportunity for the reexamination of 

mental health classification. Some feel that the team working on the revision 

failed to capitalize fully on that opportunity. As noted, a feature of mental 

health classification historically is that it has sought to categorize rather than 

scale. That is, the goal has been to describe the presence or absence rather 

than the degree of a particular condition. Experience suggests that, even for 

conditions, such as schizophrenia, that Meehl (1999) was willing to recognize 

as “taxonic” (i.e., being discrete disorders either present or absent), there is a 

continuum of impairment rather than an all-or-none state. Yet a reliance on 

categorization rather than scaling persists. In many cases, this has involved 

arbitrary thresholds for signs and symptoms, such that crossing some imagi-

nary line of severity constituted the presence of a condition whereas falling 

just short of that line did not. Also, classifications have been based almost 

exclusively on observations of manifest symptoms rather than assessments of 

key signifiers of the conditions, such as the presence of causal pathogens, a 

genetic marker, or an abnormal state of internal chemistry that may be a basis 

for assigning a physical diagnosis. When work began (outside of public view) 

on DSM-V, many hoped it would be a bolder revision than the earlier editions 

and would apply more modern assessment approaches. In 2005, after plans 

for a revised DSM (which would become DSM-V) were announced, the men-

tal health scientific community began to voice its concerns. A special issue of 

the Journal of Abnormal Psychology, for example, focused on the importance 

and utility of a reconceptualization of psychopathology based on identify-

ing fundamental dimensions, such as disordered thought, affect, and behav-

ior, that gives rise to specific mental health problems (Kreuger et  al., 2005). 

Kreuger et al. (2005) argued that this approach could address two fundamen-

tal empirical shortcomings of category-based classification systems: the wide 

prevalence of comorbidity (i.e., individual symptom clusters fitting multiple 

diagnoses) and the extreme heterogeneity within diagnoses (i.e., individuals 

assigned the same diagnosis sharing few or perhaps no symptoms). Research-

ers, theoreticians, and even philosophers (e.g., Aragona, 2009) pressed for a 

reconceptualization of the diagnosis of mental illness that was more in line 

with empirical work, such as modern measurement approaches. Despite these 

efforts, however, the American Psychiatric Association issued DSM-V in a form 

that retained the basic categorization system used in earlier editions. This 

prompted Thomas Insel, Director of the National Institute of Mental Health 

(NIMH), to issue a statement on his blog (Insel, 2013) saying that NIMH would 
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no longer structure its research efforts around DSM categories and was under-

taking a 10-year effort, the Research Domain Criteria (RDoC) project, to recon-

ceptualize mental illness. Insel (2013) characterized this effort by saying that 

“RDoC is a framework for collecting the data needed for a new nosology. But 

it is critical to realize that we cannot succeed if we use DSM categories as the 

‘gold standard.’” The following month Insel issued a joint press release with the 

then-president elect of the American Psychiatric Association, Jeffrey A. Lieber-

man. In that release, they observed the following:

Today, the American Psychiatric Association’s (APA) Diagnostic and Sta-

tistical Manual of Mental Disorders (DSM), along with the International 

Classification of Diseases (ICD) represents the best information currently 

available for clinical diagnosis of mental disorders. . . .

Yet, what may be realistically feasible today for practitioners is no longer 

sufficient for researchers. Looking forward, laying the groundwork for a 

future diagnostic system that more directly reflects modern brain science 

will require openness to rethinking traditional categories. It is increas-

ingly evident that mental illness will be best understood as disorders of 

brain structure and function that implicate specific domains of cogni-

tion, emotion, and behavior. This is the focus of the NIMH’s Research 

Domain Criteria (RDoC) project. (Insel & Lieberman, 2013)

In October 2015, Insel resigned his post at NIMH (Insel, 2015) to accept a 

position at the Life Sciences division (subsequently renamed Verily) of Alpha-

bet, the umbrella company formed as part of Google’s structural reorganiza-

tion. One of the factors Insel mentioned as influencing his decision was his 

hope of bringing a more organized approach to mental health classification. As 

he stated in an interview for MIT Technology Review, his move to Alphabet, in 

part, represented his “trying to figure out a better way to bring data analytics to 

psychiatry. The diagnostic system we have is entirely symptom based and fairly 

subjective” (Regalado, 2015). Many hope the work Insel does at Alphabet will 

promote modernization of psychiatric assessment to make it more compatible 

with modern measurement standards.

The argument in favor of a more evidence-based classification of mental 

illness continues. Insel himself cofounded a company whose mission includes 

a greater focus on measurement. One of their principles is that, “Measure-

ment-based care is fundamental to improving mental health care outcomes” 

( Mindstrong, 2020).

Broadening the Domain of Psychometrics

Duncan (1984) notes that the impact of psychometrics in the social sciences 

has transcended its origins in the measurement of sensations and intellectual 

abilities. Psychometrics clearly has emerged as a methodological paradigm 

in its own right. Duncan supports this argument with three examples of the 
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impact of psychometrics: (1) the widespread use of psychometric definitions 

of reliability and validity, (2) the popularity of factor analysis in social science 

research, and (3) the adoption of psychometric methods for developing scales 

measuring an array of variables far broader than those with which psychomet-

rics was initially concerned (p. 203). Although Duncan made those assertions 

almost 40 years ago, they still apply today. The applicability of psychometric 

concepts and methods to the measurement of diverse psychological and social 

phenomena will occupy our attention for the remainder of this volume.

The Role of Measurement in  
the Social Sciences

The Relationship of Theory to Measurement

The phenomena we try to measure in social science research often derive 

from theory. Consequently, theory plays a key role in how we conceptualize 

our measurement problems. In fact, Lord and Novick (2008) ascribe theoretical 

issues an important role in the development of measurement theory. Theore-

ticians were concerned that estimates of relationships between constructs of 

interest were generally obtained by correlating indicators of those constructs. 

Because those indicators contained error, the resultant correlations were an 

underestimate of the actual relationship between the constructs. This moti-

vated the development of methods of adjusting correlations for error-induced 

attenuation and stimulated the development of measurement theory as a dis-

tinct area of concentration (p. 69).

Of course, many areas of science measure things derived from theory. Until 

a subatomic particle is confirmed through measurement, it too is merely a the-

oretical construct. However, theory in psychology and other social sciences 

is different from theory in the physical sciences. Social scientists tend to rely 

on numerous theoretical models that concern rather narrowly circumscribed 

phenomena, whereas theories in the physical sciences are fewer in number and 

more comprehensive in scope. Festinger’s (1954) social comparison theory, 

for example, focuses on a rather narrow range of human experience: the way 

people evaluate their own abilities or opinions by comparing themselves with 

others. In contrast, physicists continue to work toward a grand unified field 

theory that will embrace all the fundamental forces of nature within a single 

conceptual framework. Also, the social sciences are less mature than the physi-

cal sciences, and their theories are evolving more rapidly. Measuring elusive, 

intangible phenomena derived from multiple, evolving theories poses a clear 

challenge to social science researchers. Therefore, it is especially important to 

be mindful of measurement procedures and to fully recognize their strengths 

and shortcomings.

The more researchers know about the phenomena in which they are inter-

ested, the abstract relationships that exist among hypothetical constructs, and 

the quantitative tools available to them, the better equipped they are to develop 
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reliable, valid, and usable scales. Detailed knowledge of the specific phenom-

enon of interest is probably the most important of these considerations. For 

example, social comparison theory has many aspects that may imply different 

measurement strategies. One research question might require operationaliz-

ing social comparisons as relative preference for information about higher- or 

lower-status others, while another might dictate ratings of self relative to the 

“typical person” on various dimensions. Different measures capturing distinct 

aspects of the same general phenomenon (e.g., social comparison) thus may 

not yield convergent results (DeVellis et al., 1990). In essence, the measures 

are assessing different variables despite the use of a common variable name in 

their descriptions. Consequently, developing a measure that is optimally suited 

to the research question requires understanding the subtleties of the theory.

Different variables call for different assessment strategies. Number of 

tokens taken from a container, for example, can be observed directly. Many— 

arguably, most—of the variables of interest to social and behavioral scientists 

are not directly observable; beliefs, motivational states, expectancies, needs, 

emotions, and social role perceptions are but a few examples. Certain variables 

cannot be directly observed but can be determined by research procedures 

other than questionnaires. For example, although cognitive researchers can-

not directly observe how individuals organize information about ethnicity into 

their self schemas, they may be able to use recall procedures to make inferences 

about how individuals structure their thoughts about self and ethnicity. There 

are many instances, however, in which it is impossible or impractical to assess 

social science variables with any method other than a self-administered mea-

surement scale. This is often but not always the case when we are interested in 

measuring theoretical constructs. Thus, an investigator interested in measuring 

empathy may find it far easier to do so by means of a carefully developed ques-

tionnaire than by some alternative procedure.

Theoretical and Atheoretical Measures

At this point, we should acknowledge that although this book focuses on 

measures of theoretical constructs, not all self-report assessments need be theo-

retical. Education and age, for example, can be ascertained from self-report by 

means of a questionnaire. Depending on the research question, these two vari-

ables can be components of a theoretical model or simply part of a description 

of a study’s participants. Some contexts in which people are asked to respond 

to a list of questions using a self-report format, such as an assessment of hos-

pital patient meal preferences, have no theoretical foundation. In other cases, 

a study may begin atheoretically but result in the formulation of theory. For 

example, a market researcher might ask parents to list the types of toys they 

have bought for their children. Subsequently, the researcher might explore 

these listings for patterns of relationships. Based on the observed patterns of 

toy purchases, the researcher may develop a model of purchasing behavior. 

Public opinion questionnaires are another example of relatively atheoretical 

measurement. Asking people which brand of soap they use or for whom they 
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intend to vote seldom involves any attempt to tap an underlying theoretical 

construct. Rather, the interest is in the subject’s response per se, not in some 

characteristic of the person it is presumed to reflect.

Distinguishing between theoretical and atheoretical measurement situa-

tions can be difficult at times. For example, seeking a voter’s preference in 

presidential candidates as a means of predicting the outcome of an election 

amounts to asking a respondent to report his or her behavioral intention. An 

investigator may ask people how they plan to vote not out of an interest in 

voter decision-making processes but merely to anticipate the eventual elec-

tion results. If, on the other hand, the same question is asked in the context of 

examining how attitudes toward specific issues affect candidate preference, a 

well-elaborated theory may underlie the research. The information about vot-

ing is not intended in this case to reveal how the respondent will vote but to 

shed light on individual characteristics. In these two instances, the relevance or 

irrelevance of the measure to theory is a matter of the investigator’s intent, not 

the procedures used. Readers interested in learning more about constructing 

survey questionnaires that are not primarily concerned with measuring hypo-

thetical constructs are referred to Converse and Presser (1986); Czaja and Blair 

(1996); Dillman (2007); Fink (1995); Fowler (2009); and Weisberg, Krosnick, 

and Bowen (1996).

Composite Measurement Tools

Measurement instruments that are collections of items combined into a 

composite score and intended to reveal levels of theoretical variables not read-

ily observable by direct means are often referred to as composite or aggregate 

measurement tools. In this book, we further subdivide aggregate measurement 

tools into two classes, scales and indices. We typically develop composite tools 

when we want to measure phenomena that we believe to exist because of our 

theoretical understanding of the world but that we cannot assess directly. For 

example, we may invoke depression or anxiety as explanations for behaviors 

we observe. Most theoreticians would agree that depression or anxiety is not 

equivalent to the behavior we see but underlies it. Our theories suggest that 

these phenomena exist and that they influence behavior but that they are 

intangible. Sometimes, it may be appropriate to infer their existence from their 

behavioral consequences. However, at other times, we may not have access to 

behavioral information (as when we are restricted to mail survey methodolo-

gies), may not be sure how to interpret available samples of behavior (as when 

a person remains passive in the face of an event that most others would react to 

strongly), or may be unwilling to assume that behavior is isomorphic with the 

underlying construct of interest (as when we suspect that crying is the result of 

joy rather than sadness). In instances when we cannot rely on behavior as an 

indication of a phenomenon, it may be more useful to assess the construct by 

means of a carefully constructed and validated scale.

Even among theoretically derived variables, there is an implicit contin-

uum ranging from relatively concrete and accessible to relatively abstract and 
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inaccessible phenomena. Not all will require multi-item scales. Age and educa-

tion certainly have relevance to many theories but rarely require a multi-item 

scale for accurate assessment. People know their age and level of education. 

These variables, for the most part, are linked to concrete, relatively unambigu-

ous events (e.g., date of birth and years of schooling, respectively). Unless some 

special circumstance, such as a neurological impairment is present, respon-

dents can retrieve information about their age and education from memory 

quite easily. They can respond with a high degree of accuracy to a single ques-

tion assessing a variable such as these. Ethnicity arguably is more complex 

and abstract than age or education. It typically involves a combination of 

physical, cultural, and historical factors. As a result, it is less tangible—more 

of a social construction—than age or education. Although the mechanisms 

involved in defining one’s ethnicity may be complex and unfold over an 

extended period of time, most individuals have arrived at a personal definition 

and can report their ethnicity with little reflection or introspection. Thus, a 

single variable may suffice for assessing ethnicity under most circumstances. 

(This may change, however, as our society becomes progressively more mul-

tiethnic and as individuals define their personal ethnicity in terms of mul-

tiple ethnic groups reflecting their ancestry. A similar change has taken place 

with respect to gender identity, with a wider array of self-definitions than the 

traditional male-female distinction now in wider use.) Many other theoreti-

cal variables, however, require a respondent to reconstruct, interpret, judge, 

compare, or evaluate less accessible information. For example, measuring how 

married people believe their lives would be different if they had chosen a differ-

ent spouse probably would require substantial mental effort, and one item may 

not capture the complexity of the phenomenon of interest. Under conditions 

such as these, using an aggregate measurement tool may be a more appropriate 

assessment strategy. Multiple items may capture the essence of such a variable 

with a degree of precision that a single item could not attain. It is precisely this 

type of variable—one that is not directly observable and that involves thought 

on the part of the respondent—that is most appropriately assessed by means of 

some form of an aggregate measurement tool.

It is important to differentiate among types of multi-item measures that 

yield a composite score. The distinctions among these different types of aggre-

gate measures are of both theoretical and practical importance, as later chap-

ters will reveal. The two principal types on which we will focus are a scale 

and an index. As the terms are used in this volume, a scale consists of what 

 Bollen (1989, pp. 64–65; see also Loehlin, 1998, pp. 200–202) refers to as “effect 

indicators”—that is, items whose values are caused by an underlying construct 

(or latent variable, as we shall refer to it in the next chapter). A measure of 

depression often conforms to the characteristics of a scale, with the responses 

to individual items sharing a common cause—namely, the affective state of 

the respondent. Thus, how someone responds to items such as “I feel sad” 

and “My life is joyless” probably is largely determined by that person’s feel-

ings at the time. I will use the term index, on the other hand, to describe sets 
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of items that are cause indicators—that is, items that determine the level of a 

construct. A measure of presidential candidate electability, for example, might 

fit the characteristics of an index. The items might assess a candidate’s public 

speaking effectiveness, record of military service, physical attractiveness, ability 

to inspire campaign workers, and potential financial resources. Although these 

characteristics probably do not share any common cause, they might all share 

an effect—increasing the likelihood of a successful presidential campaign. The 

items are not the result of any one thing, but they determine the same outcome. 

A more general term for a collection of items that one might aggregate into 

a composite score is emergent variable (e.g., Cohen, Cohen, Teresi, Marchi, &  

Velez, 1990), which includes collections of entities that share certain character-

istics and can be grouped under a common category heading. Grouping them 

together, however, does not necessarily imply any causal linkage. Sentences 

beginning with a word having fewer than five letters, for example, can easily 

be categorized together although they share neither a common cause nor a 

common effect. An emergent variable “pops up” merely because someone or 

something (such as a data analytic program) perceives some type of similarity 

among the items in question. In Chapter 7, we will discuss differences between 

scales and indices and consider the latter in greater detail. Most of our discus-

sion in earlier chapters, however, will focus on scales.

All Scales Are Not Created Equal

Regrettably, not all item composites are developed carefully. For many, 

assembly may be a more appropriate term than development. Researchers often 

throw together or dredge up items and assume they constitute a suitable scale. 

These researchers may give no thought to whether the items share a common 

cause (thus constituting a scale), share a common consequence (thus consti-

tuting an index), or merely are examples of a shared superordinate category 

that does not imply either a common causal antecedent or consequence (thus 

constituting an emergent variable).

A researcher not only may fail to exploit theory in developing a scale but 

also may reach erroneous conclusions about a theory by misinterpreting what 

a scale measures. An unfortunate but distressingly common occurrence is the 

conclusion that some construct is unimportant or that some theory is inconsis-

tent based on the performance of a measure that may not reflect the variable 

assumed by the investigator. Why might this happen? Rarely in research do 

we directly examine relationships among variables. As noted earlier, many 

interesting variables are not directly observable, a fact we can easily forget. 

More often, we assess relationships among proxies (such as scales) that are 

intended to represent the variables of interest. The observable proxy and the 

unobservable variable may become confused. For example, variables such 

as blood pressure and body temperature, at first consideration, appear to be 

directly observable, but what we actually observe are proxies, such as a column 

of mercury or a digital readout. Our conclusions about the variables assume 
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that the observable proxies are closely linked to the underlying variables they 

are intended to represent. Such is the case for a thermometer; we may describe 

the level of mercury in a thermometer as “the temperature,” even though, 

strictly speaking, it is merely a visible manifestation of temperature (i.e., ther-

mal energy). In this case, where the two closely correspond, the consequences 

of referring to the measurement (scale value that the mercury attains) as the 

variable (amount of thermal energy) are nearly always inconsequential. When 

the relationship between the variable and its indicator is weaker than in the 

thermometer example, confusing the measure with the phenomenon it is 

intended to reveal can lead to erroneous conclusions. Consider a hypothetical 

situation in which an investigator wishes to perform a secondary analysis on 

an existing data set. Let us assume that our investigator is interested in the 

role of social support on subsequent professional attainment. The investigator 

observes that the available data set contains a wealth of information on sub-

jects’ professional statuses over an extended period of time and that subjects 

were asked whether they were married. In fact, there may be several items, 

collected at various times, that pertain to marriage. Let us further assume that, 

in the absence of any data providing a more detailed assessment of social sup-

port, the investigator decides to sum these marriage items into a “scale” and 

to use this as a measure of support. Most social scientists would agree that 

equating social support with marital status is not justified. The latter both 

omits important aspects of social support (e.g., the perceived quality of sup-

port received) and includes potentially irrelevant factors (e.g., status as a child 

too young to have married versus an adult of an age suitable for marriage at 

the time of measurement). If this hypothetical investigator concluded, on the 

basis of this assessment method, that social support played no role in profes-

sional attainment, that conclusion might be completely wrong. In fact, the 

comparison was between marital status and professional attainment (or more 

precisely, indicators of these variables). Only if marriage actually indicated 

level of support would the conclusion about support and professional attain-

ment be valid.

Costs of Poor Measurement

Even if a poor measure is the only one available, the costs of using it may 

be greater than any benefits attained. Situations are rare in the social sciences 

in which an immediate decision must be made in order to avoid dire conse-

quences and one has no other choice but to make do with the best instru-

ments available. Even in these rare instances, however, the inherent problems 

of using poor measures to assess constructs do not vanish. Using a measure 

that does not assess what one presumes can lead to wrong decisions. Does 

this mean that we should use only measurement tools that have undergone 

rigorous development and extensive validation testing? Although imperfect 

measurement may be better than no measurement at all in some situations, we 

should recognize when our measurement procedures are flawed and temper our 

conclusions accordingly.
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Often, an investigator will consider measurement as secondary to more 

important scientific issues that motivate a study and, thus, the researcher will 

attempt to economize by skimping on measurement. However, adequate mea-

sures are a necessary condition for valid research. Investigators should strive 

for an isomorphism between the theoretical constructs in which they have 

an interest and the methods of measurement they use to operationalize them. 

Poor measurement imposes an absolute limit on the validity of the conclusions 

one can reach. For an investigator who prefers to pay as little attention to mea-

surement and as much to substantive issues as possible, an appropriate strategy 

might be to get the measurement part of the investigation correct from the very 

beginning so that it can be taken more or less for granted thereafter.

 A researcher also can falsely economize by using instruments that are too 

brief in the hope of reducing the burden on respondents. Although several sys-

tematic reviews have shown that longer questionnaire length tends to be asso-

ciated with somewhat lower response rates, this association is modest overall 

and absent in some studies (Rolstad et al., 2011; Edwards et al., 2002; Sitzia &  

Wood, 1998). Respondents’ willingness to complete longer instruments may 

also be heavily influenced by the study’s context and their level of interest in 

the content. When surveyed about a topic of high personal relevance (e.g., 

personal health status or experience with illness), respondents may tolerate or 

even prefer longer measures that allow them to better convey their perspective 

(Rolstad et al., 2011; Sitzia & Wood, 1998). Furthermore, choosing a question-

naire that is too brief to be reliable is a bad idea no matter how much respon-

dents prefer its brevity. A reliable questionnaire that is completed by half of 

the respondents yields more information than an unreliable questionnaire 

completed by all respondents. If you cannot determine what the data mean, 

the amount of information collected is irrelevant. Consequently, completing 

“convenient” questionnaires that cannot yield meaningful information is a 

poorer use of respondents’ time and effort than completing a somewhat longer 

version that produces valid data. Thus, using inadequately brief assessment 

methods may have ethical as well as scientific implications.

Summary and Preview

This chapter stresses that measurement is a fundamental activity in all branches 

of science, including the behavioral and social sciences. Psychometrics, the spe-

cialty area of the social sciences that is concerned with measuring social and 

psychological phenomena, has historical antecedents extending back to ancient 

times. In the social sciences, theory plays a vital role in the development of 

composite measurement instruments, which are collections of items that reveal 

the level of an underlying variable. Often, in the behavioral and social sciences, 

such a measurement tool will fit the definition of a scale. However, not all col-

lections of items constitute scales. Developing composite measurement tools 

may be more demanding than selecting items casually; however, the costs of 

using casually constructed measures usually greatly outweigh the benefits.
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The following chapters cover the rationale and methods of scale develop-

ment in greater detail. Chapter 2 explores the latent variable, the underlying 

construct that a scale attempts to quantify, and presents the theoretical bases 

for the methods described in later chapters. Chapter 3 provides a conceptual 

foundation for understanding reliability and the logic underlying the reliabil-

ity coefficient. Chapter 4 reviews validity, while Chapter 5 is a practical guide 

to the steps involved in scale development. Chapter 6 introduces factor ana-

lytic concepts and describes their use in scale development. Chapter 7 is an 

exploration of an alternative type of aggregate measure, the index. Chapter 8  

is a conceptual overview of an alternative approach to scale development—

item response theory. Finally, Chapter 9 briefly discusses how scales fit into the 

broader research process.

Exercises

1. What are the key differences between a scale and an index as we have 

described them?

2. Two professions that have long histories of assessment are education 

(through the development and use of standardized ability tests) and 

psychiatry (through the specification and application of standardized 

diagnostic criteria). What are some of the key differences between how 

these two fields of inquiry have approached assessment?
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2
Understanding the 

Latent Variable

This chapter presents a conceptual schema for understanding the relation-

ship between measures and the constructs they represent, though it is not 

the only framework available. Item response theory is an alternative measure-

ment perspective that we will examine in Chapter 8. Because of its relative 

conceptual and computational accessibility and wide usage, we emphasize the 

classical measurement model, which assumes that individual items are compa-

rable indicators of the underlying construct.

Constructs Versus Measures

Typically, researchers are interested in constructs rather than items or scales per 

se. For example, a market researcher measuring parents’ aspirations for their 

children would be more interested in intangible parental sentiments and hopes 

about what their children will accomplish than in where those parents place 

marks on a questionnaire. However, recording responses to a questionnaire 

may, in many cases, be the best method of assessing those sentiments and 

hopes. Scale items are usually a means to the end of construct assessment. In 

other words, they are necessary because many constructs cannot be assessed 

directly. In a sense, measures are proxies for variables that we cannot directly 

observe. By assessing the relationships between measures, we indirectly infer 

the relationships between constructs. In Figure 2.1, for example, although our 

primary interest is the relationship between Variables A and B, we estimate that 

relationship on the basis of the connection between measures corresponding 

to those variables.

The underlying phenomenon or construct that a scale is intended to reflect 

is often called the latent variable. As we use the terms in this text, all scales (and 
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some indices) involve a latent variable. In this chapter, unless otherwise noted, 

our discussion is limited to scale items. Exactly what is a latent variable? Its 

name reveals two chief features. Consider the example of parents’ aspirations 

for children’s achievement. First, it is latent rather than manifest. Parents’ aspi-

rations for their children’s achievement are not directly observable. In addi-

tion, the construct is variable rather than constant—that is, some aspect of it, 

such as its strength or magnitude, changes. Parents’ aspirations for their chil-

dren’s achievement may vary according to time (e.g., during the child’s infancy 

versus adolescence), place (e.g., on an athletic field versus a classroom), people 

(e.g., parents whose own backgrounds or careers differ), or any combination of 

these and other dimensions. The latent variable is the actual phenomenon that 

is of interest—in this case, child achievement aspirations.

Another noteworthy aspect of the latent variable in the case of a scale is 

that it is typically a characteristic of the individual who is the source of data. 

Thus, in our present example, parental aspirations are a characteristic of the 

parents and not of the children. Accordingly, we assess it by collecting data 

about the parents’ beliefs from the parents themselves. While there may be 

circumstances in which some form of proxy reporting (e.g., asking parents to 

report some characteristic of their children) is appropriate, in general, we will 

ask respondents to self-report information pertaining to themselves. When this 

is not the case, as in a study involving parents describing the aspirations their 

children have for themselves, care must be taken in interpreting the resulting 

information. Arguably, in this hypothetical instance, the latent variable might 

more accurately be described as parents’ perceptions of their children’s aspirations 

than as children’s aspirations per se. Likewise, if we ask a group of shoppers to 

evaluate characteristics of a particular store, we are assessing shoppers’ percep-

tions rather than aspects of the store itself (which might be more easily assessed 

FIGURE 2.1 ●  Relationships between instruments correspond with 

relationships between latent variables only when each 

measure corresponds to its latent variable

Variable A Variable B

Measure

A

Measure

B
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by direct observation). How important the distinction is between assessing the 

perceptions of a respondent with regard to some external stimulus (e.g., per-

ceptions of the store), as opposed to characteristics of the external stimulus 

(e.g., the store itself), will depend on the specific circumstances and goals of the 

assessment; however, in all cases, it is important to be mindful of the distinc-

tion and to make appropriate interpretations of the resultant data.

Although we cannot observe or quantify it directly, the latent variable 

presumably takes on a specific value under some specified set of conditions.  

A scale developed to measure a latent variable is intended to estimate its actual 

magnitude at the time and place of measurement for each thing measured. This 

unobservable actual magnitude is the true score.

Latent Variable as the Presumed Cause  
of Scale Item Values

The notion of a latent variable implies a certain relationship between it and 

the items that tap it. The latent variable is regarded as a cause of the scale item 

score—that is, the strength or quantity of the latent variable (i.e., the value of 

its true score) is presumed to cause an item (or set of items) to take on a certain 

value.

An example may reinforce this point: The following are hypothetical items 

for assessing parents’ aspirations for children’s achievement:

1. My child’s achievements determine my own success.

2. I will do almost anything to ensure my child’s success.

3. No sacrifice is too great if it helps my child achieve success.

4. My child’s accomplishments are more important to me than just about 

anything else I can think of.

If parents were given an opportunity to express how strongly they agree 

with each of these items, their underlying aspirations for childhood achieve-

ment should influence their responses. In other words, each item should give 

an indication of how strong the latent variable (aspirations for children’s 

achievement) is. The score obtained on the item is caused by the strength or 

quantity of the latent variable for that person at that particular time.

A causal relationship between a latent variable and a measure implies certain 

empirical relationships. For example, if an item value is caused by a latent vari-

able, then there should be a correlation between that value and the true score 

of the latent variable. As a consequence of each of the indicators correlating 

with the latent variable, they should also correlate with each other. Because we 

cannot directly assess the true score, we cannot compute a correlation between 

it and the item. However, when we examine a set of items that are presumably 

caused by the same latent variable, we can examine their relationships to one 
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another. So if we had several items like the ones preceding measuring parental 

aspirations for child achievement, we could look directly at how they corre-

lated with one another, invoke the latent variable as the basis for the correla-

tions among items, and use that information to infer how highly each item was 

correlated with the latent variable. Shortly, we will explain how all this can be 

learned from correlations among items. First, however, we will introduce some 

diagrammatic procedures to help make this explanation more clear.

Path Diagrams

Coverage of this topic will be limited to a brief review of issues pertinent to 

scale development. For greater depth, consult Asher (1983) or Loehlin (1998).

Diagrammatic Conventions

Path diagrams are a method for depicting causal relationships among vari-

ables. Although they can be used in conjunction with path analysis, which is 

a data analytic method, path diagrams have more general utility as a means 

of specifying how a set of variables are interrelated. These diagrams adhere to 

certain conventions. A straight arrow drawn from one variable label to another 

indicates that the two are causally related and that the direction of causality is 

as indicated by the arrow. Thus X → Y indicates explicitly that X is the cause 

of Y. Often, associational paths are identified by labels, such as the letter a in 

Figure 2.2.

The absence of an arrow also has an explicit meaning—namely, that two 

variables are unrelated. Thus, A → B → C D → E specifies that A causes B, B 

causes C, C and D are unrelated, and D causes E.

Another convention of path diagrams is the method of representing error, 

which is usually depicted as an additional causal variable. This error term is a 

residual, representing all sources of variation not accounted for by other causes 

explicitly depicted in the diagram.

Because this error term is a residual, it represents the discrepancy between 

the actual value of Y and what we would predict Y to be based on knowledge 

of X and Z (in this case; see Figure 2.3). Sometimes, the error term is assumed 

and, thus, not included in the diagram.

Path Diagrams in Scale Development

Path diagrams can help us see how scale items are causally related to a latent 

variable. They can also help us understand how certain relationships among 

items imply certain relationships between items and the latent variable. We 

FIGURE 2.2 ● The causal pathway from X to Y

X Y
a
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begin by examining a simple computational rule for path diagrams. Let us look 

at the simple path diagram in Figure 2.4.

The numbers along the paths are standardized path coefficients. Each one 

expresses the strength of the causal relationship between the variables joined 

by the arrow. The fact that the coefficients are standardized means that they 

all use the same scale to quantify the causal relationships and that their values 

can range from –1.0 to +1.0. In this diagram, Y is a cause of X
1 
through X

5
.  

A useful relationship exists between the values of path coefficients and the cor-

relations between the Xs (which would represent items in the case of a scale-

development–type path diagram). For diagrams like this one having only one 

common origin (Y in this case), the correlation between any two Xs is equal 

X

Z

eY

FIGURE 2.3 ● Two variables plus error determine Y

FIGURE 2.4 ●  A path diagram with path coefficients, which can be 

used to compute correlations between variables
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to the product of the coefficients for the arrows forming a route, through Y, 

between the X variables in question. For example, the correlation between  

X
1 
and X

5 
is calculated by multiplying the two standardized path coefficients 

that join them via Y. Thus, r
1,5 
= .6 × .1 = .06. Variables X

6 
and X

7 
also share Y as 

a common source, but the route connecting them is longer. However, the rule 

still applies. Beginning at X
7
, we can trace back to Y and then forward again to 

X
6 
(or in the other direction, from X

6 
to X

7
). The result is .3 × .3 × .4 × .2 = .0072. 

Thus, r
6,7 
= .0072.

This relationship between path coefficients and correlations provides a basis 

for estimating paths between a latent variable and the items that it influences. 

Even though the latent variable is hypothetical and unmeasurable, the items 

are real and the correlations among them can be directly computed. By using 

these correlations, the simple rule just discussed, and some assumptions about 

the relationships among items and the true score, we can come up with esti-

mates for the paths between the items and the latent variable. We can begin 

with a set of correlations among variables. Then, working backward from the 

relationship among paths and correlations, we can determine what the values 

of certain paths must be if the assumptions are correct. Let us consider the 

example in Figure 2.5.

This diagram is similar to the example considered earlier in Figure 2.4, 

except that there are no path values, the variables X
6 
and X

7 
have been dropped, 

the remaining X variables represent scale items, and each item has a variable 

(error) other than Y influencing it. These e variables are unique in the case of 

each item and represent the residual variation in each item not explained by Y.  

This diagram indicates that all the items are influenced by Y. In addition, each 

is influenced by a unique set of variables other than Y that are collectively 

treated as error.

Y

X
5

X
4

X
3

X
2

X
1

e
1

e
2

e
3

e
4

e
5

FIGURE 2.5 ● A path diagram with error terms
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This revised diagram represents how five individual items are related to a 

single latent variable, Y. The numerical subscripts given to the es and Xs indi-

cate that the five items are different and that the five sources of error, one for 

each item, are also different. The diagram has no arrows going directly from 

one X to another X or going from an e to another e or from an e to an X other 

than the one with which it is associated. These aspects of the diagram represent 

assumptions that will be discussed later.

If we had five actual items that a group of people had completed, we would 

have item scores that we could then correlate with one another. The rule exam-

ined earlier allowed the computations of correlations from path coefficients. 

With the addition of some assumptions, it also lets us compute path coefficients 

from correlations—that is, correlations computed from actual items can be used 

to determine how each item relates to the latent variable. If, for example, X
1
 and 

X
4
 have a correlation of .49, then we know that the product of the values for 

the path leading from Y to X
1
 and the path leading from Y to X

4
 is equal to .49. 

We know this because our rule established that the correlation of two variables 

equals the product of the path coefficients along the route that joins them. If 

we also assume that the two path values are equal, then they both must be .70.
1

Further Elaboration of t he  
Measurement Model

Classical Measurement Assumptions

The classical measurement model—which asserts that an observed score, X, 

results from the summation of a true score, T, plus error, e—starts with com-

mon assumptions about items and their relationships to the latent variable and 

sources of error:

1. The amount of error associated with individual items varies randomly. 

The error associated with individual items has a mean of zero when 

aggregated across a large number of people. Thus, items’ means tend to 

be unaffected by error when a large number of respondents complete 

the items.

2. One item’s error term is not correlated with another item’s error term; 

the only routes linking items always pass through the latent variable, 

never through any error term.

3. Error terms are not correlated with the true score of the latent variable. 

Note that the paths emanating from the latent variable do not extend 

outward to the error terms. The arrow between an item and its error 

term aims the other way.

The first two assumptions above are common statistical assumptions that 

underlie many analytic procedures. The third amounts to defining “error” as 
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the residual remaining after considering all the relationships between a set 

of predictors and an outcome or in this case, a set of items and their latent 

variable.

Parallel Tests

Classical measurement theory, in its most orthodox form, is based on the 

assumption of parallel tests. The term parallel tests stems from the fact that one 

can view each individual item as a “test” for the value of the latent variable. For 

our purposes, referring to parallel items would be more accurate. However, we 

will defer to convention and use the traditional name.

A virtue of the parallel tests model is that its assumptions make it quite easy 

to reach useful conclusions about how individual items relate to the latent vari-

able based on our observations of how the items relate to one another. Earlier, 

we suggested that, with knowledge of the correlations among items and with 

certain assumptions, one could make inferences about the paths leading from 

a causal variable to an item. As will be shown in the next chapter, being able to 

assign a numerical value to the relationships between the latent variable and 

the items themselves is quite important. Thus, in this section, I will examine 

in some detail how the assumptions of parallel tests lead to certain conclusions 

that make this possible.

The rationale underlying the model of parallel tests is that each item of a 

scale is precisely as good a measure of the latent variable as any other of the 

scale items. The individual items are thus strictly parallel, which is to say that 

each item’s relationship to the latent variable is presumed identical to every 

other item’s relationship to that variable and the amount of error present in 

each item is also presumed to be identical. Diagrammatically, this model can 

be represented as shown in Figure 2.6.

This model adds two assumptions to those listed earlier:

1. The amount of influence from the latent variable to each item is 

assumed to be the same for all items.

2. Each item is assumed to have the same amount of error as any other 

item, meaning that the influence of factors other than the latent 

variable is equal for all items.

These added assumptions mean that the correlations of each item with the 

true score are identical. Being able to assert that these correlations are equal is 

important because it leads to a means of determining the value for each of these 

identical correlations. This, in turn, leads to a means of quantifying reliability, 

which will be discussed in the next chapter.

Asserting that correlations between the true score and each item are equal 

requires both of the preceding assumptions. A squared correlation is the propor-

tion of variance shared between two variables. So if correlations between the 

true score and each of two items are equal, the proportions of variance shared 
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between the true score and each item also must be equal. Assume that a true 

score contributes the same amount of variance to each of two items. This amount 

can be an equal proportion of total variance for each item only if the items have 

identical total variances. In order for the total variances to be equal for the two 

items, the amount of variance each item receives from sources other than the 

true score must also be equal. As all variation sources other than the true score 

are lumped together as error, this means that the two items must have equal 

error variances. For example, if X
1 
got 9 arbitrary units of variation from its true 

score and 1 from error, the true score proportion would be 90% of total varia-

tion. If X
2 
also got 9 units of variation from the true score, these 9 units could be 

90% of the total only if the total variation were 10. The total could equal 10 only 

if error contributed 1 unit to X
2 
as it did to X

1
. The correlation between each item 

and the true score then would equal the square root of the proportion of each 

item’s variance that is attributable to the true score or roughly .95 in this case.

Thus, because the parallel tests model assumes that the amount of influence 

from the latent variable is the same for each item and that the amount from 

other sources (error) is the same for each item, the proportions of item variance 

attributable to the latent variable and to error are equal for all items. This also 

means that, under the assumptions of parallel tests, standardized path coeffi-

cients from the latent variable to each item are equal for all items. It was assum-

ing that standardized path coefficients were equal that made it possible, in an 

earlier example, to compute path coefficients from correlations between items. 

The path diagram rule relating path coefficients to correlations, discussed ear-

lier, should help us understand why these equalities hold when one accepts the 

preceding assumptions.

L

a
1

a
2

a
3

X
1

e
1

e
2

e
3

X
2

X
3

FIGURE 2.6 ●  A diagram of a parallel tests model, in which all 

pathways from the latent variable (L) to the items 

(X
1
, X

2
, X

3
) are equal in value to one another, as are all 

pathways from the error terms to the items
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The assumptions of this model also imply that correlations among items are 

identical (e.g., the correlation between X
1 
and X

2 
is identical to the correlation 

between X
1 
and X

3 
or X

2 
and X

3
). How do we arrive at this conclusion from the 

assumptions? The correlations are all the same because the only mechanism to 

account for the correlation between any two items is the route through the latent 

variable that links those items. For example, X
1 
and X

2 
are linked only by the route 

made up of paths a
1 
and a

2
. The correlation can be computed by tracing the route 

joining the two items in question and multiplying the path values. For any two 

items, this entails multiplying two paths that have identical values (i.e., a
1 
= a

2 
= a

3
).  

Correlations computed by multiplying equal values will, of course, be equal.

The assumptions also imply that each of these correlations between items 

equals the square of any path from the latent variable to an individual item. 

How do we reach this conclusion? The product of two different paths (e.g., a
1 

and a
2
) is identical to the square of either path because both path coefficients 

are identical. If a
1 
= a

2 
= a

3 
and (a

1 
× a

2
) = (a

1 
× a

3
) = (a

2 
× a

3
), then each of these 

latter products must also equal the value of any of the paths multiplied by 

itself. Looking back at Figure 2.6 may make these relationships and their impli-

cations clearer.

It also follows from the assumptions of this model that the proportion of 

error associated with each item is the complement of the proportion of vari-

ance that is related to the latent variable. In other words, any effect on a given 

item that is not explained by the latent variable must be explained by error. 

Together, these two effects explain 100% of the variation in any given item. 

This is so simply because the error term (e) is defined as encompassing all 

sources of variation in the item other than the latent variable.

These assumptions support at least one other conclusion: Because each item 

is influenced equally by the latent variable and each error term’s influence on 

its corresponding item is also equal, the items all have equal means and equal 

variances. If the only two sources that can influence the mean are identical for 

all items, then clearly the means for the items also will be identical. This rea-

soning also holds for the item variances.

In conclusion, the parallel tests model assumes the following:

1. Error is random.

2. Errors are not correlated with one another.

3. Errors are not correlated with true score.

4. The latent variable affects all items equally.

5. The amount of error for each item is equal.

These assumptions allow us to reach a variety of interesting conclusions. 

Furthermore, the model enables us to make inferences about the latent variable 

based on the items’ correlations with one another. However, the model accom-

plishes this feat by setting forth fairly stringent assumptions.
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Alternative Models

As it happens, all the narrowly restrictive assumptions associated with strictly 

parallel tests are not necessary in order to make useful inferences about the rela-

tionship of true scores to observed scores. A model based on what are techni-

cally called tau-equivalent tests makes a more liberal assumption—namely, that 

the amount of error variance associated with a given item need not equal the 

error variance of the other items (e.g., Allen & Yen, 1979). Tau-equivalent tests 

still require identical true scores for items, although a slight loosening of that 

assumption defines essentially tau-equivalent tests (or occasionally, randomly par-

allel tests). Any pair of items adhering to essential tau equivalence may have true 

scores that differ by some constant. Of course, adding a constant to one item has 

no effect on any correlation involving that item because correlations are stan-

dardized expressions. Consequently, the correlation between any pair of items 

or between an item’s true score and the item’s obtained score is not affected 

by relaxing the assumptions of strict tau equivalence to those of essential tau 

equivalence. So what we have said thus far about tau equivalence also applies 

to essential tau equivalence. In either of these cases, the standardized values of 

the paths from the latent variable to each item may not be equal. However, the 

unstandardized values of the path from the latent variable to each item (i.e., the 

amount as opposed to proportion of influence that the latent variable has on each 

item) are still presumed to be identical for all items. This means that items are 

parallel with respect to how much they are influenced by the latent variable 

but are not necessarily influenced to exactly the same extent by extraneous fac-

tors that are lumped together as error. Under strictly parallel assumptions, not 

only do different items tap the true score to the same degree; their error com-

ponents are also the same. Tau equivalency (tau is the Greek equivalent to t, as 

in true score) is much easier to live with because it does not impose the “equal 

errors” condition. Because errors may vary, item means and variances may also 

vary. The more liberal assumptions of this model are attractive because finding 

equivalent measures of equal variance are rare. This model allows us to reach 

many of the same conclusions as with strictly parallel tests but with less restric-

tive assumptions. Readers may wish to compare this model with Nunnally and 

Bernstein’s (1994) discussion of the domain sampling model.

Some scale developers consider even the essentially tau-equivalent model 

too restrictive. After all, how often can we assume that each item is influenced 

by the latent variable to the same degree? Tests developed under what is called 

the congeneric model (Jöreskog, 1971) are subject to an even more relaxed set 

of assumptions (see Carmines & McIver, 1981, for a discussion of congeneric 

tests). This model assumes (beyond the basic measurement assumptions) 

merely that all the items share a common latent variable. They need not bear 

equally strong relationships to the latent variable, and their error variances 

need not be equal. One must assume only that each item reflects the true score 

to some degree. Of course, the more strongly each item correlates with the true 

score, the more reliable the scale will be.
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An even less constrained approach is the general factor model, which allows 

multiple latent variables to underlie a given set of items. Carmines and McIver 

(1981), Loehlin (1998), and Long (1983) have discussed the merits of this type 

of very general model, chief among them being its improved correspondence 

to real-world data. Structural equation modeling approaches often incorporate 

factor analyses into their measurement models; situations in which multiple 

latent variables underlie a set of indicators exemplify the general factor model 

(Loehlin, 1998).

The congeneric model is a special case of the factor model (i.e., a single-

factor case). Likewise, an essentially tau-equivalent measure is a special case of 

a congeneric measure—one for which the relationships of items to their latent 

variable are assumed to be equal. Finally, a strictly parallel test is a special case 

of an essentially tau-equivalent one, adding the assumption of equal relation-

ships between each item and its associated sources of error.

Another measurement strategy should be mentioned. This strategy is item 

response theory (IRT). This approach has been used primarily but not exclu-

sively with dichotomous-response (e.g., correct versus incorrect) items in 

developing ability tests. IRT assumes that each individual item has its own char-

acteristic sensitivity to the latent variable, represented by an item-characteristic 

curve—a plot of the relationship between the value of the latent variable (e.g., 

ability) and the probability of a certain response to an item (e.g., answering it 

correctly). Thus, the curve reveals how much ability an item demands to be 

answered correctly. We will consider IRT further in Chapter 8.

In Chapters 6, 7, and 8, we will look at factor analysis, indices, and item 

response theory respectively. In those chapters, we will necessarily go beyond 

the models we have discussed so far. In Chapters 1 through 5, however, we will 

focus primarily on parallel and essentially tau-equivalent models for several 

reasons. First, they exemplify “classical” measurement theory. Second, discuss-

ing the mechanisms by which other models operate can quickly complicate 

topics unnecessarily if those models are not necessary to a basic understand-

ing. Finally, classical models have proven very useful for social scientists with 

primary interests other than measurement who, nonetheless, take careful mea-

surement seriously. This group is the audience for whom the present text has 

been written. For these individuals, the scale development procedures that fol-

low from a classical model generally yield satisfactory scales. Indeed, to my 

knowledge although no tally is readily available, I suspect that (outside ability 

testing) a substantial majority of the well-known and highly regarded scales 

used in social science research were developed using such procedures.

Choosing a Causal Model

Choosing the causal model that underpins a variable, when feasible, can be 

an important aspect of measurement. The very conceptualization of a vari-

able can sometimes be subtly adapted at the outset of a research project to 
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make its eventual measurement more manageable. As an example, consider 

a researcher who wants to assess how the physical work environment affects 

employee productivity. One approach might be to develop a long list of envi-

ronmental factors that are thought to influence productivity—such as light-

ing, sense of privacy, or access to a computer—and develop an instrument 

that has workers rate the extent to which those factors are present in a given 

workplace. A problem with this approach is that the instrument may end up 

being an index rather than a scale or perhaps a hybrid of the two (topics 

we discuss in Chapter 7). That is, the indicators (e.g., good lighting, reason-

able privacy, computer access) might not really share a common cause but 

rather a common effect, namely, an improvement in the work environment. 

If, instead, the investigator considered the eventual measurement problem 

early on in the research process, he or she may have decided to conceptualize 

the variable somewhat differently. For example, had the investigator defined 

the variable of interest as employees’ perceptions of the work environment, 

that definition may have led to a more tractable set of items. For example, 

employees could be asked to endorse items such as, “My workplace environ-

ment provides the basic equipment I need to do my job effectively.” Here, the 

latent variable is not a feature of the environment per se but the employees’ 

perceptions. How the employees perceive the environment is the common 

cause driving their responses to individual items. It may be easier to assume 

that an employee has a sense of the work environment that will give rise to 

answers across a set of questions about its adequacy than to imagine the envi-

ronment itself as a cause of employee responses. Moreover, the psychological 

nature of employee perceptions may actually be closer to what the investiga-

tor considered relevant to productivity than the mere presence or absence of 

specific environmental features. That is, whether a given worker perceives the 

environment as conducive to productivity may be a more relevant variable 

than someone else’s judgment regarding the adequacy of the work environ-

ment. So conceptualizing the variable of interest in this way may serve the 

underlying research question well while also potentially facilitating the even-

tual measurement of the variable.

Of course, if the variable simply does not lend itself to a causal conceptual-

ization consistent with a straightforward measurement strategy, the integrity 

of the variable of interest should not be compromised. Chapter 7 offers ways 

to proceed in those instances. Certain approaches may help the investigator 

work around the limitations inherent in the variable and the way in which it is 

operationalized. But if an acceptable alternative conceptualization of the vari-

able and the model relating it to its indicators can be simplified, it well may be 

possible to develop a measurement tool that meets a simpler set of assumptions 

and thus can be explored using less complex analytic tools. Having the tools 

to handle the more complex situations is certainly a good thing, but avoiding 

those complexities and precluding the need for those more advanced tools may 

be even better, assuming that it does justice to the construct.



32  Scale Development

Exercises

1. How can we infer the relationship between the latent variable and two 

items related to it based on the correlations between the two items?

2. What is the chief difference in assumptions between the parallel tests 

and essentially tau-equivalent models?

3. Which measurement model assumes, beyond the basic assumptions 

common to all measurement approaches, only that the items share a 

common latent variable?

4. Assume an essentially tau-equivalent model with true score T and 

indicators A, B, and C. In such a model, any two indicators (e.g., A and B)  

that share a common true score must have a covariance identical to the 

covariance between any other two indicators (e.g., B and C) sharing 

that true score. However, the correlations between different pairs of 

indicators need not be equal. Explain why this is so.

Note

1. Although -.70 is also an allowable square root of .49, deciding between 

the positive or negative root is typically of less concern than one would 

think. As long as all the items can be made to correlate positively with 

one another (if necessary, by reverse scoring certain items, as discussed 

in Chapter 5), then the signs of the path coefficients from the latent 

variable to the individual items will be the same and are arbitrary. 

Note, however, that giving positive signs to these paths implies that 

the items indicate more of the construct, whereas negative coefficients 

would imply the opposite.
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3
Scale Reliability

R
eliability is a fundamental issue in psychological measurement. Its 

importance is clear once its meaning is fully understood. As the term 

implies, a reliable instrument is one that performs in consistent, predictable 

ways. For a scale to be reliable, the scores it yields must represent some true 

state of the variable being assessed. In practice, this implies that the score 

produced by the instrument should not change unless there has been an 

actual change in the variable the instrument is measuring and, thus, that 

any observed change in scores can be attributed to actual change in that 

variable. A perfectly reliable scale would be a reflection of the true score 

and nothing else. This will seldom be achievable; however, we can gauge 

how closely we approximate that ideal. The more the score we obtain from 

a scale represents the true score of the variable and the less it reflects other 

extraneous factors, the more reliable our scale is. Stated more formally, scale 

reliability is the proportion of variance attributable to the true score of the 

latent variable. There are several methods for computing reliability, but all 

share this fundamental definition.

Although alternative methods for computing scale reliability may appear 

to be different, the common underlying definition requires that they be com-

putationally equivalent in some basic and important way. This is indeed the 

case. All these methods involve estimating the variable’s true score and deter-

mining what proportion of the obtained scale score that true score represents. 

Our basic measurement model, described in Chapter 2, suggests that a scale’s 

observed score represents the summation of a true score for the variable being 

assessed plus error arising from extraneous factors. It follows, then, that we can 

estimate the true score for the variable by subtracting variance arising from 

error from the total variance of the observed score obtained from a particular 

measure. We can then compute reliability as a ratio of the estimated true score 

to the observed score. Thus, 
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true score = observed score − error

reliability
true score

observed score

 

 
.=

Methods for estimating error are largely what differentiate alternative for-

mulas for computing reliability. Different methods are tailored to specific types 

of data, although all share a common conceptual foundation: that reliability 

is the proportion of variance in an observed score that can be attributed to the 

true score of the variable being assessed.

Methods Based on the Analysis of Variance

One means of estimating error is based on the analysis of variance (ANOVA). 

This data analytic approach partitions the total variance observed into vari-

ous sources, primarily those that are of substantive interest (i.e., signal) and 

those that arise from some error source (i.e., noise), such as imperfections in 

sampling participants from a population. Although this is not the approach on 

which we will focus for assessing the reliability of measurement scales, looking 

at it in condensed form underscores the continuity across definitions of and 

approaches to reliability.

Thus, by way of a cursory review, consider a very simple set of observa-

tions that involve the temperatures of eight identical objects, four of which 

are in direct sunlight and four of which are in the shade. (I have specified a 

small number of observed objects in this example for simplicity.) The objects 

are identical except for their exposure to the sun; however, the thermometer 

used to measure their temperatures is a bit suspect and, therefore, is a potential 

source of error in the observed temperatures. We could assess the extent of that 

error by recording the temperatures of all eight individual objects and arrang-

ing the information in several ways. First, we could summarize information 

about the objects as a single group by computing an overall sum of squared 

deviations in object temperatures from the overall mean for all the objects. 

This value would be the total sum of squares, or SS
T
. By dividing the SS

T 
by the 

degrees of freedom associated with the entire sample (i.e., N − 1 = 8 − 1 = 7), 

we would obtain the total variance for the objects’ temperatures. The follow-

ing steps isolate subcomponents of that overall variance. We could proceed 

to estimate the extent to which error affected those scores and, thus, was a 

subcomponent of the total variance. In the ANOVA framework, this is accom-

plished by assessing how much variation occurs under identical conditions. In 

this case, all the objects in the sun are exposed to identical conditions, as are all 

the objects in the shade. Within each of these two subgroups, the objects them-

selves are presumed to be identical and the presence or absence of sunlight 

is identical. So the only basis for differences in observed temperatures should 

be some form of error. Thus, we can examine the variation in temperatures of 

objects within groups to compute an error sum of squares (SS
E
). By subtracting 
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this SS
E 
from SS

T
, we can compute a sum of squares for the effect of sunlight. 

This last sum of squares is essentially the sum of squares for the true score—

that is, an indication of the amount of variation in object temperatures after 

removing the effect of measurement error. We can then compute the true score 

variance from this sum of squares. Finally, by computing the ratio between 

that true score variance and the total variance, we arrive at the proportion of 

total variance that can be attributed to the true score (i.e., the effect of the sun). 

We could interpret that proportion as the reliability of our measurement of the 

objects’ temperatures.

Note that if all the objects in the sun had identical temperatures and all the 

objects in the shade had identical, presumably lower, temperatures, the error 

variance would be 0.0. Thus, nothing would get subtracted from the observed 

SS
T
, the true score variance and total variance would be equal, and the ratio 

representing the reliability of measuring object temperatures would be 1.0.

I have referred to the ratio arising from the ANOVA example described in the 

preceding paragraphs as a reliability coefficient, which is correct. More gener-

ally, however, a ratio comparing the variance arising from some specific source 

in an ANOVA design with the total variance is known as an intraclass correla-

tion coefficient, or ICC. Depending on the type and complexity of the ANOVA 

design, there can be several types of ICC that will have various interpretations, 

not all of which are equivalent to measurement reliability. Although readers 

may not be as familiar with the ICC as they are with other, more common 

expressions for reliability, we will see that the logic on which more specialized 

indicators of reliability are based is identical to the logic of the ICC—that is, 

both the ICC and other methods of capturing reliability are based on a com-

parison of some estimate of true score variance with total variance.

Continuous Versus Dichotomous Items

Although items may have a variety of response formats, we assume in this 

chapter that item responses consist of multiple-value response options. Dichot-

omous items (i.e., items having only two response options, such as “yes” and 

“no,” or those having multiple response options that can be classified as “right” 

versus “wrong”) are widely used in ability testing and, to a lesser degree, in other 

measurement contexts. Examples of dichotomous items include the following:

1. Zurich is the capital of Switzerland. True False

2. What is the value of pi?

(a) 1.41

(b) 3.14

(c) 2.78

Special methods for computing reliability that take advantage of the com-

putational simplicity of dichotomous responses have been developed. General 
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measurement texts, such as Nunnally and Bernstein’s (1994), cover these 

methods in some detail. The logic of these methods for assessing reliability 

largely parallels the more general approach that applies to multipoint, con-

tinuous scale items. In fact, in some cases, the approach to assessing reliability 

for multiresponse items is an extension of an earlier approach developed for 

dichotomous-response items. In the interest of brevity, this chapter will make 

only passing reference to reliability assessment methods intended for scales 

made up of dichotomous items. Some characteristics of this type of scale are 

discussed in Chapter 5.

Internal Consistency

Internal consistency reliability, as the name implies, is concerned with the 

homogeneity of the items within a scale. Scales based on classical measure-

ment models are intended to measure a single phenomenon. As we saw in the 

preceding chapter, measurement theory suggests that the relationships among 

items are logically connected to the relationships of items to the latent variable. 

If the items of a scale have a strong relationship to their latent variable, they 

will have a strong relationship to one another. Although we cannot directly 

observe the linkage between items and the latent variable, we can certainly 

determine whether the items are correlated to one another. A scale is internally 

consistent to the extent that its items are highly intercorrelated. What can 

account for correlations among items? There are two possibilities: Either items 

causally affect each other (e.g., Item A causes Item B), or the items share a com-

mon cause. Under most conditions, the former explanation is unlikely, leaving 

the latter as the more obvious choice. Thus, high inter-item correlations sug-

gest that the items are all measuring (i.e., are manifestations of) the same thing. 

If we make the assumptions discussed in the preceding chapter (particularly 

the assumption that items do not share sources of error), we also can conclude 

that strong correlations among items imply strong links between items and the 

latent variable. Thus, a unidimensional scale or a single dimension of a multi-

dimensional scale should consist of a set of items that correlate well with one 

another. Multidimensional scales measuring several phenomena—for example, 

the Multidimensional Health Locus of Control scales (Wallston et al., 1978)—

are really families of related scales; each “dimension” is a scale in its own right.

Coefficient Alpha

Internal consistency is typically equated with Cronbach’s (1951) coefficient 

alpha (α). We will examine alpha in some detail for several reasons. First, it is 

widely used as a measure of reliability. Second, its connection to the definition 

of reliability may be less evident than is the case for other measures of reliabil-

ity (such as the alternate forms methods) discussed later. Consequently, alpha 

may appear more mysterious than other reliability computation methods to 

those who are not familiar with its internal workings. Finally, an exploration 


